首页 | 官方网站   微博 | 高级检索  
     


Gene expression differences in the methionine remethylation and transsulphuration pathways under methionine restriction and recovery with D,L‐methionine or D,L‐HMTBA in meat‐type chickens
Authors:S E Aggrey  F González‐Cerón  R Rekaya  Y Mercier
Affiliation:1. Poultry Science Department, NutriGenomics Laboratory, University of Georgia, Athens, GA, USA;2. Institute of Bioinformatics, University of Georgia, Athens, GA, USA;3. Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA;4. Adisseo France SAS, Antony, France
Abstract:This study examined the molecular mechanisms of methionine pathways in meat‐type chickens where birds were provided with a diet deficient in methionine from 3 to 5 weeks of age. The birds on the deficient diet were then provided with a diet supplemented with either D,L‐methionine or D,L‐HMTBA from 5 to 7 weeks. The diet of the control birds was supplemented with L‐methionine from hatch till 7 weeks of age. We studied the mRNA expression of methionine adenosyltransferase 1, alpha, methionine adenosyltransferase 1, beta, 5‐methyltetrahydrofolate‐homocysteine methyltransferase, 5‐methyltetrahydrofolate‐homocysteine methyltransferase reductase, betaine‐homocysteine S‐methyltransferase, glycine N‐methyltransferase, S‐adenosyl‐L‐homocysteine hydrolase and cystathionine beta synthase genes in the liver, duodenum, Pectoralis (P.) major and the gastrocnemius muscle at 5 and 7 weeks. Feeding a diet deficient in dietary methionine affected body composition. Birds that were fed a methionine‐deficient diet expressed genes that indicated that remethylation occurred via the one‐carbon pathway in the liver and duodenum; however, in the P. major and the gastrocnemius muscles, gene expression levels suggested that homocysteine received methyl from both folate and betaine for remethylation. Birds who were switched from a methionine deficiency diet to one supplemented with either D,L‐methionine or D,L‐HMTBA showed a downregulation of all the genes studied in the liver. However, depending on the tissue or methionine form, either folate or betaine was elicited for remethylation. Thus, mRNA expressions show that genes in the remethylation and transsulphuration pathways were regulated according to tissue need, and there were some differences in the methionine form.
Keywords:gene expression  methionine  poultry  remethylation pathway  transsulphuration
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号