首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
文冠果是中国北方特有的优良木本油料能源树种。利用生物信息学方法,将全长为1 491 bp的文冠果Xs FAE1基因与其他物种FAE1基因的核酸和氨基酸序列进行了比对分析。结果表明:(1)文冠果的第48位碱基产生了突变C→T,使得第16位氨基酸Asn→Tyr,第72位碱基C→T,使得第24位氨基酸Val→Leu,第845位T→C,使得第282位氨基酸Ser→Pro,第968位T→G,使得第323位氨基酸Ser→Ala;另外,文冠果Xs FAE1基因存在两个3 bp碱基缺失,分别为第165~167位和第1 169~1 171位,一个位于第1 517~1 518位的2 bp碱基缺失。(2)文冠果FAE1基因存在11个高芥酸植物特征的氨基酸保守位点,分别为6个半胱氨酸位点:Cys95、Cys224、Cys270、Cys312、Cys389和Cys460,4个组氨酸位点:His298、His387、His391和His420,以及283位的Ser。(3)文冠果属中芥酸植物源于两个高芥酸位点丝氨酸(Ser)的突变及一个第165~167位的3碱基(ATA)缺失。这可为研究文冠果芥酸的形成和积累提供参考,也可为开展文冠果低芥酸的分子育种提供基础。  相似文献   

2.
花青素是导致芥菜型油菜叶片颜色差异的重要物质,PAP1基因是花青素合成途径中的一个关键转录调控基因.本研究利用同源克隆技术,以不同叶色芥菜型油菜为材料,根据同源性较高的白菜PAP1基因序列设计引物,克隆芥菜型油菜PAP1基因序列.芥菜型油菜PAP1基因的基因长度在1348~1669 bp,编码序列长744~753 bp,包括3个外显子和2个内含子区域.PAP1蛋白包括两个MYB结合域,分别位于第9~59和62~110氨基酸.进化分析表明芥菜型油菜PAP1基因与白菜和芜菁具有较高的同源性,与拟南芥亲缘关系较远.对比不同叶色芥菜型油菜基因序列发现,紫叶芥和红叶芥PAP1基因的编码区序列无差异,但编码的蛋白质与绿叶芥有22个氨基酸差异,定量PCR分析表明PAP1基因及其调控的下游基因如DFR、TT19等在绿叶芥油菜中表达水平较低,上述差异可能导致了芥菜型油菜叶色的差异.本研究为探究不同叶色芥菜型油菜的可能形成机制及遗传改良提供参考.  相似文献   

3.
根据GenBank中脂肪酸延长酶基因fae1序列(AY 888037)设计了PCR扩增引物,以野芥总DNA为模板进行扩增得到了特异扩增条带.测序结果表明,该片段长1 651 bp,序列分析表明其氨基酸编码区为55~1 575 bp,不含内含子序列,共编码506个氨基酸.该基因序列已提交GenBank,登录号为FJ870905.BLASTn分析结果表明,野芥中fae1基因与其他芸薹属品系的fae1基因核苷酸同源性为76%~98%;BLASTp分析结果表明,野芥中的FAE1与油菜中FAE1存在32个位点差异,其中部分差异可能导致了芥酸含量的不同.  相似文献   

4.
白菜型油菜具有许多其他油菜所不具有的优点,如耐旱、抗寒能力强、生长周期短等,但较为突出的缺点是芥酸在其脂肪酸中的含量较高,并且通过常规育种方法很难获得低芥酸的品种。pFGC5941M载体是由pFGC5941载体改进而来,它含有多个酶切位点,是较为理想的载体骨架,但它的CaMV 35S启动子是组成型的强表达启动子,不具备特异性,不利于我们有目的地观察某基因的功能。本研究克隆了白菜型油菜FAE1家族两个成员的启动子片段和FAE1 RNA干扰片段,并用FAE1的启动子代替了植物表达载体pFGC5941M的组成型表达启动子CaMV 35S,构建了自身启动子驱动的FAE1 RNAi载体,为通过基因工程手段降低白菜型油菜种子中芥酸的含量,提高其油用价值提供基础。  相似文献   

5.
芥菜型油菜TT1基因的克隆和SNP分析   总被引:1,自引:0,他引:1  
拟南芥的TT1基因(编码含有WIP结构域的锌指蛋白)对种皮的发育和颜色的形成具有重要的调控作用。本研究利用同源克隆和RACE技术分离了芥菜型油菜TT1基因,在芥菜型油菜黄黑籽材料的种皮中进行转录水平的分析,比较了黑籽油菜与黄籽油菜基因序列的差异,并采用等位基因特异(allele-specific)PCR技术对可能存在的单核苷酸多态位点进行验证。结果表明,芥菜型油菜TT1基因的DNA序列全长为2197bp,包含1个内含子,与甘蓝型油菜TT1-1基因的DNA序列的相似性为99%,与拟南芥的TT1基因DNA序列的相似性为85%;推导的TT1蛋白序列为300氨基酸残基,理论分子量为33.97kD,等电点为6.99;TT1在所有材料的种皮中均检测到表达;比较紫叶芥、四川黄籽、NILA和NILB的TT1基因序列,共发现8个核苷酸变异位点,均在基因的外显子区域,其中紫叶芥和NILA的序列相同,四川黄籽和黒籽近等基因系NILB的序列相同。与紫叶芥相比,黒籽近等基因系NILB有8个核苷酸差异,但种皮颜色与紫叶芥一样,均为黑色,TT1基因这些位点的突变并不影响芥菜型油菜种皮的颜色。通过等位特异PCR可以区分来自四川黄籽与紫叶芥的TT1基因。  相似文献   

6.
为了明确甘蓝型油菜、白菜型油菜、芥菜型油菜、白芥和芸芥种子萌发期的耐盐碱性差异,分别采用0(CK)、0.4%、0.6%、0.8%、1.0%、1.2%和1.5%的NaCl溶液和0(CK)、0.1%、0.2%、0.3%、0.4%、0.5%和0.6%的NaHCO3溶液进行萌发期胁迫处理,测定了发芽势、发芽率和发芽指数的变化规律。结果表明:不同浓度NaCl溶液处理,油菜及其近缘植物的平均发芽率依次为芥菜型油菜(71.7%)>甘蓝型油菜(64.0%)>白芥(62.4%)>白菜型油菜(48.4%)>芸芥(30.6%)。当NaCl的浓度为1.0%时,芥菜型油菜的发芽率最高,为91%,芸芥最低,仅有2%。不同浓度NaHCO3溶液胁迫下,5种植物的平均发芽率依次为白芥(85.3%)>甘蓝型油菜(84.3%)>白菜型油菜(59.1%)>芸芥(42.9%)>芥菜型油菜(34.3%)。当NaHCO3溶液浓度为0.4%时,白芥的发芽率最高,为95%,而芥菜型油菜最低,为0。综上,芥菜型油菜对NaCl胁迫的耐性最强,白菜型油菜和芸芥对NaCl胁迫的耐性差;白芥和甘蓝型油菜对NaHCO3胁迫的耐性强,而芥菜型油菜对NaHCO3胁迫的耐性较差。可见,在油菜种植区改良盐渍化土壤,中性盐渍化土壤最好选用芥菜型油菜,偏碱性盐渍化土壤可以选用白芥或甘蓝型油菜。  相似文献   

7.
芥菜型油菜(AABB,2n=36)是印度的一种重要油料作物,它是由芜菁(AA,2n=20)和黑芥(BB,2n=16)自然形成的双二倍体。印度的芥菜型油菜品种都是来自较窄的遗传资源库,这限制了对品种的进一步育种改良。解决问题的方法之一是采用远缘杂交从其二倍体祖先芜菁和黑芥重新合成芥菜型油菜。重新合成芥菜型油菜增大了遗传变异,这种变异在  相似文献   

8.
类黄酮是一种重要的植物次生代谢产物,查耳酮异构酶(CHI)是类黄酮生物合成早期阶段的一个关键酶,在种皮发育和颜色形成过程中具有重要的调控作用。为深入研究CHI基因在种皮发育和颜色形成中的作用及生物学功能。以16份三大类型黄、褐籽油菜为试验材料,采用同源克隆法克隆得到CHI基因的序列,并进行分子进化分析。将克隆得到的序列利用NCBI在线软件预测ORF Finder分析该基因的开发阅读框(ORF),结果发现,CHI基因ORF长度为756 bp或759 bp,编码251个或252个氨基酸。利用DNAMAN(v5.0)软件进行序列同源比对分析结果表明,CHI基因在三大类型油菜中的同源率为96.41%;利用NCBI在线软件CDD预测其保守结构域,发现它们都具有查尔酮超家族保守结构域。利用MEGA 5.2软件进行系统进化分析,结果表明,CHI基因在白菜型油菜与甘蓝型油菜中亲缘关系较近,与芥菜型油菜亲缘关系较远,并发现油菜与萝卜、拟南芥的CHI亲缘关系较近。比较三大类型油菜中黄籽油菜与褐籽油菜中CHI基因序列,结果发现,该基因在第202(C/A)位核苷酸处存在差异,可导致第68位氨基酸(P/T)的差异,这可能与油菜种皮的颜色的变化有关。该研究揭示了CHI基因的特征,为阐明CHI基因在油菜种皮颜色形成过程中的作用机制及其功能特征奠定基础。  相似文献   

9.
采用营养液培养试验比较了低锌营养下芥菜、白菜、甘蓝型3个油菜(Brassica napus L.)品种幼苗的生物量,抗氧化酶活性,根系活力,叶绿素含量及对锌的吸收、利用差异。试验结果表明,3个油菜品种由于基因型不同,在耐低锌营养能力方面存在显著性差异。在低锌时(10-6mol/L Zn2+),幼苗植株地上部干重以芥菜型>甘蓝型>白菜型,地上部干重分别较无锌对照处理增加17.8%(芥菜型)、9.9%(白菜型)、3.3%(甘蓝型)。芥菜型叶CAT、POD、SOD活性,叶绿素含量及根系活力也明显高于甘蓝型和白菜型油菜。锌积累量及锌利用率也以芥菜型远远大于其它2个品种,锌素利用效率分别为12.3%(芥菜型),8.0%(白菜型),4.9% (甘蓝型)。苗期油菜叶CAT、POD、SOD等抗氧化酶活性、叶绿素含量及根系活力可以作为筛选耐低锌营养油菜基因型的评价指标之一。  相似文献   

10.
中国西部芥菜型油菜遗传多样性研究   总被引:5,自引:0,他引:5  
利用23对SRAP引物、11对AFLP引物和10对SSR引物对我国西部地区的芥菜型油菜及其近缘种108份材料进行了遗传多样性分析, 共检测到313个等位变异, 3种标记的每对引物平均分别可检测到6.8、12.5和1.9个等位变异。包括白菜型和芸芥在内的108份品种间遗传相似系数在0.378~0.936之间, 103份芥菜型油菜品种间遗传相似系数在0.545~0.936之间。聚类分析结果表明, 在相似系数0.558处, 5个参照品种白菜型油菜、小白菜以及芸芥首先被聚出芥菜型油菜之外; 在相似系数0.70处, 103份芥菜型油菜可分为云贵陕南冬播(A)、关中冬播(B)、新疆I (C)、新疆II (D)和西部春播(E)五个类群, 其中A、B基本为冬播品种, C、D、E为春播品种。A类群品种间遗传差异最大, B类群其次。陕西和新疆的品种均分别被聚到3个类群, 表现出更广泛的遗传多样性。春播类型绝大部分被聚到E类群, E类群可分为3个亚类, 其中陕北及其邻近一带春播黄芥为一类, 形成一个独立的遗传群体, 群内遗传多样性较高; 西藏的10个品种为一类, 相似系数高达0.83以上, 表现出西藏品种遗传系统的独立和遗传基础的单一; 澳大利亚2个品种单独为一类, 与我国的春播品种关系较近。由此说明, 地理和生态条件是影响芥菜型油菜类群的主要因素, 我国的冬播品种间的遗传多样性高于春播品种, 陕西和新疆的芥菜型油菜遗传多样性较高。  相似文献   

11.
The modification of erucic acid content in seeds is one of the major goals for quality breeding in oil-yielding Brassica species. However, few low erucic acid (LEA) resources are available, and novel LEA genetic resources are being sought. Fatty acid elongase 1 (FAE1) is the key gene that controls erucic acid synthesis. However, the mechanism for erucic acid synthesis in B. rapa lacks systematic study. Here, we isolated zero erucic acid lines from 1981 Chinese landraces of B. rapa and found that the formation of LEA is not attributable to variations in FAE1 coding sequences, as reported for B. napus, but may be attributable to the decrease in FAE1 expression. Moreover, the FAE1 promoter sequences of LEA and high erucic acid materials shared 95% similarity. Twenty-eight bases deletions (containing a 24-base AT-rich region) were identified approximately 1300 bp upstream from the FAE1 start codon in the LEA accessions. The genotype with the deletions co-segregated with the LEA trait in the segregating population. This study isolated an LEA B. rapa resource that can be exploited in Brassica cultivation. The promoter variations might modify the expression level of FAE1, and the results shed light on novel regulation mechanisms for erucic acid synthesis.  相似文献   

12.
A post-transfer investigation was carried out to analyze the process of gene introgression in a conventional backcross-breeding program taking low erucic acid as target trait in Brassica juncea. FAE1 locus is involved in the elongation of oleic acid (C18:1) to erucic acid (C22:1). A high concentration of erucic acid in the seeds of Brassica species has been reported to be nutritionally undesirable. Molecular markers like AFLP markers, microsatellite markers, and gene-based SNP markers were used to determine the size of the donor parent chromosomal segments retained around the FAE1 genes in the individuals selected from different backcross generations. The genotype of the individuals was inferred from the genotype of the markers and the graphical genotypes were constructed using GGT software. Molecular marker analysis led to the identification of rare recombinants near the target locus with reduced size of introgressed segment from the donor parent. Based on the present study, we propose that marker-assisted backcross breeding in B. juncea could prove to be a promising tool for the transfer of many quality traits from unadapted East European germplasm to Indian cultivars.  相似文献   

13.
Ethiopian mustard (Brassica carinata Braun) is a potential oil crop in which genes for low erucic acid content of the seed oil have not yet been found. In order to solve this problem the potential of rapeseed (B. napus L.) varieties as a source of these genes has been tested. Reciprocal F1 hybrids between B. carinata and a low erucic acid variety of B. napus, F2, and backcrosses with B. carinata were obtained. The fatty acid composition was determined in half seeds of F1 and segregating generations from reciprocal interspecific crosses. The genetic analysis indicated that the erucic acid content of the seed oil of B. carinata is controlled by two genes with no dominance and additive in action.  相似文献   

14.
Erucic acid heredity in Brassica juncea - some additional information   总被引:1,自引:0,他引:1  
Genetic studies were undertaken to reassess erucic acid heredity in Brassica juncea. Analysis of segregation in F2 and BC1 generations from two zero × high erucic acid crosses indicated that higher erucic acid in B. juncea was controlled by two dominant genes with additive effects, whereas segregation in a cross involving ‘CCWF 16′, a genotype having intermediate erucic acid (25.6%), and a zero erucic acid strain, indicated monogenic dominant control for intermediate erucic acid content. The B. juncea strain ‘CCWF 16’ was developed by hybridizing high‐erucic acid B. juncea cv.‘WF‐1’ with a ‘0’ erucic B. rapa cv.‘Candle’ followed by backcrossing with ‘WF‐1’ and half‐seed selection for low erucic acid in each backcross generation. This strategy resulted in substitution of the high erucic acid allele present in the A genome of B. juncea (AABB) by the zero erucic acid allele associated with ‘A’ genome of ‘Candle’. The intermediate erucic acid content in ‘CCWF 16’ was thus attributed to a gene present in the ‘BB’ genome. Experimental data clearly suggested that the gene (E2) associated with the A genome had a greater contribution to the total erucic acid content in B. juncea than the gene (E1) located on the B genome. This provided experimental evidence for a previous suggestion of unequal contributions of two dominant genes (E1= 12%, E2= 20%) to high erucic acid content in conventional digenomic Brassica species.  相似文献   

15.
通过对贵州省近年培育和引进推广的优秀品种进行产量、品质及抗性的综合分析表明,油研6号确具高产稳产,增产潜力大,品质优良和对油菜菌核病抗(耐)性较强等优点,是一个综合性状表现极佳的品种。一般每公顷产2100公斤左右,明显高于油研1、2号,中油821和蜀杂1号,与(?)油2号、油研5号产量相当,对油菜菌核病的抗(耐)性优于油研1、2号,蜀杂1号和中油821,含油量、芥酸含量、硫甙含量和油酸含量分别为41.43%、0.89%、28.77μmol/g和67.34%,含油量及油酸含量均较油研1、2号高,芥酸、硫甙含量均低于油研1、2号,并符合国际双低高油酸品种标准。  相似文献   

16.
M. H. Rahman 《Plant Breeding》2002,121(4):357-359
The fatty acid composition of seed oil of four interspecific hybrids, resulting from crosses between zero erucic acid Brassica rapa (AA), and high erucic acid Brassica alboglabra/Brassica oleracea (CC) and Brassica carinata (BBCC), void of erucic acid genes in their A‐genomes was examined. The erucic acid content in resynthesized Brassica napus (AACC) lines derived from these crosses was only about half that of the high erucic acid CC genome parents, indicating equal contributions of the two genomes to oil (fatty acid) synthesis and accumulation. The differences in C18 fatty acid synthesis between the parents were also evident in the resulting resynthesized B. napus plants. Hexaploid Brassica plants of the genomic constitution AABBCC, in which the AA genome was incapable of erucic acid synthesis, had lower erucic acid contents than the B. carinata (BBCC) parent. This is plausible considering the fact that the zero erucic acid AA genome contributes to oil synthesis in AABBCC plants, thus reducing erucic acid content.  相似文献   

17.
通过品种间杂交和系谱法选择,育成了甘兰型低芥酸油菜新品种“油研1号”和甘兰型“双低”油菜新品种“油研2号”。经贵州省油菜区域试验和生产试验鉴定:其丰产性好,产量稳定,适应性强,熟期适宜,抗逆性较好,贵州省农作物品种审定委员会分别于1990年和1991年审定通过:列为贵州省推广良种。  相似文献   

18.
N. Alemayehu  H. C. Becker   《Plant Breeding》2001,120(4):331-335
Ethiopian mustard possesses a number of agronomic advantages over other oilseed crops with similar ecological adaptation in Ethiopia. However, its high erucic acid content is undesirable for a vegetable oil. Although efforts have been made to improve its quality, much has to be done to use natural variations that might exist within the species for fatty acid contents. This project was undertaken to study the variability of fatty acid contents, primarily erucic acid, in germplasm collections of Ethiopian origin, with an attempt to develop low (zero) erucic acid genotypes. The study used inbred lines as well as F2 populations of 10 crosses between six parental lines. A wide variation in fatty acids was found. Oleic acid content varied from 5 to 34% and erucic acid content from 6 to 51%. Linoleic and linolenic acid contents were less variable. The high‐oleic genotypes exhibited not only low erucic but also higher linoleic (25%) and considerably lower linolenic acid (8%) contents. It was possible to classify the F2 populations with the lowest erucic acid into three distinct classes. While the first class had an erucic acid content of 6–12%, the second and third classes had contents of 18–32% and 36–42%, respectively. The existence of a multiple allelic series of erucic acid in Ethiopian mustard would enable its fixation at zero levels without necessarily going into interspecific crossing.  相似文献   

19.
孔芳  蒋金金  吴磊  王幼平 《作物学报》2008,34(7):1188-1192
以来源于Brassica rapa基因组(AA)的重复序列(151 bp)为探针, 分别同二倍体白菜型油菜(AA, 2n=20)、甘蓝(CC, 2n=18)和异源四倍体芥菜型油菜(AABB, 2n=36)的中期染色体杂交, 白菜型油菜和甘蓝的所有染色体上都有杂交信号, 芥菜型油菜的染色体上显示出20个明显的信号, 其余染色体上信号很弱或无, 可以区分出A和B基因组。对来源于油菜3个基本种与3个复合种FAE1基因进行CAPS分析表明, 3个基本种表现出不同的酶切式样, 用Mbo I和Msp I酶切表现出多态性, 基因组A和C非常相似, 而基因组B与A、C关系较远, 同时3个复合种也并不是2个基本种的简单相加, 表明异源四倍体在长期进化过程中可能发生了重排和重组。  相似文献   

20.
Development of yellow-seeded Brassica napus of double low quality   总被引:3,自引:0,他引:3  
M. H. Rahman    M. Joersbo  M. H. Poulsen   《Plant Breeding》2001,120(6):473-478
Two yellow‐seeded white‐petalled Brassica napus F7 inbred lines, developed from interspecific crosses, containing 26–28% emcic acid and more than 40 μmol glucosinolates (GLS)/g seed were crossed with two black/dark brown seeded B. napus varieties of double low quality and 287 doubled haploid (DH) lines were produced. The segregation in the DH lines indicated that three to four gene loci are involved in the determination of seed colour, and yellow seeds are formed when all alleles in all loci are in the homozygous recessive state. A dominant gene governed white petal colour and is linked with an erucic acid allele that, in the homozygous condition, produces 26–28% erucic acid. Four gene loci are involved in the control of total GLS content where low GLS was due to the presence of recessive alleles in the homozygous condition in all loci. From the DH breeding population a yellow‐seeded, yellow‐petalled, zero erucic acid line was obtained. This line was further crossed with conventional B. napus varieties of double low quality and, following pedigree selection, a yellow seeded B. napus of double low quality was obtained. The yellow seeds had higher oil plus protein content and lower fibre content than black seeds. A reduction of the concentration of chromogenic substances was found in the transparent seed coat of the yellow‐seeded B. napus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号