首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
采用批处理恒温振荡法,利用气相色谱一质谱联用仪研究了人工添加不同吸附物质对土壤中乙草胺的吸附/解吸作用。结果表明,人工添加不同吸附物质对土壤中乙草胺的吸附强度和吸附容量不同,不同的添加剂对土壤中乙草胺的吸附/解吸作用均呈现明显的非线性关系,可用Freundlich模型描述。并且随着土壤中添加量的增大,吸附强度增大、吸附容量增大、所得吸附等温线的非线性也逐步增大;另外,添加剂对乙草胺的解吸迟滞作用也随添加剂含量的增高而更加明显。但是不同添加剂对土壤中乙草胺的吸附能力有明显差异,其中煤粉的吸附能力最大,其次是壳聚糖,沸石最小。  相似文献   

2.
利用高效液相色谱仪结合批处理恒温振荡法,系统研究了人工添加不同吸附物质对土壤中氟磺胺草醚的吸附/解吸作用。试验结果表明:人工添加不同吸附物质对土壤中氟磺胺草醚的吸附强度和吸附容量不同,不同的吸附剂对土壤中氟磺胺草醚的吸附/解吸作用均呈现明显的非线性关系,可用Freundlich模型描述。并且随着土壤中吸附剂的量的增大,吸附强度增大、吸附容量增大、所得吸附等温线的非线性也逐步增大;另外,吸附剂对氟磺胺草醚的解吸迟滞作用也随吸附剂含量的增高而更加明显。但是不同吸附剂对土壤中氟磺胺草醚的吸附能力有明显差异,其中煤粉的吸附能力最大,其次是壳聚糖,沸石最小。  相似文献   

3.
生物碳促进水稻土镉吸附并阻滞水分运移   总被引:3,自引:1,他引:2  
该文以研究生物碳施加对中国南方酸性水稻土中镉的吸附能力和水分运移能力的影响为研究目的。以中国南方稻田耕层(0~20cm)和下层(>60~80cm)的土壤为研究对象,采用批量平衡法研究不同的生物碳添加量及其粒径对土壤中重金属镉吸附的影响;采用柱法研究生物碳对土壤水分运移能力的影响。结果表明,生物碳添加可提高土壤pH值,对于耕层土壤,细碳(粒径为<0.075mm)添加量为3%、6%、9%时,土壤pH值分别提高了1.04、1.45和1.50;粗碳(粒径为0.5~1mm)添加量为3%、6%、9%时,土壤pH值分别提高了0.42、0.97和1.15;但pH值的增量会随生物碳添加量的增加而减缓。利用Freundlich、Henry、Langmuir和Temkin模型对土壤中镉的吸附进行拟合,可得在试验浓度范围内,Freundlich模型的拟合结果最好,其相关系数R2均在0.99以上。生物碳可提高土壤对镉的吸附能力且细碳对于提高土壤对镉吸附能力的效果更为显著。耕层土壤中细碳添加量为3%、6%、9%时,Freundlich模型中的吸附系数K分别增加了106.63%、182.32%和240.51%;下层土壤中细碳和粗碳添加量为3%时,Freundlich模型中的吸附系数K分别增加了39.72%和7.12%。就2种粒径的供试生物碳而言,生物碳的添加比例越大、颗粒越细越容易导致土壤的水分运移能力降低。细碳添加量为1%时,即可造成土壤水分运移能力明显降低,而粗碳添加量为3%时,土壤水分运移能力没有显著变化。因此,实际生产中应综合考虑生物碳对土壤理化性质的影响来确定生物碳添加量及粒径范围,宜施加粗碳且适宜的添加量为3%左右。该研究可为水稻土中生物碳的施加量及粒径选择提供参考。  相似文献   

4.
老冲积黄壤微团聚体对As(Ⅴ)与P竞争吸附—解吸特性   总被引:2,自引:0,他引:2  
土壤微团聚体是土壤的最基本结构单元,不同粒径微团聚体的理化性质的差异不同使得重金属离子在各粒径微团聚体中的吸附—解吸能力大小不同。以名山河流域老冲积黄壤为研究对象,将其划分为4个粒径(2~0.25mm,0.25~0.053mm,0.053~0.002mm,0.002mm)。采用批培养法研究原土及不同粒径微团聚体对As(Ⅴ)与P的竞争吸附—解吸特性。结果表明:原土及不同粒径微团聚体对As(Ⅴ)、P的吸附—解吸特性相似,等温吸附均符合Langmuir和Freundlich方程,但Langmuir方程拟合效果最佳;动力学吸附均符合伪一级方程和伪二级方程,但伪二级方程拟合效果更好。原土及各粒径微团聚体对As(Ⅴ)、P的吸附均以专性吸附为主,非专性吸附为辅。原土及不同粒径微团聚体对As(Ⅴ)、P的最大吸附量不仅与粒径大小有关,与土壤有机质、CEC、游离氧化铁含量呈正相关。由于0.002mm粒径的土壤比表面积大,有机质、CEC、游离氧化铁含量高,故其对As(Ⅴ)、P有最大吸附能力和最高初始吸附速率。As(Ⅴ)、P在各粒径微团聚体上解吸量与其吸附量呈指数关系。当As(Ⅴ)与P共存时,明显互相抑制对方的吸附,促进对方的解吸。As(Ⅴ)与P在0.002mm粒径土壤中存在的竞争吸附—解吸能力最小。  相似文献   

5.
冻融作用对棕壤磷素吸附-解吸特性的影响   总被引:7,自引:0,他引:7  
以棕壤为研究对象,采用室内模拟冻融环境的方法,研究土壤磷素吸附-解吸行为,采用Langumuir、Freundlich和Temkin方程对吸附过程进行拟合分析,定量研究冻融作用对土壤磷素吸附机制的影响,同时建立土壤磷素解吸量与吸附量关系方程,进一步探讨冻融土壤磷吸附-解吸特性。结果表明,冻融条件下棕壤对磷的吸附规律一致,吸附量均随着平衡溶液中磷浓度增加而逐渐增大,与未冻融土壤相比,冻融后土壤磷等温吸附曲线变得平缓。冻融条件下磷等温吸附曲线用Langmuir方程拟合相关性最好。土壤磷素解吸量与相应最大吸附量符合线性相关。冻融后土壤磷固定吸附量低于未冻融土壤,即冻融过程促进土壤磷素释放,增加了土壤磷流失风险。多次冻融循环对土壤磷吸附-解吸行为影响更为强烈。  相似文献   

6.
通过批处理试验研究了不同来源的水溶性有机质(DOM)对南京城郊菜地土壤铅(Pb)吸附解吸行为的影响。研究结果表明,DOM抑制了土壤对Pb的吸附,随着DOM浓度的增加,土壤对Pb的吸附量减少,当DOM体积从0增加到21 mL时,土壤对Pb的吸附量分别减少5.34%(鸡粪)、24.12%(牛粪)和0.35%(有机肥)。不同来源的DOM也影响土壤对Pb的吸附程度。当添加低浓度的DOM(添加体积小于6 mL)时,土壤对Pb的吸附量顺序为鸡粪DOM〈牛粪DOM≈有机肥DOM;当添加高浓度的DOM(添加体积大于6 mL)时,土壤对Pb的吸附量顺序为牛粪DOM〈鸡粪DOM〈有机肥DOM。反之亦然,DOM促进了土壤Pb的解吸,解吸量随添加DOM浓度的增大而增加。不同来源的DOM对土壤Pb解吸程度的影响也有所差异。对于低污染土壤,Pb的解吸量顺序为鸡粪DOM〉牛粪DOM〉有机肥DOM;对于高污染土壤,Pb的解吸量顺序为鸡粪DOM〉有机肥DOM〉牛粪DOM。Pb吸附动力学曲线揭示,添加DOM延缓了土壤Pb吸附平衡到达的时间。本研究表明,DOM增加了土壤Pb的环境风险。  相似文献   

7.
采用室内培养的方法,通过人为添加不同量的玉米秸秆和磷,研究不同含量磷和作物秸秆对土壤锌吸附—解吸的影响,以探讨磷—锌在土壤中的交互作用机制。结果表明:低锌(Zn10:添加Zn2+浓度为10 mg L-1)条件下,土壤对Zn2+的吸附量随土壤速效磷含量的增加而逐渐降低,表明在石灰性土壤中,随磷含量的增加提高了土壤锌的有效性;而Zn2+的解吸量随土壤中磷含量的增加先升高后降低,添加Zn2+浓度为80 mg L-1(Zn80)条件下,土壤对Zn2+的吸附量明显大于Zn10条件下。土壤中添加不同秸秆量对不同浓度Zn2+吸附时,低锌(Zn10)处理下,在相同磷含量情况下,土壤对Zn2+的吸附量随秸秆添加量的增加而减少,而土壤对Zn2+的解吸量随秸秆量的增加而增加。在不同磷水平下,不同秸秆添加量对Zn2+的吸附趋势差异较大。高锌(Zn80)处理下,土壤对Zn2+的吸附量在不同秸秆量处理下趋势大致相同,且Zn2+吸附量随磷含量的提高先升高后降低;在同一磷水平下,土壤对Zn2+的吸附趋势和Zn10时相似。利用KNO3进行解吸Zn2+时,不添加秸秆和低量秸秆处理变化趋势相同,均在添加磷量为360 mg kg-1时解吸量达到最大,分别为363.5 mg kg-1、424 mg kg-1,而高量秸秆处理下,Zn2+解吸量随磷含量的增加先升高后降低。  相似文献   

8.
采用批量平衡实验,研究了纳米粘土矿物与原粘土矿物对除草剂阿特拉津的吸附解吸特陛。结果表明,粘土矿物对阿特拉津的吸附-解吸均能用Freundlich方程很好地拟合。随着溶液中阿特拉津浓度的增加,粘土矿物对阿特拉津的吸附量增加;粘土矿物粒径越小,吸附量越大,纳米粘土矿物的吸附量显著大于原粘土矿物。粘土矿物对阿特拉津吸附量大小顺序为:纳米SiO2)纳米蒙脱石〉凹凸棒石〉蒙脱石〉SiO2。粘土矿物对阿特拉津的解吸表现出一定的滞后效应,即粘土矿物吸附的阿特拉津越多,解吸的越少。粘土矿物对阿特拉津的解吸率大小顺序为:SiO2〉凹凸棒石〉纳米蒙脱石〉纳米SiO2〉蒙脱石。  相似文献   

9.
通过吸附解吸实验研究了添加海泡石后典型水稻土对Cd的吸附解吸特性及其对吸附溶液pH值变化的响应。结果表明,Freundlich方程可以较好地拟合红黄泥、黄泥田和红沙泥3种典型水稻土对Cd的等温吸附过程(R2〉0.962)。在溶液初始Cd浓度相同的情况下,添加海泡石可使3种水稻土对Cd的吸附量增加20%以上,增强土壤对Cd的吸附强度,有效降低吸附Cd的解吸率,其效果随海泡石添加量的增大而增强。3种水稻土吸附Cd的解吸率均高于70%,而且都随吸附量的增加而上升。溶液的pH值是影响土壤吸附Cd的一个重要因素,在低pH值的条件下(pH〈4),随着溶液pH值的降低,土壤对Cd的吸附量迅速降低,当溶液pH值高于5时,pH值的变化对吸附量的影响较小。在溶液初始pH值2-8范围内,添加海泡石均能有效提高3种水稻土对Cd的吸附能力。  相似文献   

10.
采用室内土壤淋洗柱法,以黄褐土、砂姜黑土和水稻土为供试土壤,研究了异丙隆在土壤中的淋溶迁移行为,探讨了淋溶水量、淋溶水pH值、施药量和添加外源木炭等因素对异丙隆在土壤中淋溶迁移的影响。结果表明,不同土壤中异丙隆淋出率为黄褐土〉砂姜黑土〉水稻土;淋溶水量与异丙隆的淋出率呈正相关,且对淋溶后异丙隆在土层中的分布有明显影响;用不同pH值的淋溶水时,异丙隆的淋出率为pH5〉pH9〉pH7;施加不同药量时,异丙隆的淋出率为10mg〉5mg〉20mg;异丙隆的淋出率随外源木炭添加量的增大而减小,而异丙隆在土壤柱中的滞留量则随着木炭添加量增大而增大,提示添加外源木炭可明显减少异丙隆在土壤中的淋出率,降低异丙隆在土壤中的淋溶深度。  相似文献   

11.
Biochar amendment can alter soil properties, for instance, the ability to adsorb and degrade different chemicals. However, ageing of the biochar, due to processes occurring in the soil over time, can influence such biochar-mediated effects. This study examined how biochar affected adsorption and degradation of two herbicides, glyphosate (N-(phosphonomethyl)-glycine) and diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) in soil and how these effects were modulated by ageing of the biochar. One sandy and one clayey soil that had been freshly amended with a wood-based biochar (0, 1, 10, 20 and 30% w/w) were studied. An ageing experiment, in which the soil-biochar mixtures were aged for 3.5 months in the laboratory, was also performed. Adsorption and degradation were studied in these soil and soil-biochar mixtures, and compared to results from a soil historically enriched with charcoal. Biochar amendment increased the pH in both soils and increased the water-holding capacity of the sandy soil. Adsorption of diuron was enhanced by biochar amendment in both soils, while glyphosate adsorption was decreased in the sandy soil. Ageing of soil-biochar mixtures decreased adsorption of both herbicides in comparison with freshly biochar-amended soil. Herbicide degradation rates were not consistently affected by biochar amendment or ageing in any of the soils. However, glyphosate half-lives correlated with the Freundlich Kf values in the clayey soil, indicating that degradation was limited by availability there.  相似文献   

12.
The adsorption-desorption equilibrium of atrazine (2-chloro, 4-ethylamino, 6-isopropyl amino-1, 3, 5 triazine) was studied by the batch equilibration method at 27 ± 1 °C on four soils of Hyderabad. Adsorption isotherms conformed to the Freundlich equation (A = KC1/n ). K increased in the same order as the organic C content of the soils. Desorption studies were conducted by repeated replacement of 5 mL of the supernatant equilibrium solutions after adsorption, with 0.01 M CaCl2. Desorption isotherms showed considerable hysteresis which was more prominent when the desorption was carried out with higher adsorbed concentration of atrazine. Desorption from the lowest level of adsorbed atrazine (3 to 5 μg g?1 soil) was close to the adsorption isotherm. The cumulative desorption after four desorption steps covering five days was significantly different at the 1% level, for different initial adsorbed concentrations of atrazine. Desorption was significantly higher at the lowest adsorbed level of atrazine. The soils differed significantly at 6% level for desorption and the amount desorbed decreased in the inverse order of organic C. Desorption isotherms also conformed to Freundlich equation but K andn values were both higher than that for adsorption and increased with increase in initially adsorbed concentration of atrazine. Desorption thus confirmed the irreversible nature of the adsorption of atrazine on these soils. The quantitative factors and reasons for desorption are discussed.  相似文献   

13.
A series of experiments were conducted to evaluate the influence of charcoal on the development of arbuscular mycorrhiza (AM) on Leucaena leucocephala roots and the contribution of the symbiosis to the phosphorus (P) nutrition and growth of the legume. Arbuscular mycorrhizal fungal colonization of plants raised in Mansand (crushed basalt) in the first experiment was reduced if the medium was amended with fine charcoal and not with coarse charcoal. Charcoal amendment had no effect on AM fungal colonization, AM symbiotic effectiveness measured as pinnule (subleaflet) P content, or on growth of L. leucocephala in soil in the first experiment and in Mansand and in soil in subsequent experiments. However, AM fungal colonization of L. leucocephala roots, P content of pinnules, and growth of the legume were significantly enhanced (P < 0.05) by AM fungal inoculation in all experiments regardless of the growth medium used or charcoal amendment.  相似文献   

14.
We investigated in the laboratory the influence of a municipal solid waste applied to soil at two different particle sizes (<2 and <0.5 mm) and the presence or absence of the Eisenia fetida earthworm on soil carbon dioxide (CO2) and nitrous oxide (N2O) fluxes, as well as on the changes in chemical [ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3N), soluble carbon (C), and soluble carbohydrates] and biochemical (dehydrogenase activity) properties of the soil. The presence of Eisenia fetida caused an increase in the emission of both gases (CO2 and N2O) in municipal solid waste (MSW)–amended soils due to the enhanced soil microbial activity and the degradation of the exogenous organic matter. Soil gas fluxes were influenced by the particle size of the organic waste added. The lowest particle size (<0.5 mm) increased the contact surface of the organic amendment, facilitating the accessibility to the microorganisms, enhancing soil biological activity, and the mineralization of the organic matter.  相似文献   

15.

Purpose

In situ immobilization of heavy metal-contaminated soils with the repeated incorporation of amendments can effectively reduce the bioavailability of soil heavy metals. However, the long-term application of amendments would lead to the destruction of soil structure and accumulation of soil toxic elements, ultimately affecting food security and quality. Thus, the sustainability of the amendments in a heavy metal-contaminated soil was evaluated from 2010 to 2012.

Materials and methods

Batch field experiments were conducted in the soils, which were amended with apatite (22.3 t ha?1), lime (4.45 t ha?1), and charcoal (66.8 t ha?1), respectively. The amendments were applied only one time in 2009, and ryegrass was sown each year. Ryegrass and setaria glauca (a kind of weed) were harvested each year. Concentrations of copper (Cu) and cadmium (Cd) were determined by batch experiments. Five fractions of Cu and Cd were evaluated by a sequential extraction procedure.

Results and discussion

Ryegrass grew well in the amended soils in the first year, but it failed to grow in all the soils in the third year. However, setaria glauca could grow with higher biomass in all the amended soils. The treatment of apatite combined with plants was more effective than lime and charcoal treatments in removing Cu and Cd from the contaminated soils by taking biomass into account. Apatite had the best sustainable effect on alleviating soil acidification. The Cu and Cd concentrations of CaCl2-extractable and exchangeable fractions decreased with the application of amendments. Moreover, apatite and lime could effectively maintain the bioavailability of Cu and Cd low.

Conclusions

Apatite had a better sustainable effect on the remediation of heavy metal-contaminated soils than lime and charcoal. Although all the amendment treated soils did not reduce soil total concentrations of Cu and Cd, they could effectively reduce the environmental risk of the contaminated soils. The findings could be effectively used for in situ remediation of heavy metal-contaminated soils.
  相似文献   

16.
There are many remediation techniques for organic contaminated soils,but relatively few of them are applicable to trace elementcontaminated soils.A field experiment was carried out to investigate assisted natural remediation(ANR) of an acid soil contaminated by As,Cd,Cu,Zn and Pb using one inorganic amendment,sugar beet lime(SL),and two organic amendments,biosolid compost(BC)and leonardeite(LE).The experiment was arranged in a completely randomized block design with four treatments in three replicates:1) a non-amended control(NA);2) SL amended at 30 Mg ha-1 year-1;3) BC amended at 30 Mg ha-1 year-1 and 4) LE amended at 20 Mg ha-1 year-1 plus SL amended at 10 Mg ha-1 year-1(LESL).The amended plots received two doses of each amendment(DO2):one in October 2002 and another in October 2003.The plots were then divided in half into two subpolts and one subplot received another two doses of the same amendments(DO4) in October 2005 and October 2006.In 2011,the pH values of the amended soils were greater than that of the NA soil,with the SL-amended soil showing the highest pH.Total organic carbon(TOC) was also greater in the amended soil,and greater with DO4 than with DO2.Amendments reduced the concentrations of 0.01 mol L-1 CaCl2-extractable Cd,Cu and Zn,especially in the SL-amended soil.Plant cover of colonizing vegetation was enhanced by amendments,but was independent of amendment doses.Changes in soil properties from 2003 to 2011 showed that the first amendment application of DO2 caused a high differentiation between all the amendment treatments and the NA treatment.After the second application of DO2,soil pH and TOC continued increasing slowly.Further two applications of amendments(DO4) caused differences only in the organic treatments.Plant cover increased over time in all the treatments including NA.It could be concluded that the slow and steady natural remediation of this soil could be enhanced by amendment application(ANR).  相似文献   

17.
Yang  Zhaoxue  Liang  Jie  Tang  Lin  Zeng  Guangming  Yu  Man  Li  Xiaodong  Li  Xuemei  Qian  Yingying  Wu  Haipeng  Luo  Yuan  Mo  Dan 《Journal of Soils and Sediments》2018,18(4):1530-1539
Purpose

Heavy metal pollution in soils has become a global environmental concern. The combination of biochar and compost has already been proved to be an attractive method in contaminated soil. The objective was to study the sorption-desorption characteristics of Cd, Cu, and Zn onto soil amended with combined biochar-compost.

Materials and methods

In this study, the soil was amended with combinations of biochar and compost with different ratios at 10% (w/w). To determine the sorption-desorption behaviors of heavy metals by biochar-compost amendment with different ratios, we determine the effects of different ratios on soil properties and use batch experiments to investigate sorption-desorption behaviors of Cd, Cu, and Zn.

Results and discussion

The results show that the Langmuir and Freundlich model can well describe the adsorption isotherm of Cd, Cu, and Zn in the soils with or without biochar-compost combinations. The incorporation of amendment combinations into soil significantly promotes the sorption affinity of soil on metals. The sorption capacity of Cd and Zn was improved as the compost percentage rose in biochar-compost more likely due to the increase of organic matter and available phosphorus, while that of Cu was stronger with 10 and 20% biochar addition in biochar-compost combinations likely as the result of the formation of new specific adsorption sites and the mobile Cu adsorption in compost after adding a certain amount of biochar in amendment mixtures. Additionally, a certain proportion of biochar applied into amendment mixtures could suppress desorption of Cd and Cu by pH change, and the Zn desorption rate gradually decreased as the compost ratio increased in amendment mixtures.

Conclusions

The results indicated that the various ratios between biochar and compost have a significant effect on sorption-desorption of metals in soil, which helps us consider the effective combination of biochar and compost in soil.

  相似文献   

18.
Increasing the retention of nutrients by agricultural soils is of great interest to minimize losses of nutrients by leaching and/or surface runoff. Soil amendments play a role in nutrient retention by increasing the surface area and/or other chemical processes. Biochar (BC) is high carbon-containing by-product of pyrolysis of carbon-rich feedstocks to produce bioenergy. Biosolid is a by-product of wastewater treatment plant. Use of these by-products as amendments to agricultural soils is beneficial to improve soil properties, soil quality, and nutrient retention and enhance carbon sequestration. In this study, the adsorption of NH4-N, P, and K by a sandy soil (Quincy fine sand (QFS)) and a silty clay loam soil (Warden silty loam (WSL)) with BC (0, 22.4, and 44.8 mg ha?1) and biosolid (0 and 22.4 mg ha?1) amendments were investigated. Adsorption of NH4-N by the QFS soil increased with BC application at lower NH4-N concentrations in equilibrium solution. For the WSL soil, NH4-N adsorption peaked at 22.4 mg ha?1 BC rate. Biosolid application increased NH4-N adsorption by the WSL soil while decreased that in the QFS soil. Adsorption of P was greater by the WSL soil as compared to that by the QFS soil. Biosolid amendment significantly increased P adsorption capacity in both soils, while BC amendment had no significant effects. BC and biosolid amendments decreased K adsorption capacity by the WSL soil but had no effects on that by the QFS soil. Ca release with increasing addition of K was greater by the WSL soil as compared to that by the QFS soil. In both the soils, Ca release was not influenced by BC amendment while it increased with addition of biosolid. The fit of adsorption data for NH4-N, P, and K across all treatments and in two soils was better with the Freundlich model than that with the Langmuir model. The nutrients retained by BC or biosolid amended soils are easily released, therefore are readily available for the root uptake in cropped soils.  相似文献   

19.
Abstract

The effect of cation (Zn2+, Cu2+, Pr3+) amendment on the solid state 13C nuclear magnetic resonance (NMR) spectral properties of organic materials was investigated. The organic materials were chosen to represent structures found in natural organic matter (NOM) from soils, waters, sediments, sewage sludges and plant residues, and included cellulose, pectin, chitin, collagen, a commercial humic acid, and charcoal. Cation amendment was shown to have little effect on the observability of 13C NMR signal, except for the paramagnetic amended pectin samples, for which observability was decreased from near 100% in the unamended sample to 19% for the Cu2+ amended sample and 71% for the Pr3+ amended sample. NMR relaxation parameters (T1p H, T1H) were more sensitive to cation amendment. For a number of the samples, a decrease in relaxation rate (increase in TlpH and T1H) was observed on amendment with Zn2+. This was ascribed to a decrease in molecular motion due to the chelating effects of Zn2+. An increase in relaxation rate (decrease in T1pH and T1H) was generally observed on amendment with Cu2+. The effects of amendment with Pr3+ varied. T1H was more sensitive to the presence of paramagnetic species than was T1pH. These results suggest that bound paramagnetic cations will only decrease the observability of 13C NMR signal in NOM samples (or domains within NOM samples) at high paramagnetic cation concentrations (>3%). There is great potential for the use of paramagnetic cation amendment to differentiate relaxation rates of domains within NOM samples, subspectra for which can then be generated using the proton spin relaxation editing (PSRE) technique.  相似文献   

20.
The application of partially decomposed animal manure can acidify the soil by nitrification and may cause problems with phosphorus (P) availability. This study investigated the influence of applying wood ash to two soils amended with partially decomposed cattle or chicken manure on pH and P. The treatments consisted of two soils, a clay loam and sandy loam, each amended with partially decomposed chicken or cattle manure applied at 0, 5, or 15 t ha?1, and wood ash was applied to each manure treatment at rates of 0 or 2 t ha?1. The addition of wood ash significantly increased pH, thereby making more P available in soil and maize (Zea mays L.) tissues for both soils after being amended by manure. Both chicken and cattle manure significantly increased all the measured variables compared to the unamended soils. These results suggest that wood ash is an important amendment that could be used to amend partially decomposed manure, thereby not jeopardizing P availability to crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号