首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

As part of a series of studies for evolving useful soil tests for Cu, Fe, Mn and Zn in cultivated organic soils, 55 such soils from eastern Canada were used in a greenhouse study. Oat, carrot, onion, and all three followed by lettuce were grown in a greenhouse in 2 L pots containing 1.8 L of soil. The moisture, fertilization and temperature conditions provided were known to be non‐Hmiting. And yet, yields of crops, on per kg soil basis, generally correlated negatively with certain soil properties. The more decomposed and denser soils tended to be less productive, even though more soil, but not significantly less water, was accessible to the roots in such soils than in the case of less decomposed, more open soils. In contrast, crop yield per unit soil volume (1.8 L) basis showed a negative effect of water holding capacity on yield of oat, and positive effect of pH on carrot yield. No other correlations were significant. The results thus corroborated the practice of basing soil tests and fertilizer reconmendations on volume rather than weight of organic soils; indicated that the quality of organic soils, in terms of ability to store and cycle water, oxygen and nutrients, declines with length of cultivation, even before nutritional and water management problems arise, probably due to poor soil aeration; and suggested that the effect of soil quality on potential productivity be examined to derive factors that would help refine fertilizer recommendations.  相似文献   

2.
覆砂对土壤入渗、蒸发和盐分迁移的影响   总被引:9,自引:0,他引:9  
探讨覆砂厚度对土壤水分入渗、蒸发、盐分迁移的影响,对新疆干旱区农田抑盐、保水及合理的覆砂制度制定具有重要意义。本文采用定水头法入渗和模拟稳定蒸发条件,研究覆砂厚度对土壤水分入渗、蒸发过程以及盐分迁移的影响。以覆砂厚度为影响因子,在土壤表层设置4个厚度,分别是0(对照)、1.7、3.6、5.7 cm。研究结果表明:(1)覆砂抑制了土壤水分净入渗能力,这一抑制作用随着覆砂厚度增加而减弱;(2)覆砂可以显著抑制土壤蒸发,随着覆砂厚度的增加抑制力增大。在20天蒸发过程中,覆砂处理蒸发呈稳定态势,且累积蒸发量符合线性方程,而对照符合Rose经验公式;(3)覆砂可以改变土壤盐分在剖面中的运移,尤其减弱了盐分的表聚。总之,覆砂显著地抑制了土壤蒸发和盐分表聚,即在覆砂厚1.7 cm上就可达显著效果,但对土壤的净入渗能力具有抑制作用。  相似文献   

3.
Solutions of Zn, Cu and Mn chelates of EDTA, DTPA and EDDHA were reacted separately with a calcareous soil for periods up to 28 days. DTPA was an effective chelate for Zn and Cu; more than 77 and 55% of the added Zn and Cu, respectively, remained soluble after 28 days of reaction with the soil. The stability of Zn-EDTA and Cu-EDTA was relatively less than those of the respective DTPA chelates, whereas Zn-EDDHA and Cu-EDDHA were highly unstable in the soil. The loss of soluble Mn from Mn-EDTA, Mn-DTPA and Mn-EDDHA additions to soil was very rapid and completed in about one week. It was found that adsorption of Zn-EDDHA, Cu-EDDHA and Mn-EDDHA molecules by the soil was the main process removing Zn, Cu and Mn from solution. Whereas, replacement of the metal in the metal-chelate molecule by Ca ion from the soil was a more serious factor affecting the stability of DTPA and EDTA chelates of Zn, Cu, and Mn.  相似文献   

4.
Abstract

Barley plants grown in a soil very low in organic matter had higher concentrations of Mn, Cu, Zn, and Mo than when the plants were grown in soil considerably higher in soil organic matter. Application of some heavy metals (Co, W, Ag) resulted in much more severe phytotoxicity on low organic matter soil than on high organic matter soil. FeDTPA (ferric diethylene triamine pentaacetate acid) increased Fe levels in plants much more on low organic matter soil than on high organic matter soil. Low organic matter soil resulted in a lower Cs level from the applied Cs than from the high organic matter soil. Sulfur increased Mn concentration of plants even though all the soil was not neutralized.  相似文献   

5.
The main stages of the development of soil hydrology are described. These are: (1) the stage of classical hydrology based on the concepts of soil water forms and soil hydrological constants; (2) the stage of thermodynamic approaches toward assessing the statics and dynamics of soil water (soil hydrophysics); and (3) the modern stage of diverse approaches taking into account the specificity of water movement in a heterogeneous pore space (the development of preferential water flows), the specificity of the hydrological properties of soils in dependence on the scale of their examination, and the impact of the living soil phase on the soil hydrological processes. The diversity of modern approaches toward soil hydrology is reflected in the names of new branches of this science, such as hydropedology, geohydrology, biohydrology, etc. At the modern stage, all the conceptual approaches typical of the earlier stages of the development of soil hydrology are also applied. At present, soil hydrology is an actively developing field of soil science with clearly understood limits of application, advantages, and disadvantages of the methods typical of the first two stages. On this basis, an integral quantitative multilevel concept of soil hydrology is being developed.  相似文献   

6.
Soil degradation, decrease in soil's actual and potential productivity owing to land misuse, is a major threat to agricultural sustainability and environmental quality. The problem is particularly severe in the tropics and sub-tropics as a result of high demographic pressure, shortage of prime agricultural land, harsh environments, and resource poor farmers who presumably cannot afford science based recommended inputs. Tillage methods and soil surface management affect sustainable use of soil resources through their influence on soil stability, soil resilience, and soil quality. Soil stability refers to the susceptibility of soil to change under natural or anthropogenic perturbations. In comparison, soil resilience refers to soil's ability to restore its life support processes after being stressed. The term soil quality refers to the soil's capacity to perform its three principal functions e.g. economic productivity, environment regulation, and aesthetic and cultural values. There is a need to develop precise objective and quantitative indices of assessing these attributes of the soil. These indices can only be developed from the data obtained from well designed and properly implemented long-term soil management experiments conducted on major soils in principal ecoregions.  相似文献   

7.
In these last decades, the awareness that soil is a very important resource for humans has noticeably increased. Many actions and initiatives to promote soil governance, aiming at sustainable soil management and soil security have been undertaken by several national and international institutions and in many countries. Analysis of the changes of soil perception over the centuries allows highlighting a perfect harmony between the evolution of soil awareness and the level of knowledge and technology achieved by humans during their history and evolution. Notwithstanding these many achievements, soils continue to be scarcely considered in politics and society. We suggest some thoughts and reflections that could lead to an up-to-date and effective definition of soil that directly focuses the public attention on its economic value. In our opinion, soil economic value could be the only aspect that truly attracts the attention of politicians and administrators, which could increase soil awareness and encourage soil sustainability, security and Sustainable Development Goals and finally promote soil governance.  相似文献   

8.
Water retention and transport in soils is dependent upon the surface tension of the aqueous phase. Surfactants present in aqueous solution reduce the surface tension of aqueous phase. In soil–water systems, this can result in water drainage and reductions in field capacity and hydraulic conductivity. In this investigation, the surface tension of surfactant solutions mixed with soil—in a constant fixed ratio—was measured as a function of surfactant concentration. Two anionic surfactants were used: sodium dodecyl sulphate and sodium bis (2-ethylhexyl) sulfosuccinate. Two soils were also used—a clay soil and a sandy soil. The key observation made by this investigation was that the addition of soil to the surfactant solution provided a further component of surface tension reduction. Neither soil sample reduced the surface tension of water when surfactant was absent from the aqueous phase, though both soils released soil organic matter at low surfactant concentrations as shown by measurement of the chemical oxygen demand of the supernatant solutions. Furthermore, both surfactants were shown to be weakly adsorbed by soil as shown by the use of a methylene blue assay. It is therefore proposed that the additional reduction in surface tension arises from synergistic interactions between the surfactants and dissolved soil organic matter.  相似文献   

9.
The literature on the fluxes of six heavy metals in temperate forest ecosystems is reviewed. Special attention is given to wet and dry deposition and internal flux, to metal budgets for ecosystems and soils, to concentrations in aqueous compartments of the ecosystem and to speciation in soil solutions. Metal fluxes are discussed in relation to pollution load, soil type, tree species and land use. The mobility of Cu and Pb is strongly dependent on the solubility of organic matter. These metals are commonly accumulated in forest soils. Zinc, Cd and Ni are greatly influenced by soil acidity and are often lost in considerable amounts from acidified soils. Chromium is often at balance in forest ecosystems. Implications for metal solubility and budgets in forest soils are discussed in connection with an increase in soil acidification.  相似文献   

10.
Abstract. A predictive model of metal concentrations in crops was developed to optimize soil liming and sludge application strategies at a dedicated sewage sludge disposal site. Predictions of metal concentrations in plant tissue were derived from measured values of soil metal concentration, humus content and soil pH. The plant and soil data used to parameterize the model were collected on site using quadrat sampling of mature crop and underlying topsoil. The uptake model was used to map predicted metal concentrations in wheat grain and forage maize based upon a database of soil characteristics (metal content, % humus and pH) measured as part of a routine geochemical survey of the site. The effect of a management strategy to modify uptake of Cd by wheat by changing soil pH was investigated. The effect of soil dust adhering to maize plants at harvest was also simulated to investigate the importance of this pathway for Cd transfer to animal feed such as silage.
The model gave satisfactory predictions for uptake of Cd and Zn but less useful simulations for Pb, Cu and Ni. The results for Cd uptake showed a greater dependence on soil pH in the case of wheat in comparison to maize. It is suggested that, for the study site, liming to pH 7.0 will reduce Cd concentrations in wheat grain to within EC legal standards. However the Cd content of maize may still exceed these guidelines, with a relatively minor contribution from contamination with soil dust.  相似文献   

11.
The soil-genetic zoning proposed, unlike the known scheme of soil-genetic zoning, is based on the analysis of soil properties and soil-forming processes. Its objective is to interpret the soil cover in the format of the substantive-genetic soil classification of Russia (2004). The units of the soil-genetic zoning are distinguished according to the manifestations of horizon-forming processes: the main processes determining the principal trend of pedogenesis and the soil profile composition at the first level and the additional processes (forming the associated soils) serving as criteria for distinguishing the units at the second level. The results obtained allow considering this investigation as an experience of a new interpretation of a small-scale soil map and its analysis from two positions: the geography of the soil-forming processes and the complexity of the soil cover. The soil-genetic zoning has been carried out on the basis of the State Soil Map sheets; it can be an instrument for the conversion of the map??s contents into the substantive-genetic soil classification of Russia (2004).  相似文献   

12.
定植孔密封方式对土壤水热盐及番茄苗存活率的影响   总被引:8,自引:3,他引:5  
为了提高河套灌区盐碱地番茄移栽成活率,以番茄定植孔采用土封孔为对照,监测了沙封孔、不封孔株间和根际的土壤水分、土壤盐分、土壤温度及番茄幼苗的生长状况。结果表明,不同处理株间土壤水分、土壤盐分、土壤温度无显著差异。沙封孔、不封孔与土封孔相比,根际0~10cm土层土壤水分降低了11.73%和14.80%,≥10~20cm土层降低了9.60%和13.64%;根际5cm土层最高温度降低了1.2和3.6℃,日均温降低了1.6和2.2℃;根际0~10cm土层土壤盐分降低了19.11%和24.84%,≥10~20cm土层降低了11.48%和19.67%。沙封孔、不封孔番茄幼苗移栽成活率较土封孔提高了20.57%和19.40%。河套灌区盐碱地地膜覆盖栽培番茄,定植时采用沙封孔或不封孔,可降低根际土壤水分及土壤温度,阻碍盐分表聚于根际土壤,提高了番茄幼苗的移栽成活率,该研究为河套灌区盐碱地种植番茄提供指导。  相似文献   

13.
寿光大棚菜地土壤呼吸强度、酶活性、pH与EC的变化研究   总被引:4,自引:1,他引:3  
为防治土壤退化、促进农业可持续发展提供科学依据,以寿光地区露地土壤作对照,研究了连作1、5、8和12年大棚蔬菜(番茄)土壤有关生物学指标的变化。结果表明,土壤呼吸强度和脱氢酶活性棚内高于棚外,并随连作年限延长开始增强而后减弱,由于管理差异,12年棚龄土壤又回升。随着连作年限延长,土壤脲酶活性逐渐减弱,而过氧化氢酶活性逐渐增强;土壤呼吸强度和酶活性都由表层向底层逐渐减弱。土壤pH随连作年限增加逐渐下降,而EC逐渐增加,至12年棚龄时,与对照比0—20 cm土层pH下降了1.06单位,其他层次变化不显著。试验还表明,该地区表层土壤pH变化于6.45~7.51,EC 0.5 mS/cm,能较好地满足作物生长需要,同时,EC是影响土壤pH及酶活性变化的重要因素。土壤EC及过氧化氢酶活性可作为反映大棚菜地土壤质量变化的参考指标。  相似文献   

14.
Soil is closely connected to the culture and civilization of an ethnic group living in a given place, including their religion, thoughts, livelihood and health. It is important for people to protect the soil, their agriculture and the environment because the collapse of soil leads to the collapse of human culture, civilization, livelihood and health. The links between the soil and culture, civilization, livelihood and health may result from the ethical attitudes people have about the soil and that they demonstrate through their interactions with it. However, soil resources have been overexploited in modern society and are currently on the verge of collapsing. In this review article, the etymology of words for soil, the place of soil in philosophy and religion, the relationships between soil and the soul, the soil and dialects, and cultural soil science are discussed. The powerful influences of soil on civilization and livelihood are discussed and the relationship between soil and human beings is also considered. Soil can be shown to be a living thing, and this review will present a brief history of the relationship between soil and human health, and will discuss the importance of adopting an ethical attitude towards soil.  相似文献   

15.
Abstract

Soil is closely connected to the culture and civilization of an ethnic group living in a given place, including their religion, thoughts, livelihood and health. It is important for people to protect the soil, their agriculture and the environment because the collapse of soil leads to the collapse of human culture, civilization, livelihood and health. The links between the soil and culture, civilization, livelihood and health may result from the ethical attitudes people have about the soil and that they demonstrate through their interactions with it. However, soil resources have been overexploited in modern society and are currently on the verge of collapsing. In this review article, the etymology of words for soil, the place of soil in philosophy and religion, the relationships between soil and the soul, the soil and dialects, and cultural soil science are discussed. The powerful influences of soil on civilization and livelihood are discussed and the relationship between soil and human beings is also considered. Soil can be shown to be a living thing, and this review will present a brief history of the relationship between soil and human health, and will discuss the importance of adopting an ethical attitude towards soil.  相似文献   

16.
Soil properties related to soil development were measured in six profiles over approximately 180 years of soil development on recessional moraines of the Hailuogou Glacier, Sichuan of southwestern China. It is hypothesized that soil development is strictly time-dependent. Field and laboratory work indicate that as soil develops from initially coarse gravel outwash, the properties undergo a progressive physical and chemical change such that there is a considerable profile differentiation between the youngest and the oldest soils. The pH is also highly stratified; it decreases with time from 8.5 to 4.2 in the upper mineral soil and increases with depth in all profiles. Accumulation of soil organic C and N increases with time but the rates of accumulation become slower with time. Within the investigated timespan, soil C and N accumulated to a considerable level of 3.5 and 0.6 kg/m2 respectively, with mean annual rates of 28 g/m2 for carbon and 3.5 g/m2 for nitrogen. The rapid accumulation of organic C and N accelerates the processes of soil formation, but the content of organic C and N did not reach a steady-state during the observed timespan. The accumulation of soil organic matter results in increased acid production and in the chemical weathering of minerals that promote formation and translocation of the clay fraction and leaching of carbonate; it is also directly responsible for development of soil properties such as cation exchange capacity (CEC), and bulk density.  相似文献   

17.
A study of the individual and mixture toxicities of the trace metals Ag, Cu, Hg, Zn to the soil enzymes dehydrogenase and urease was undertaken. An agricultural soil and a sandy forest soil were spiked with metal salts, individually and in combinations. The anion additions to the various treatments and controls were normalized for added anions using Ca salts. The soils were then left to equilibrate and leached to reduce the excess metals and anions. Total and dissolved metal concentrations were measured concurrently in order to consider the effect of soil chemistry on the enzyme activities. Dose-response relationships for total soil metals and soil solution metals were estimated for each metal separately following a log-logistic curve fitting. Ag and Hg were the most efficient metals to reduce soil enzyme activities. The Bliss independence model was used to predict the toxicity of metal combinations. The enzyme responses in relation to the total soil metal combinations were synergistic for the agricultural soil and antagonistic for the forest soil; possibly as a result of a higher organic matter content and higher pH in the latter soil. Enzyme activities expressed in relation to the dissolved metal concentrations were more variable than against the total metal contents and consequently we observed both synergistic and antagonistic interactions.  相似文献   

18.
While the reduction of nitrate‐N, Mn(III,IV), Fe(III), and sulfate‐S in soil has been studied intensively in the laboratory, field research has received only limited attention. This study investigated the relationship between redox potential (EH) measured in bulk soil and concentrations of nitrate, Mn2+, Fe2+, and sulfate in the soil solution of two Gleysols differing in drainage status from the Marsh area of Schleswig‐Holstein, Northern Germany. The soils are silty‐sandy and developed from calcareous marine sediments. Redox potentials were monitored weekly with permanently installed Pt electrodes, and soil solution was obtained biweekly by ceramic suction cups from 10, 30, 60, and 150 cm depth over one year. Median EH at 10, 30, 60, and 150 cm depths was 470, 410, 410, and 20 mV in the drained soil and 500, 480, 30, and –170 mV in the undrained soil, respectively. A decrease in EH below critical values was accompanied in the soil solutions (pH 7.4 to 7.8) by disappearance of nitrate below 0 to 200 mV, appearance of Mn2+ below 350 mV, and Fe2+ below 0 to 50 mV. Both metals disappeared from soil solution after aeration. In the sulfide‐bearing environment of the 150 cm depth of the undrained soil, however, the sulfate concentrations were highest at such EH values at which sulfate should be unstable. This discrepancy was reflected in the fact that at this depth bulk soil EH was about 400 mV lower than soil solution EH (250 mV). When investigating the dynamics of nitrate, Mn, and Fe in soils, bulk soil EH provides semi‐quantitative information in terms of critical EH ranges. However, in sulfidic soil environments the interpretation of EH measured in bulk soil is uncertain.  相似文献   

19.
以北京市大兴区庞各庄镇污水处理厂的堆肥污泥、生污泥和通州区的熟土为对象,探讨污泥混配土淋溶液中相关指标的动态变化.结果表明,生污泥、堆肥污泥和熟土混配后可降低土壤pH值,增加土壤全氮、全磷含量,同时也增加了土壤中重金属As、Cd、Ni、Cu、Ph的含量,生污泥系列淋滤液中Pb对地下水造成污染的可能性最大;堆肥污泥系列淋滤液中给地下水带来污染可能性最大的因子是As.但各处理中重金属的污染程度都很低,基本符合国家第II类地下水水质标准,因此淋滤液中的重金属基本不会对地下水造成污染.  相似文献   

20.
Influences of three different vegetations (forests, teak plantation, and rubber plantation) on certain soil fertility parameters of Oxic Dystrustepts in the Western Ghats of southern India are compared. Soil samples collected from 10 different sites under each of the three vegetations in different seasons are analyzed. Soil sampling and physicochemical analyses were carried out as per standard methods. Significant variation was found in soil parameters over the plantations and forest in different seasons. Even though the rubber plantations received chemical fertilizers during two seasons, the average plant-available phosphorus alone exceeded in this soil than that in the forest soil. Specific influence of vegetations on fertility parameters in Oxic Dystrustepts could be traced. The influence of rubber plantations on soil fertility was more negative than that of teak plantations. Vegetational influence on soil fertility characteristics has applications in the development of sustainable agro-ecosystems in biodiversity-rich tropics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号