欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (05): 845-854.doi: 10.3724/SP.J.1006.2013.00767

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米杂交种与亲本雌穗花器官形成期蛋白差异表达谱分析

郭宝健,宋方威,冯万军,隋志鹏,孙其信,倪中福*   

  1. 农业生物技术国家重点实验室 / 中国农业大学杂种优势研究与利用教育部重点实验室 / 作物遗传改良北京市重点实验室 / 国家植物基因研究中心(北京), 北京100193
  • 收稿日期:2012-09-05 修回日期:2012-12-16 出版日期:2013-05-12 网络出版日期:2013-02-22
  • 通讯作者: 倪中福, E-mail: nzhf2002@yahoo.com.cn
  • 基金资助:

    本研究由国家杰出青年科学基金(30925023)和国家自然科学基金重点项目(31230054)资助。

Differentially Expressed Protein Profiling during Ear Floral Development between Maize Hybrid and Its Parents

GUO Bao-Jian,SONG Fang-Wei,FENG Wan-Jun,SUI Zhi-Peng,SUN Qi-Xin,NI Zhong-Fu*   

  1. State Key Laboratory for Agrobiotechnology / Key Laboratory of Crop Heterosis and Utilization, Ministry of Education / Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University / National Plant Gene Research Centre (Beijing), Beijing 100193, China
  • Received:2012-09-05 Revised:2012-12-16 Published:2013-05-12 Published online:2013-02-22
  • Contact: 倪中福, E-mail: nzhf2002@yahoo.com.cn

摘要:

为探讨玉米穗粒数杂种优势形成的分子机制,以玉米强优势杂交种豫玉22及其亲本综387-1的花器官形成期雌穗为材料,采用高通量的2-DEMALDI TOF MS技术,建立了它们的蛋白差异表达谱,并对差异蛋白进行了质谱鉴定。结果显示,在检测到的1 290个蛋白点中,有114(8.84%)在杂交种与亲本之间的表达差异达到显著水平,其中表现单亲沉默、偏高亲、中亲表达、偏低亲、杂种上调、杂种下调、亲本特异和杂种特异表达模式的蛋白点分别为272515131111102个。另外,成功鉴定出其中的104个差异表达蛋白点,涉及代谢、信号转导、能量、转录、蛋白质合成、蛋白运输与储藏、细胞生长与分裂、细胞结构、抗病防御、次生代谢、转座子及功能未知和假定蛋白等12个功能类别。玉米杂交种与亲本蛋白在丰度上的明显差异及涉及多个功能类别,可能与玉米穗粒数杂种优势的形成有关。

关键词: 玉米, 雌穗, 杂种优势, 蛋白差异表达谱

Abstract:

To gain an insight into the molecular basis of heterosis related to kernel number per ear in maize, we established a differentially expressed protein profiling between highly heterotic hybrid Yuyu 22 and its parental lines Zong 3, 87-1 during ear floral development by using a combined methods of 2-DE and MALDI TOF MS. A total of 1290 protein spots were detected, among which 114 were found to be differentially expressed with a significant difference at P<0.05. The number of protein spots belongs to the models of expression in hybrid and uniparent but not in another parent (UPF1), hybrid is equal to the highly expressed parent (HDH), hybrid is equal to the mid-parent (MPE), hybrid is equal to the lowly expressed parent (LDH), up-regulated in hybrid (URH), down-regulated in hybrid (DRH), dominant expression of uniparental proteins but not in hybrids (UPnF1), hybrid-specific expressed protein spots (F1nBP) was 27, 25, 15, 13, 11, 11, 10, and 2, respectively. In addition, 104 proteins were identified by using MALDI TOF MS, which are involved in 12 functional categories, including metabolism, signal transduction, energy, gene transcription, protein synthesis, protein transport and storage, cell growth, cell division, cell structure, disease and defense, secondary metabolism, transposons, unknown and putative proteins. Taken together, expression differences between hybrid and its parents at protein abundances and multiple functions of in hybrid may contribute to the heterosis related to kernel number per ear.

Key words: Maize, Ear, Heterosis, Differentially expressed protein profiling

[1]Shull G H. Duplicate genes for capsule form in Bursa bursa-pastoris. Mol Gen Genet, 1914, 12: 97–149



[2]Romagnoli S, Maddaloni M, Livini C, Motto M. Relationship between gene expression and hybrid vigor in primary root tips of young maize (Zea mays L.) plantlets. Theor Appl Genet, 1990, 80: 769–775



[3]Sun Q X, Wu L M, Ni Z F, Meng F R, Wang Z K, Lin Z. Differential gene expression patterns in leaves between hybrids and their parental inbreds are correlated with heterosis in a wheat diallel cross. Plant Sci, 2004, 166: 651–657



[4]Zhang Y-R(张义荣), Yao Y-Y(姚颖垠), Peng H-R(彭惠茹), Zhang Q-B(张庆波), Ni Z-F(倪中福), Sun Q-X(孙其信). Progress in molecular genetic mechanism of plant heterosis. Prog Nat Sci (自然科学进展), 2009, 19(7): 697–703 (in Chinese with English abstract)



[5]Hoecker N, Keller B, Muthreich N, Chollet D, Descombes P, Piepho H P, Hochholdinger F. Comparison of maize (Zea mays L.) F1-hybrid and parental inbred line primary root transcriptomes suggests organ-specific patterns of nonadditive gene expression and conserved expression trends. Genetics, 2008, 179:1275–1283



[6]Fu Z Y, Jin X N, Ding D, Li Y L, Fu Z J, Tang J H. Proteomic analysis of heterosis during maize seed germination. Proteomics, 2011, 11: 1462–1472



[7]Bortiri E, Chuck G, Vollbrecht E, Rocheford T, Martienssen R, Hake S. Ramosa2 encodes a lateral organ boundary domain protein that determines the fate of stem cells in branch meristems of maize. Plant Cell, 2006, 18: 574–585



[8]Hoecker N, Lamkemeyer T, Sarholz B, Paschold A, Fladerer C, Madlung J, Wurster K, Stahl M, Piepho H P, Nordheim A, Hochholdinger F. Analysis of nonadditive protein accumulation in young primary roots of a maize (Zea mays L.) F(1)-hybrid compared to its parental inbred lines. Proteomics, 2008, 8: 3882–3894.



[9]Tang J H, Yan J B, Ma X Q, Teng W T, Wu W R, Dai J R, Dhillon B S, Melchinger A E, Li J S. Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an immortalized F2 population. Theor Appl Genet, 2010, 120: 333–340



[10]Ma X Q, Tang J H, Teng W T, Yan J B, Meng Y J, Li J S. Epistatic interaction is an important genetic basis of grain yield and its components in maize. Mol Breed, 2007, 20: 41–51



[11]Stupar R M, Springer N M. Cis-transcriptional variation in maize inbred Lines B73 and Mo17 leads to additive expression patterns in the F1 hybrid. Genetics, 2006, 173: 2199–2210



[12]Li B, Zhang D F, Jia G Q, Dai J R, Wang S C. Genome-wide comparisons of gene expression for yield heterosis in maize. Plant Mol Biol Rep, 2009, 27: 162–176



[13]Pea G, Ferron S, Gianfranceschi L, Krajewski P, Pè E. Gene expression nonadditivity in immature ears of a heterotic F1 maize hybrid. Plant Sci, 2008, 174: 17–24



[14]Bradford M M. A rapid and sensitive method for the quantization of microgram quantities of protein using the principle of protein-dye binding. Anal Biochem, 1976, 72: 248–254



[15]Song X, Ni Z F, Yao Y Y, Xie C J, Li Z X, Wu H Y, Zhang Y H, Sun Q X. Wheat (Triticum aestivum L.) root proteome and differentially expressed root proteins between hybrid and parents. Proteomics, 2007, 7: 3538–3557



[16]Stuber C W, Lincoln S E, Wolff D W, Helentjaris T, Lander E S. Identi?cation of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics, 1992, 132: 823–839



[17]Lu H, Romero-Severson J, Bernarbo R. Genetic basis of heterosis explored by simple sequence repeat markers in a random-mated maize population. Theor Appl Genet, 2003, 107: 494–502



[18]Frascaroli E, Canè MA, Landi P, Pea G, Gianfranceschi L, Villa M, Morgante M, Pè M E. Classical genetic and quantitative trait loci analyses of heterosis in a maize hybrid between two elite inbred lines. Genetics, 2007, 176: 625–644



[19]Satoh-Nagasawa N, Nagasawa N, Malcomber S, Sakai H, Jackson D. A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature, 2006, 441: 227–230



[20]Bao W-K(鲍文奎). Chance and challenge-40 years breeding research thinking. Plant J (植物杂志), 1990, (4): 4–5 (in Chinese)



[21]Manning K, Tor M, Poole M, Hong Y, Thompson A J, King G J, Giovannoni J J, Seymour G B. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet, 2006, 38: 948–952



[22]Shindo C, Lister C, Crevillen P, Nordborg M, Dean C. Variation in the epigenetic silencing of FLC contributes to natural variation in Arabidopsis vernalization response. Genes Dev, 2006, 20: 3079–3083



[23]Ni Z F, Kim E D, Ha M S, Lackey E, Liu J X, Zhang Y R, Sun Q X, Chen Z J. Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature, 2009, 457: 327–331



[24]He G, Zhu X, Elling A A, Chen L, Wang X, Guo L, Liang M, He H, Zhang H, Chen F, Qi Y, Chen R, Deng X W. Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell, 2010, 22: 17–33



[25]Groszmann M, Greaves I K, Albertyn Z I, Scofield G N, Peacock W J, Dennis E S. Changes in 24-nt siRNA levels in Arabidopsis hybrids suggest an epigenetic contribution to hybrid vigor. Proc Natl Acad Sci USA, 2011, 108: 2617–2622



[26]Shen H S, He H, Li J G, Chen W, Wang X C, Guo L, Peng Z Y, He G M, Zhong S W, Qi Y J, Terzaghi W, Deng X W. Genome-wide analysis of DNA methylation and gene expression changes in two Arabidopsis ecotypes and their reciprocal hybrids. Plant Cell, 2012, 24: 875–892



[27]Kumar A, Bennetzen J L. Plant retrotransposons. Annu Rev Genet, 1999, 33: 479–532



[28]Wu L M, Ni Z F, Meng F R, Lin Z, Sun Q X. Cloning and characterization of leaf cDNAs that are differentially expressed between wheat hybrids and their parents. Mol Genet Genomics, 2003, 270: 281–286



[29]Hoecker N, Keller B, Muthreich N, Chollet D, Descombes P, Piepho H P, Hochholdinger F. Comparison of maize (Zea mays L.) F1-hybrid and parental inbred line primary root transcriptomes suggests organ-speci?c patterns of nonadditive gene expression and conserved expression trends. Genetics, 2008, 179:1275–1283

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!