首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
巴郎山川滇高山栎灌丛地上生物量及其对海拔梯度的响应   总被引:14,自引:1,他引:14  
采用标准地和样方收获法,对卧龙自然保护区5个海拔高度上18个样地的川滇高山栎灌丛生物量进行调查.结果表明:1)用地径(D)、树高(H)估测单株木各器官生物量的适合模型为指数模型和幂函数模型,指数模型最佳,相关系数0.941~0.998;而用D2H估测单株木各器官生物量的适合模型为直线和指数模型,直线模型最佳,相关系数0.982~0.996;2)川滇高山栎灌丛群落地上部分总生物量为25.22 t·hm-2,各层生物量排序为川滇高山栎灌木层>枯枝落叶层>伴生灌木>苔藓层>草本层,其生物量占总生物量的百分率分别为72.20%、23.71%、1.80%、1.66%和0.63%;3)川滇高山栎灌木种群平均总生物量为18.21 t·hm-2,各器官生物量大小为干>枝>叶>皮,分别占总生物量的43.28%、26.88%、19.82%和10.02%.海拔2 720~2 920 m地带川滇高山栎灌木干、枝、叶、皮的生物量比例约为4:3:2:1;海拔3 020~3 120 m地带川滇高山栎灌木干、枝、叶、皮的生物量比例约为4:2:2:1.4)随着海拔升高,川滇高山栎优势单株地径、高度及生物量呈减小趋势.海拔2 720~2 920 m处,川滇高山栎灌木地上部分各器官生物量呈纺锤形分布,集中分布在株干高2.0~3.0 m处,约占总量的60%~70%;在海拔3 020~3120 m处或低海拔的干旱生境,川滇高山栎种群地上部分器官生物量呈金字塔形分布,个体地上部分生物量分布随树干的升高而降低,集中分布在0~1.0 m处,占总生物量的60%以上,0.0~2.0 m处的生物量占总生物量的94%~99%.  相似文献   

2.
为了解直干桉在石漠化地区的生长适应性,以建水县半干旱石漠化地区4年生直干桉幼林为研究对象,采用直接收获法,计算直干桉人工林的生物量及含水率,分析直干桉各器官生物量分配规律及林分生产力水平。结果表明,建水县试验地4年生直干桉单株生物量为9.767kg/株,其中树干生物量为3.989kg/株,树枝为1.772kg/株,根部为1.316kg/株,其中,干、枝、叶、根、皮各器官所占比例依次为40.84%、18.14%、15.98%、13.47%、11.56%。各器官生物量由大到小排列依次为干枝叶根皮。含水率则为树叶树皮树干树枝树。地上部分/地下部分为5.564。4年生直干桉林分生物量为32.573t/hm~2,林分净生产力为8.144t/(hm~2·a)。  相似文献   

3.
本研究以筇竹与黄皮树人工混交林中筇竹地上部分为研究对象,测定分析了1~4年生分株地上部分各构件生物量及含水率,建立人工筇竹分株地上部分各构件的生物量及总生物量模型,以期为人工筇竹林的经营管理及其碳汇项目的开发提供科学依据。结果表明:随着筇竹分株年龄的增加,各构件含水率和生物量均逐渐减少,筇竹1~4年生分株地上部分平均含水率分别为57.62%、53.40%、50.01%、42.66%,平均生物量分别为133.99、123.31、109.76、85.39 g/m2;各年龄分株地上部分生物量的分配均呈现出秆>枝>叶的变化规律。不同年龄分株的胸径与秆、枝、叶生物量及地上部分总生物量均有极显著相关性(P<0.01)。以胸径为自变量建立的各年龄筇竹分株地上部分总生物量模型的决定系数(R2)均在0.93以上,具有较高的可信度,也有着较强的适用性,可用于类似立地条件下的筇竹分株生物量估测。  相似文献   

4.
人工柏木林(Cupressus funebris)是川中丘陵区主要的森林类型。确定其含碳率和生物量模型,对精确估算人工柏木林生态系统中的植被碳储量,进一步研究该生态系统的碳循环及碳汇大小提供基础数据。通过金堂县、盐亭县野外样地样品采集与室内分析测试获得柏木整株及各器官的含碳率、生物量(共计采集样株56株),建立生物量模型。结果表明:(1)柏木各器官生物量按大小排列为干(46.45%)>根(22.87%)>枝(15.80%)>叶(8.56%)>皮(6.33%)。地上部分生物量占总生物量的比为77.13%,地下部分占22.87%。(2)柏木单株总平均含碳系数为0.4903±0.0197。各器官含碳系数按大小排列为枝>干>叶>皮>根。干的含碳系数与根、皮之间差异显著(P<0.05),根的含碳系数仅与皮之间差异不显著(P>0.05),皮的含碳系数仅与根之间差异不显著(P>0.05),枝和叶的含碳系数仅与干之间差异不显著(P>0.05)。(3)不同地方柏木各器官含碳系数略有差别,变化幅度为0.44~0.57,金堂县柏木整株和...  相似文献   

5.
不同坡位8年生厚朴人工林生物量分配格局   总被引:5,自引:0,他引:5  
对不同坡位8年生厚朴人工林地上部分和地下部分生物量及其分配率进行了调查分析。研究结果表明,从生长量来看,不同坡位平均胸径、平均树高及平均木单株总生物量均体现为下坡位〉中坡位〉上坡位;就各器官生物量分配率而言,不同坡位厚朴各器官生物量分配率表现为干〉叶〉枝;从平均木各径级根生物量分配率来看,各坡位均表现为骨骼根〉中根根〉大根〉小根〉细根;地上部分皮的总生物量表现为下坡位〉中坡位〉上坡位,地下部分不同径级根生物量分配率随坡位变化而变化,其中干皮生物量分配率表现为下坡〉上坡〉中坡,枝皮生物量分配率表现为下坡〉中坡〉上坡,大根及中根皮生物量分配率表现为中坡〉上坡〉下坡。  相似文献   

6.
闽粤栲人工林生物量研究   总被引:2,自引:0,他引:2  
利用树干解析计算分析福建省牛姆林自然保护区22年生闽粤栲人工林的生长量、生物量及生产力特征.结果表明:闽粤栲树高、胸径和材积总生长量分别达到16.5 m,19.5 cm和0.27 m3,期间分别出现3次、5次和2次生长高峰,其中,树高和胸径生长高峰出现年份一致,材积生长高峰出现相对滞后;树高、胸径连年生长量曲线与平均生长量曲线出现多次相交,材积各生长量曲线基本不相交且变化幅度相对较小;将闽粤栲树高、胸径和材积总生长量与林龄进行回归方程拟合,拟合效果理想;闽粤栲各器官生物量表现为干>枝>根>叶,各器官含水率表现为根>干>枝>叶,单株平均含水率为48.05%;闽粤栲种群生物量为295 261 kg/hm2,种群净生产力为13 420.95 kg/(hm2 ·a).  相似文献   

7.
以滇西北10~200年生丽江云杉为研究对象,采用直接收获法研究其个体生物量及各器官的生物量占总生物量的比例。结果表明:(1)随着树龄的增加,单株总生物量及各器官生物量随之增加,40年生时个体生物量平均为177.52 kg/株,其后每隔20年其生物量翻一番,100年生时为1 222.84 kg/株,然后生物量增速放缓,至200年时达到了2 328.23 kg/株。(2)各器官生物量占总生物量的比例为,树干平均占54.97%,树根占20.82%,树枝占12.76%,树叶占6.64%,树皮占5.26%,干>根>枝>叶>皮;100年后树皮生物量超过树叶生物量,表现出干>根>枝>皮>叶,地上部分生物量分配率高于地下部分。(3)各龄级根系生物量分配以主根和粗根为主,粗根>主根>细根,其中粗根分配率为56.42%,占根总生物量比例较大,证实丽江云杉为浅根性树种,侧根较为发达。(4)丽江云杉生物量前期积累缓慢,20年后开始加速,150~200年间生物量增量减缓,但树干保持稳定增长,较长的生长期可将其作为大径材目标培育。因此,在实际生产中可根据丽江云杉的总生物量增长阶段来划分其近、成、过熟林年龄,利于经营期内获取更多的自然资源。  相似文献   

8.
泡桐生物量的研究*   总被引:2,自引:2,他引:2       下载免费PDF全文
本文通过对1-8年生兰考泡桐生物量的研究,揭示了各器官之间的内在联系以及变化规律;泡桐各器官生物量与(-/D1.3^2H)有密切相关关系;树干生物量向上呈递减趋势;在中、幼龄阶段、细枝所占的比例较大,其次为中枝、大枝,6-7年以后大枝最重,其次为中枝、小枝;在树根生物量中,根桩所占的比例最大(40%-60%),各级根系生物量随树龄而异,树龄增加,较粗的根占的比例增大,而直长4cm以下的根呈减小趋势,全株各器官生物量3年生前顺序为:根>干>叶>枝;3年生后为:干>枝>根>叶>花>果。  相似文献   

9.
选用4种不同密度马尖相思幼林,采用单因素、随机区组设计进行造林试验。对4种不同密度3年生马尖相思幼林的胸径、树高、冠幅、枝下高生长进行了观测分析,用标准木的各器官干质量估测林分的生物量。结果表明:不同密度对3年生马尖相思幼林的胸径、树高、冠幅生长无显著性影响,对枝下高生长的影响到第3年时已趋明显,差异显著。3年生幼林生物量以密度为2 505株/hm2最高,鲜质量达59.24t/hm2,气干质量达24.33t/hm2;3 330株/hm2最低,鲜质量为42.97t/hm2,气干质量为17.33t/hm2。不同密度3年生幼林各器官生物量气干质量所占比率均为干>叶>枝>根>皮。  相似文献   

10.
为了解红锥人工林的生物量特征,采用径阶标准木收获法建立相对生长方程,对桂东南12年生红锥人工林的生物量及其分布特征进行了研究。结果表明:红锥人工林乔木层生物量为31.38±1.93 t·hm~(-2),净生产量为2.62±0.24 t·hm~(-2)a~(-1);生物量在各器官的分配为干(53.85%)根(28.30%)枝(10.57%)皮(6.32%)叶(0.95%),干、根为主要分配器官,两者占总生物量的82.15%;沿树干向上,干、皮生物量逐渐减少,而活枝和叶生物量则呈先增后减少的趋势,活枝、叶生物量在树干高度4~6 m段达到最大;根系生物量以根桩所占的比例最高,细根最小。  相似文献   

11.
对巴西米纳斯吉拉斯州北部半干旱地区(15°09’S43°49’W)的赤桉(Eucalyptus camaldulensis)和大桉(Eucalyptus grandis)人工林的地上生物量、营养成分含量和菌根菌定植百分率进行了调查和分析。结果表明,赤按和大桉人工林的总地上生物量分别为33.6Mg·hm-2和153.1Mg·hm-2。赤桉树干、叶子、枝条和树皮的生物量分别占总生物量的64.4%,19.6%,15.4%,0.6%,大桉地上生物量的分配与赤按基本相同。赤桉叶子和枝条的干物质占其总生物量的35%,叶子和枝条中的N,P,K,Ca,Mg,and S的含量分别占总生物量这些营养元素的15.5%,0.7%,12.3%,22.6%,19%,1.4%。树干(包括树皮)中的营养成分累积相对比较低。与赤桉相比,大桉的营养含量变化较小。这2个树种的树干上部含有高浓度的磷,树皮也含有大量的营养物质,尤其是大桉;说明在半干旱地区,立地上脱落的植物性废物对降低树木生产力损失有重要意义。赤桉和大桉都有菌根营养。  相似文献   

12.
A study was conducted to evaluate the aboveground biomass, nutrient content and the percentages of mycorrhizal colonization in Eucalyptus camaldulensis and Eucalyptus grandis plantations in the semiarid region (15° 09′ S 43° 49′ W) in the north of the State of Minas Gerais in Brazil. Results show that the total above-ground biomass (dry matter) was 33.6 Mg·ha−1 for E. camaldulensis and 53.1 Mg·ha−1 for E. grandis. The biomass of the stem wood, leaves, branches, and stem bark for E. camaldulensis accounted for 64.4%, 19.6%, 15.4%, and 0.6% of the total biomass, respectively (Table 2); meanwhile a similar partition of the total above-ground biomass was also found for E. grandis. The dry matter of leaves and branches of E. camaldulensis accounted for 35% of total biomass, and the contents of N, P, K, Ca, Mg, and S in leaves and branches accounted for 15.5%, 0.7%, 12.3%, 22.6%, 1.9%, and 1.4% of those in total above-ground biomass, respectively. In the trunk (bark and wood), nutrient accumulation in general was lower. Nutrient content of E. grandis presented little variation compared with that of E. camaldulensis. Wood localized in superior parts of trunk presented a higher concentration of P and bark contained significant amounts of nutrients, especially in E. grandis. This indicated that leaving vegetal waste is of importance on the site in reducing the loss of tree productivity in this semi-arid region. The two species showed mycotrophy.  相似文献   

13.
云南省云杉立木生物量模型研建   总被引:2,自引:0,他引:2  
以云南云杉为研究对象,对云杉地上生物量和地下生物量模型进行研建。建立云杉地上总生物量、树干、树冠、干材、干皮、树枝、树叶独立模型与材积相容模型,采用分级联合控制和度量误差模型方法,建立地上总生物量和所有分量相容的立木生物量模型,建立根茎比模型对云杉地下生物量进行估计。结果表明:建立的云杉地上总生物量、树干、干材生物量二元模型预估精度均达95%以上,干皮生物量模型预估精度达94%以上,树冠、树叶、树枝生物量的预估精度均在92%以上,地下生物量模型预估精度在88%以上;所建立的模型可以用于云杉生物量的估计。  相似文献   

14.
对苏麻竹地上各部分生物量分配及竹笋成分进行了分析研究。结果表明:苏麻竹地上部分各构件间含水率存在极显著差异,不同年龄的立竹地上部分构件间的含水率亦存在极显著差异;立竹地上各部位生物量分配表现为秆 > 枝条 > 叶片,相同部位不同年龄立竹生物量以2年生竹为最低,1年生竹最高;立竹秆生物量及立竹总生物量与胸径、株高之间模型拟合效果最好,可以用于估计苏麻竹的地上生物量;苏麻竹笋中的游离氨基酸种类丰富,并含有7种人体必需的氨基酸;蛋白质、可溶性糖和淀粉含量能够满足食用需要。研究结果可为苏麻竹的推广种植和开发利用提供数据支撑。  相似文献   

15.
20年生杉木人工林干物质积累及相对生长模型研究   总被引:1,自引:0,他引:1  
陈修官 《防护林科技》2007,(4):28-29,40
在闽侯县荆溪镇三块立地条件大体属好、中、差不同坡位的杉木人工林样地进行生物量调查,调查结果表明,20年生杉木人工林在不同立地条件下干物质积累量差异显著,下坡干物质积累量(生物量)为154.2 t.hm-2,其中干、枝、叶的生物量分别为128.9、13.0、12.3 t.hm-2,干材积年增长量为19.63 m3.hm-2;而上坡干物质积累量仅为62.6 t.hm-2,其中干、枝、叶的生物量分别为48.1、7.4、7.1 t.hm-2,干材积年增长量仅为5.64 m3.hm-2,干、枝、叶、林分总生物量及干材积年增长量分别是下坡的37.3%、56.9%、57.7%、40.6%、28.7%。干的生物量、干的去皮材积可分别用WS=0.034 20(D2H)0.881 4、VS=0.000 046 47(D2H)0.966 5生长模型预测,枝、叶生物量分别符合经验公式1/WB=1/(0.002 831×D2H)+1/14.9、1/WL=1/(0.002 747×D2H)+1/13.71。  相似文献   

16.
银杏树中黄酮类化合物分布规律研究   总被引:3,自引:0,他引:3  
采用醇提法对银杏树不同部位黄酮类化合物进行提取,并利用紫外分光光度法对银杏树中黄酮类化合物含量进行了测定,对其分布规律进行了分析研究.结果表明银杏树中黄酮类化合物分布分别为:枝桠材中含0.035mg/g左右,主干材中含0.018mg/g左右,根材中含0.014mg/g左右;枝桠皮中含0.41mg/g左右,主干皮中含0.26mg/g左右,根皮中含0.12mg/g左右,苗木中含0.12mg/g左右.测定结果表明,不同部位的木材的黄酮类化合物含量有差异,从根部到枝桠再到叶,黄酮类化合物含量在增大.  相似文献   

17.
研究了南方红豆杉枝叶中叶片、树皮、嫩枝和木质部的生物量比例,以及各部位中主要有效成分紫杉醇和10-DABⅢ的含量分布情况。实验结果表明:红豆杉枝叶中叶片的生物量约占30%,叶片中累积的有效产物量最高(约占总量的70%);树皮含量次之,杂质最少;红豆杉枝叶中木质部的生物量最多(占46%),累积的产物最少(约占总量的5%)。叶片是红豆杉枝叶中提取紫杉醇等产物的最有效部位。  相似文献   

18.
依据全国碳汇专项调查的理论和方法,对福建省霞浦县不同林龄阔叶混交林生态系统各组分的碳、氮含量及碳、氮储量格局进行调查分析,结果表明:灌木层各器官碳含量从大到小依次为枝干根叶,氮含量为叶干根枝;草本层碳、氮含量从大到小均为地上部分地下部分;土壤碳、氮含量均随土层深度增加而降低,随林龄的增大而上升;系统各组分C/N从大到小依次为枝根干枯落物叶土壤;12年生、19年生和28年生阔叶混交林生态系统的碳储量分别为164.066、231.751和290.985t!hm-2,氮储量分别为15.011、23.503和31.236t!hm-2,其中,土壤层碳储量所占比重分别为60.27%、46.50%和39.50%,氮储量所占比重分别为45.94%、33.09%和28.67%;乔木层、灌木层、枯落物层和土壤层碳、氮储量均随林龄的增大而增加。  相似文献   

19.
为提高赤水河流域毛竹林的生产力,采用随机区组设计,试验研究了尿素和不同氮、磷和钾配比的复合肥B、C、D对毛竹林出笋成竹、新竹质量和地上生物量的影响。结果表明:1)尿素对毛竹林成竹量和枝叶生物量的影响达显著水平,其出笋量、成竹量、新竹平均胸径、胸高断面积、秆材量和地上生物量分别为对照的120.17%、130.70%、93.49%、114.03%、111.37%、113.74%,表现出生物量上升而新竹质量降低的效果,生产上需慎用; 2)复合肥B对毛竹林的新竹胸高断面积、秆材量、枝叶量和地上生物量的影响均达显著水平,其出笋量、成竹量、新竹平均胸径、胸高断面积、秆材量和地上生物量分别为对照的112.50%、121.69%、101.76%、125.69%、126.41%、125.81%,表现为新竹质量和生物量上升,适宜于培育大径用材林; 3)复合肥C对毛竹林各项生产力指标的影响均未达显著水平,其出笋量、成竹量、新竹平均胸径、胸高断面积、秆材量和地上生物量分别为对照的101.42%、118.28%、100.10%、118.80%、119.07%、118.89%,适宜于培育笋用林和笋材兼用林; 4)生产力综合效应指数大小呈复合肥B (682.63%) > 复合肥C(476.35%) > 尿素(445.26%) > 复合肥D(261.37%) > 对照(100.00%)的变化趋势。  相似文献   

20.
基于60株辽东山区日本落叶松样木生物量的实测数据,分析不同林龄条件下立木各部分生物量的变化情况,并应用度量误差方法建立立木相容性生物量模型。结果表明:树叶、树枝、树皮生物量占总生物量的比值随林龄增长呈下降趋势,干材占总生物量的比值随林龄增长呈上升趋势。在筛选出总生物量与各分量最优独立模型的基础上,应用三级控制的方法建立生物量相容性模型,并采用加权回归方法消除总量和各分量模型的异方差。建立的总量、地上部分、树干、干材、树皮生物量模型,其R2均大于0.9;树根、树冠、树叶和树枝生物量的R2略低,介于0.7 0.9之间。通过独立样本对模型的相容性和预测精度进行检验,各分量预测值所占总生物量的百分比之和为1,模型完全相容;根、冠、叶和枝的模型预测精度略低于90%,其他部位模型的预测精度都在95%以上,模型的预测精度较高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号