首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seed storage proteins of Japanese wheat (Triticum aestivum) varieties were fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to identify the alleles for complex gene loci, Glu-A1, Glu-B1, and Glu-D1, which code for high molecular weight (HMW) subunits of glutenin in Japanese hexaploid wheat varieties. These were identified by comparison of subunit mobility with those previously found in hexaploid wheat. Twenty-four different, major glutenin HMW subunits were identified, and each variety contained three to five subunits. Seventeen different glutenin subunit patterns were observed for 14 alleles in Japanese varieties. A catalog of alleles for the complex gene loci, Glu-A1, Glu-B1, and Glu-D1, that code for HMW subunits of glutenin in hexaploid wheat was compiled. Japanese varieties showed some special allelic variation in glutenin HMW subunits that was different from those in hexaploid wheats of other countries.  相似文献   

2.
我国不同时期小麦品种高分子量麦谷蛋白亚基组成比较   总被引:1,自引:0,他引:1  
用SDS-PAGE方法测定了我国10个小麦主产省份171份小麦品种和高代品系的高分子量麦谷蛋白亚基(HMW-GS)组成。鉴定出18种HMW-GS,40种HMW-GS组成形式,其中20种亚基其组成形式只在一个品种(系)中出现。Glu-A1位点亚基1和Null出现最多,Glu-B1位点7 8和7 9亚基对占绝对优势,Glu-D1位点2 12亚基对出现频率最高。Null、7 9、2 12、Null,7 8,2 12,1、7 8,2 12,1、7 9、2 12等亚基组成形成出现频率最高,占分析品种的49.71%。与前人研究相比,新育成品种HMW-GS亚基组成发生了明显变化,面包优质亚基(对)1、5 10出现的频率显著升高,亚基多态性增加,组成形式明显改善,这些对于品质改良和品种选育是非常有利的,新育成品种Glu-1品质评分已超过7。尽管个别品种亚基组成好,品质优良,但总体上看,我国小麦品种与其它国家相比品质还存在一定差距,提高5 10、17 18等优质亚基的频率是改善我国小麦面包品质的重要措施。  相似文献   

3.
The objective of this study was to determine the composition of high molecular weight glutenin subunits of landraces and obsolete cultivars. Altogether glutenin profiles of 67 European wheats were analyzed by sodiumdodecylsulphate polyacrylamide gel electrophoresis. Nineteen of them were observed to be homogeneous, whereas 48 (71%) were heterogeneous in glutenin profiles. Heterogeneous accessions possessed from 2 to 9 different glutenin phenotypes. Seventeen high molecular weight (HMW)-glutenin subunits have been found, three belonged to Glu-1A, 11 to Glu-1B, and three to Glu-1D locus. The most frequented HMW-GS at the Glu-A1, Glu-B1, and Glu-D1 complex loci were 0, 7+9, and 2+12, respectively. However, allele low frequented in wheat such as 13+16, 20, 6, 7, 8, and 9 were observed also. Furthermore, other new alleles encoding HMW-GS at the locus Glu-1B with relative molecular weight 120 and 104 kDa have been found in one of the line of the Swedish cultivar Kotte. TheGlu-1 quality score in the examined accessions varied broadly with some lines reaching the maximum value of 10.  相似文献   

4.
The high molecular weight glutenin subunits (HMW-GS) composition at the Glu-1 complex loci, in 23 old original wheat genotypes cultivated in Slovakia several decades ago and 32 modern Slovak and Czech wheat cultivars growed in Slovakia at present were studied by SDS-PAGE. Some of the HMW-GS – subunit pairs 3+12, 17+18, and subunit 20, present in old historical wheats were missing in modern cultivars utilized in Slovakia nowadays. There were observed 15 different HMW-GS encoded by 11 alleles or allelic pairs in old genotypes. Lower number of different HMW-GS and competent alleles were observed in a set of modern wheat cultivars – 11 different HMW glutenin subunits encoded by 8 alleles or allelic pairs. The same number of different HMW-GS patterns was revealed in both sets of wheats. From the point of view of genetic variability, it could be concluded that long-term effort of breeders and decreasing of cultivation of landraces and old cultivars are associated with the loss of several HMW-GS alleles and decreasing of genetic variability of wheats. Molecular characterization can reveal broad allelic variability of old wheat genotypes and landraces. Their maintenance in genetic resource collections can prevent losses of these interesting genes.  相似文献   

5.
The composition of high molecular weight (HMW) subunits of glutenin determines the gluten strength and influences the baking quality of bread wheat. Here, the effect of transgenes coding for subunits 1Ax1 and 1Dx5 was studied in two near-isogenic wheat lines differing in their HMW subunit compositions and mixing properties. The subunits encoded by the transgenes were overexpressed in the transformed lines and accounted for 50-70% of HMW subunits. Overexpression of 1Ax1 and 1Dx5 subunits modified glutenin aggregation, but glutenin properties were much more affected by expression of the 1Dx5 transgene. This resulted in increased cross-linking of glutenin polymers. In dynamic assay, the storage and loss moduli of hydrated glutens containing 1Dx5 transgene subunits were considerably enhanced, whereas expression of the 1Ax1 transgene had a limited effect. The very high strength of 1Dx5 transformed glutens resulted in abnormal mixing properties of dough. These results are discussed with regard to glutenin subunit and glutenin polymer structures.  相似文献   

6.
A collection of 123 winter and 106 spring wheat (Triticum aestivum L.) cultivars and breeding lines commonly grown in Nordic and Middle European countries were characterised for the composition of high-molecular-weight (HMW) glutenin subunits on the ground of data from literature and experiments of author. HMW glutenin subunit composition was determined by one-dimensional sodium dodecyl sulphate- polyacrylamide gel electrophoresis (SDS-PAGE). The present database includes data for cultivars and breeding lines from Finland (FIN – 56), Estonia (EST – 27), Sweden (SW – 27), Germany (D – 24), Lithuania (LIT – 17), United Kingdom (UK – 6), France (F – 3), Poland (POL – 5), Italy (IT – 7), Netherlands (NL – 6), Norway (NOR – 12), Russian Federation (RUS – 14 items). The occurrence of individual alleles and corresponding HMW glutenin subunits in surveyed cultivars is demonstrated. Special attention has been paid to cultivars growing in neighbouring countries with the aim to apply them in Estonian plant breeding. The database consists of 4 tables with data of HMW glutenin subunits, encoding them Glu-1 alleles, quality score and sources of data. The database could be useful for varietal identification and for plant breeders to improve wheat quality and accelerate the breeding process.  相似文献   

7.
Four pairs of near-isogenic wheat lines, with and without the 1BL/1RS translocation, and differing at the Glu-1 loci (coding for high molecular weight [HMW] glutenin subunits) were evaluated for their dough mixing properties, dough stickiness, and baking performance. In all 1BL/1RS translocation lines, weakening of the dough consistency occurred within 2 min past peak time. The full-formula dough from every 1BL/1RS translocation line exhibited poor dough mixing characteristics and increased stickiness compared to the corresponding wheat control. The HMW glutenin subunits coded by the Glu-A1 locus had no apparent effect on mixing properties, but did have a slight effect on the dough stickiness at two of the four stages of dough mixing. Glu-B1 and Glu-D1 loci encoded glutenin subunits produced significant changes in dough mixing properties and dough stickiness, respectively. With respect to baking performance, there was no significant difference between loaf volumes of 1BL/1RS versus control wheats for three of four near-isogenic pairs. Within the 1RS-group, the translocation lines containing HMW glutenin subunits 5+10 produced bread with greater loaf volumes than the pairs containing its allelic counterpart 2+12. Loaf volume was not influenced by the subunits associated with the Glu-B1 loci. In general, the breads baked from 1BL/1RS translocation lines had a relatively poor crumb and crust quality and contained larger gas cells than the wheat controls. In comparing isogenic pairs, the magnitude of the difference in loaf volume between the control wheat and the corresponding 1BL/1RS translocation line was greater in the pair unique for HMW subunits 5+10; the difference was primarily due to the stronger mixing properties of the wheat control.  相似文献   

8.
The quality of wheat (Triticum aestivum L.) grain favored in breadmaking is strongly affected by components of seed storage protein, particularly high molecular weight glutenin subunits (HMW‐GS). The HMW‐GS 2.2 controlled by the Glu‐D1ƒ allele is frequently found in Japanese cultivars and landraces. In the investigation into the factors affecting the distribution of the allele, the available data on HMW‐GS of common wheats from Japan were analyzed and compared with the data for intensity of winter habit and wheat flour hardness. We show that the main factors affecting the Glu‐D1ƒ allele frequency in Japanese wheat were the intensity of natural selection for winter habit and artificial selection for flour hardness. According to a study of the worldwide distribution of Glu‐1 alleles, the Glu‐D1ƒ allele is rare. However, Glu‐D1ƒ allele was the most common Japanese wheat seed storage protein allele. It is well known that Chinese wheat contributed to Japanese landraces, and Japanese landraces contributed to modern cultivars from Japan. However, common Japanese and Chinese wheats differ in the frequencies of Glu‐D1ƒ allele. These results may be explained either by the founder effect or by a selective bottleneck in Japanese common wheat genetic resources.  相似文献   

9.
The genetic variations of high-molecular-weight (HMW) glutenin subunits in 1051 accessions of 13 Triticum subspecies were investigated using sodium dodecyl sulfate polyacrylamide-gel electrophoresis. A total of 37 alleles were detected, resulting in 117 different allele combinations, among which 20, 68 and 29 combinations were observed in diploid, tetraploid and hexaploid wheats, respectively. Abundance and frequency of allele and combinations in tetraploid wheats were higher than these in hexaploid wheats. Allele Glu-A1c was the most frequent subunit at Glu-A1 locus in tetraploid and hexaploid wheats. Consequently, the results also suggested that the higher variations occurred at Glu-B1 locus compared to Glu-A1 and Glu-D1. Therefore, carthlicum wheat possessing the allele 1Ay could be presumed a special evolutional approach distinguished from other tetraploid species. Furthermore, this provides a convenient approach of induction of the 1Ay to common wheat through direct cross with carthlicum wheat. Alleles Glu-B1c and Glu-B1i generally absent in tetraploid wheats were also found in tetraploid wheats. Our results implied that tetraploid and hexaploid wheats were distinguished in dendrogram, whereas carthlicum and spelta wheats and however displayed the unique performance. In addition, founder effect, no-randomness of diploidization, mutation and artificial selection could cause allele distribution of HMW-GS in Triticum. All alleles of HMW-GS in Triticum could be further utilized through hybrid in the quality improvement of common wheat.  相似文献   

10.
Glutenin largely determines wheat bread baking quality. As high-molecular-weight glutenin subunit (HMW-GS), related to Glu-1 loci, determines wheat flour elasticity, it correlates strongly with bread-making quality. This study was aimed at clarifying genetic variations in bread-making characteristics between East and West Asian wheat landrace germplasms, by investigating HMW-GS allelic composition of 1068 wheat accessions. Herein, the accession number having reported HMW-GS pattern in previous studies was 855. However, the accession number with newly detected HMW-GS patterns was 114. These new HMW-GS patterns were classified into 4 types based on similarity. Eight Korean accessions with these four types were identified. Concerning landrace germplasm nature, 99 accessions showed heterogeneous patterns caused by seed mixture. The Glu-1 loci allelic variation analysis, revealed that the percentages of Glu-A1c (73.6%), Glu-B1b (60.2%), and Glu-D1a (68.5%) were highest at Glu-A1, Glu-B1, and Glu-D1 loci, respectively. The incidence of preferable alleles for bread baking was high in Chinese accessions. In bread-making quality evaluation using Glu-1 score, 24 among 35 accessions with full score were from China. The polymorphic information content index of each origin based on HMW glutenin subunit combination showed that West Asian and neighboring-regional landraces, excluding Afghanistan ones, were more diverse than East Asian landraces excluding Chinese ones. Cluster analysis based on Glu-1 allelic combination showed that many Korean, Japanese, and Afghan accessions were in the same group. However, many Chinese and other West Asian accessions were in the other group despite geographical distance.  相似文献   

11.
One hundred lines derived from 14 wheat landraces collected in Mexico were characterized in relation to spike and grain morphology and HMW-glutenin subunit composition. Up to seven botanical varieties were identified among these materials based in four morphological traits. The remaining nine morphological traits showed wide variation. The allelic variation at the Glu-1 loci was wide, although showed a clear risk of genetic erosion due to the low frequency of some alleles. These genotypes could be used as genetic resources to improve important biotic and abiotic traits as well as to widen genetic diversity controlling the HMW glutenin subunit composition of common wheat.  相似文献   

12.
Semidry electroblotting is convenient and allows a rapid and efficient protein transfer from two‐dimensional polyacrylamide gel electrophoresis (2D‐PAGE) gels onto sequencer stable supports for protein microsequence analysis in a gas‐phase sequencer. Using this technique, I determined the amino acid sequences of the endosperm proteins in Japanese hexaploid commercial wheats (Triticum aestivum). Based on sequence determination of the Japanese hexaploid wheats, the endosperm protein could be easily characterized. Wheat endosperm protein, extracted in the presence of 2‐mercaptoethanol and SDS, fractionated into many protein polypeptides using 2D‐PAGE under dissociating conditions. These components were grouped into HMW glutenin subunits, α‐, β‐ or γ‐gliadins, and novel protein polypeptides by using the N‐terminal amino acid sequences. The novel endosperm protein polypeptides were detected, and two new types of N‐terminal amino acid sequences have been found for protein poly‐peptides. These polypeptides have much faster electrophoresis mobility during 2D‐PAGE and are therefore probably a much smaller size than any other peptides of endosperm protein groups found in hexaploid wheat. Ten protein polypeptides have been purified from cultivars of Japanese wheat. Some differences in the contents of amino acids for four protein polypeptide spots were apparent in Japanese wheat.  相似文献   

13.
The effect of genetic substitution of two to four glutenin and gliadin subunits from a Canada Prairie Spring (CPS) cv. Biggar BSR into Alpha 16, another CPS wheat line, was studied for rheological and baking quality. Results from double substitution showed that the presence of a gliadin component from Biggar BSR (BGGL) and low molecular weight glutenin subunit 45 (LMW 45) contributed to improved dough strength characteristics. Presence of BGGL in combination with high molecular weight glutenin subunit 1 (HMW 1) or 17+18 (HMW 17+18) also showed improved dough strength over control Alpha lines. When three or four protein subunits were substituted, even though improved quality performance was observed, it was associated with the negative effect of lowered flour water absorptions in spite of similar protein contents. The study confirms that LMW glutenins, as well as gliadins, play an important role along with HMW glutenins in wheat flour quality. CPS wheat lines with improved dough strength properties can be selected from the double substitution lines with the combination of BGGL/LMW 45 and BGGL/HMW 1.  相似文献   

14.
J. Zhu  K. Khan 《Cereal Chemistry》2002,79(6):783-786
The objective of this study was to investigate the quantitative variation of HMW glutenin subunits in relation to glutenin polymers and hence breadmaking quality across different environments. Six genotypes of hard red spring (HRS) wheat were grown at seven locations in North Dakota in 1998 in a randomized complete‐block experimental design with three replicates at each location. Unreduced SDS‐soluble glutenins of flour were fractionated by multistacking SDS‐PAGE into different sized glutenin polymers, followed by SDS‐PAGE and imaging densitometry to determine the quantitative variation of HMW glutenin subunits. SDS‐insoluble glutenin polymers also were examined for their quantitative composition of HMW glutenin subunits. The results showed that the percentage of HMW glutenin subunits was significantly affected by growing locations. The quantity of HMW glutenin subunits in SDS‐insoluble glutenins was significantly and positively correlated with loaf volume. SDS‐insoluble glutenin polymers had a higher percentage of HMW glutenin subunits than did SDS‐soluble glutenins. SDS‐insoluble glutenin polymers in flour were positively and significantly correlated in proportions of both total and individual HMW glutenin subunits in total SDS glutenins. SDS‐insoluble glutenin polymers also were positively and significantly correlated with the combined proportion of HMW glutenin subunits 2* + 5. The results of this study indicated that either subunit 2* or 5 might be more important in forming a greater quantity of larger SDS‐insoluble glutenin polymers than other subunits. SDS‐insoluble glutenin polymers from different cultivars or locations could have different quantities of HMW glutenin subunits in their composition. SDS‐insoluble glutenin polymers with more HMW glutenin subunits might be larger sized than those with less HMW glutenin subunits. Environment significantly influenced the quantitative variation of HMW glutenin subunits, which in turn affected the size distribution of glutenin polymers, and hence breadmaking quality.  相似文献   

15.
A collection of 50 Einkorn wheat accessions (26 of T. monococcum, 14 of T. baeoticum and 10 T. urartu) was analyzed for low-molecular-weight (LMW) glutenin subunit composition. At the B-LMW glutenin region, T. monococcum possessed 1 or 2 subunits, and T. baeoticum and T. urartu from 1 to 3 subunits. Seven different electrophoretical patterns were detected among T. monococcum and six in both T. baeoticum and T. urartu. T. monococcum was shown to be the less polymorphic, followed by T. baeoticum and by T. urartu. The fact that more glutenin genes are expressed in Einkorn wheats than in polyploid cultivated wheats suggests their possible use in breeding for improving bread and durum wheat quality.  相似文献   

16.
J. Zhu  K. Khan 《Cereal Chemistry》1999,76(2):261-269
Three cultivars of hard red spring (HRS) wheats with identical high molecular weight (HMW) glutenin subunit composition (5+10 type, Glu-D1d) but different dough properties and breadmaking quality were used in this study. The synthesis and accumulation characteristics of different protein fractions during grain development were examined. Samples were collected at three-day intervals from anthesis to maturity between day 10 to day 37. The nonreduced SDS-extractable glutenin aggregates of developing grains were characterized by a multistacking SDS-PAGE procedure to obtain information on the size distribution and polymerization of glutenin aggregates. The HMW to low molecular weight (LMW) glutenin subunit ratio was determined for its relationship to polymerization of the various glutenin aggregates of different molecular sizes. Glutenin proteins were quantified using an imaging densitometer. In addition, albumins and globulins, α- and β-gliadins, γ-gliadins, and ω-gliadins were separated by capillary zone electrophoresis. The results indicated that albumins-globulins, gliadins, and glutenins in developing grains were present at 10 days after anthesis or earlier. Albumin-globulins decreased in proportion, while gliadins increased in proportion during grain development. Polymerization of glutenin aggregates occurred 10 days after anthesis or earlier and increased significantly throughout the grain-filling period until maturity. Larger aggregates of glutenin increased in proportion, while smaller ones decreased in proportion during grain development. Ratio of polymers to monomers increased significantly from day 10 to day 22 of grain development and then remained constant until grain maturity. Glutenin polymers arrived at their maximum in proportion to total SDS-extractable proteins or monomers at day 22 after anthesis while the molecular size of these polymers continued to increase, as indicated by a rapid increase in proportion of HMW to LMW glutenin subunits. Significant differences were found in accumulation rates of glutenin polymers among the three cultivars. Cultivars Kulm and Grandin, with better breadmaking quality, appeared to have greater rates of accumulation and HMW subunit synthesis or formation of larger polymers than did Sharp, a cultivar with poorer quality. Significant differences were found among the three cultivars in the proportion of albumins-globulins and gliadins during grain development. However, no significant differences were found among the cultivars in the proportion of albumins-globulins, α-, β-, γ-, and ω-gliadins at grain maturity. Varietal differences in breadmaking quality were due mainly to the differences in glutenin polymers such as ratio of polymeric to monomeric proteins, molecular size distribution, and ratio of HMW to LMW glutenin subunits among wheat cultivars of 2*, 7+9, and 5+10 subunit types. The better breadmaking cultivars might be characterized with higher proportions of glutenins and greater proportion of HMW subunits in total SDS-extractable proteins than the poorer quality cultivar. However, more genotypes need to be examined.  相似文献   

17.
Ten glutenin fractions were separated by sequential extraction of wheat gluten protein with dilute hydrochloric acid from defatted glutenin‐rich wheat gluten of the Canadian hard red spring wheat (HRSW) cultivar Glenlea. The molecular weight distribution (MWD) of 10 different soluble glutenin fractions was examined by multistacking SDS‐PAGE under nonreduced conditions. Also, the subunit composition of the different glutenin fractions was determined by SDS‐PAGE under reduced conditions. The MWD of the fractions (especially HMW glutenins) varied from fraction to fraction. From early to later fractions, the MWD shifted from low to high. The early extracted fractions contained more LMW glutenin subunits (LMW‐GS) and less HMW glutenin subunits (HMW‐GS). The later extracted fractions and the residue fraction contained much more HMW‐GS (2*, 5, and 7 subunits) than the early extracted fractions. The trend in the amounts of 2*, 5, and 7 subunits in each fraction from low to high matched the extraction solvent sequence containing from lower to higher levels of HCl. The influence of glutenin protein fractions from the extra‐strong mixing cultivar, Glenlea, on the breadmaking quality of the weak HRSW, McVey, was assessed by enriching (by 1%) the McVey base flour with isolated glutenin protein fractions from Glenlea. The mixograph peak development times and loaf volumes of enriched flour were measured in an optimized baking test. The results indicated that the higher content in Glenlea glutenin of HMW‐GS with higher molecular weight, such as 2*, 5, and 7, seem to be the critical factor responsible for the strong mixing properties of Glenlea. Our results confirmed that subunit 7 occurred in the highest quantity of all the HMW‐GS. Therefore, it seems that the greater the content of larger molecular weight glutenin subunits, the larger the glutenin polymers and the stronger the flour.  相似文献   

18.
N-terminal amino acid sequences and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) molecular weights have been determined for high-performance liquid chromatography (HPLC)-purified high molecular weight (HMW) and low molecular weight (LMW) glutenin subunits (GS) of Triticum tauschii ssp. strangulata, contributor of the D genome to hexaploid bread wheat. The use of three different extraction procedures resulted in similar glutenin preparations. On the basis of N-terminal sequences, the same types of glutenin subunits that have been reported in bread and durum wheats (HMW-GS of both the x and y types and LMW-GS of the LMW-s, LMW-m, α-, and γ-types) were found in T. tauschii. However, the HMW-GS in T. tauschii were in greater proportion relative to LMW-GS when compared to reported values for a bread and durum wheat. Our results support the likelihood that differences in the proportions of the various subunits contributed by the A, B, and D genomes, rather than qualitative differences in the types of subunits, are responsible for the major differences in quality characteristics between bread wheat and durum wheat.  相似文献   

19.
The frequency of the Glu-D1f allele in Japanese, Chinese, and other Asian hexaploid wheat varieties was analyzed in order to investigate a possible transmission route for hexaploid wheat to the Far East, Japan. The 1380 published data sets were compared to the results for 1107 hexaploid Asian wheat varieties which were determined in this study. The frequency of the Glu-D1f allele was clearly different between areas; the allele was present from northern and southern Japan, from Xinjiang, Jiangsu, Zhejiang, and Beijing in China, and from Afghanistan. A high frequency of the high-molecular-weight glutenin Glu-D1f allele was found predominantly in southern Japan. This distribution of an adaptively neutral character suggests a specific route of transmission for hexaploid wheat to eastern China and the Far East, Japan. It was introduced from Afghanistan, carried to Xinjiang (in northwest China), Jiangsu, and Zhejiang (in southeast China), and then to southern Japan along the so-called Silk Road. It is believed that cultivated hexaploid wheat originated in the Middle East and the Near East and was carried along the Silk Road through China to the Far East, Japan. Japan is the most geographically remote region of wheat production in the world. During the course of its long journey and its adaptation to diverse local environments, Japanese hexaploid wheat has developed a unique composition of glutenin Glu-D1 alleles. The frequency of this allele in different wheat varieties allowed us to hypothesize a possible route for the transmission of hexaploid wheat into the Far East, Japan.  相似文献   

20.
The allelic variation and distribution of high-molecular-weight (HMW) glutenin subunit 1Ay in 814 Triticum lines were investigated by sodium dodecyl sulfate polyacrylamide-gel electrophoresis (SDS–PAGE). 1Ay subunit existed in 13 out of analyzed 21 species. The four species T. turgidum L., T. polonicum L., T. turanicum Jakubz. and T. zhukovskyi Men. et Er. were firstly discovered with expressed 1Ay subunit. The distribution frequencies for diploid, tetraploid and hexaploid wheats were at 87.89, 20.31 and 1.79%, respectively. Among the observed eight 1Ay alleles, three with the electrophoretic mobilities similar to 1Bx6, 1By8, and between 1By8 and 1Dy10 were firstly observed. Five had the mobilities similar to 1Bx6, 1Bx7, 1By8, 1Dy10, and 1Dy12 in Glu-1B and Glu-1D loci of hexaploid wheat. It is very difficult to distinguish these 1Ay alleles in Glu-1Ay from those in hexaploid wheat. The predominant 1Ay alleles were those with the mobilities similar to 1Bx7, 1By8, 1Dy10 and 1Dy12, and faster than 1Dy12. Comparison results of 1Ay alleles in different species indicated that multiple diploid lines were involved in the evolution process of tetraploid wheat. The 1Ay allelic variations and genetic resources might be useful in the quality improvement of common wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号