首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 478 毫秒
1.
[目的]优化相关序列扩增多态性(SRAP)体系内的不同组分,建立适用于红椿SRAP分子标记的反应体系,并进一步从SRAP引物组合中筛选出稳定、多态性好的引物组合,为红椿遗传多样性研究奠定试验基础。[方法]针对SRAP-PCR反应体系中5个因素各设置8个水平,先利用单因素试验确定浓度梯度,后在确定的梯度范围内选定4个水平,按照正交试验L16(45)进行优化,结合正交直观分析法和新复极差法对各因素进行优化筛选。[结果]确定最优体系为总体系25μL,模板DNA 25 ng,上下游引物各0.3μmol·L~(-1),Taq DNA聚合酶1U,Mg2+2.5 mmol·L~(-1),d NTP 0.3 mmol·L~(-1)。利用稳定的SRAP-PCR体系,从1 505对SRAP引物组合中筛选出30对优质引物组合。[结论]通过不同种源红椿基因组DNA的重复验证,获得了稳定清晰、多态性较强的扩增条带,表明所确定的最优体系稳定可靠,适用性较强,可用于不同种源红椿遗传多样性研究的后续实验。  相似文献   

2.
侧柏种源遗传多样性分析   总被引:3,自引:0,他引:3  
应用AFLP技术对17省市的18个侧柏种源进行遗传多样性分析。选用的8个引物共扩增出多态性带1613条,占92.91%;平均有效等位基因数1.1993,平均Nei's基因多样性指数0.1239,Shannon's信息指数0.1949,揭示侧柏具有丰富的遗传多样性,其中中部种源遗传多样性低于南、北部种源。AMOVA分析表明侧柏种源遗传分化大,74.86%的遗传变异主要存在种源内,11.12%存在区域间,14.02%存在于区域内种源间,其分布的间断性、地理隔离以及低水平基因流(Nm=1.4372)是导致其种源间分化的主要因素。应用Nei(1972)遗传距离进行非加权组平均法(UPGMA)聚类分析,结果显示纬度相近的种源聚在一起,把18个种源划分为北部、中部、南部和山东4个种源区。Mantel检验也证实种源间的遗传距离与地理距离呈正相关。  相似文献   

3.
基于SRAP分子标记的苦楝种质资源遗传多样性分析   总被引:1,自引:0,他引:1  
【目的】利用相关序列扩增多态性(SRAP)分子标记对来自17个省(区)的31个苦楝种源进行遗传多样性分析,为苦楝种质资源的保存和育种计划的制订提供依据。【方法】通过SRAP分子标记获得1/0数据矩阵,计算SRAP分子标记各项遗传参数,同时进行分子方差分析(AMOVA)。随后计算遗传距离矩阵并进行主坐标分析(PCo A)、邻接法聚类分析(Neighbour-Joining)以及遗传距离和地理距离Mantel相关性分析。【结果】从783对SRAP引物中筛选出的20对引物可扩增出257条清晰的条带,其中145条具有多态性。引物多态性信息指数(PIC)为0.262~0.478,均值为0.385。PIC值较高的10对引物,可扩增出56条特异多态带,可以作为快速鉴别苦楝种源的工具。AMOVA结果显示,38.96%的遗传变异来源于种源间,61.04%的遗传变异来源于种源内。山区的贵州册亨和黎平,云南勐腊和麻栗坡,湖南东安、炎陵和浏阳,四川达州,河北保定,安徽滁州种源的遗传多样性高于其他种源。邻接聚类法根据Nei’s遗传距离将31个种源分为东西2类,西部云南、四川、贵州和甘肃的8个种源构成类群Ⅰ,其他地区的23个种源构成东部类群Ⅱ。类群Ⅱ中北方的济南、保定、泰安、渭南和许昌5个种源聚为一小类,华南地区的屯昌、五指山、钦州和仁化种源聚为一小类,其他相邻和相近的种源大多聚在一起。PCo A分析的种源间双标图结果与邻接法聚类结果基本一致。种源内双标图显示相同种源内的单株大都聚在一起,且种源间和种源内双标图总体分布大体一致。Mantel检验结果表明,种源间遗传距离和地理距离相关性显著(r=0.256,P=0.003)。【结论】SRAP分子标记可以准确、有效地用于苦楝遗传多样性分析。苦楝遗传变异主要来源于种源内,而种源间基因交流有限。种源遗传多样性整体偏低,而部分山区种源遗传多样性较高。在选择高遗传多样性种源的基础上,苦楝选育应侧重种源内家系和单株选择。苦楝种源特征明显,地理环境差异对其遗传多样性具有一定的影响。31个种源大致可分为东西2类,东部种源从北到南有多个聚类中心,其种质资源应采用多点就地保存方式。我国苦楝遗传多样性起源中心或许存在于2类不同种源的生态过渡区。  相似文献   

4.
不同种源印楝遗传多样性的ISSR分析   总被引:2,自引:0,他引:2  
利用ISSR分子标记技术对印楝进行遗传多样性分析,用9条引物进行扩增,共检测出81条清晰的位点,其中79条具有多态性,多态位点百分率为97.53%,Nei's基因多样性指数为0.3803,Shannon信息指数为0.5537,表明印楝遗传多样性很丰富。种源间遗传分化系数为0.4702,Shannon’s居群分化系数为0.4677,表明印楝种源内的遗传分化大于种源间的分化。聚类分析将13个种源分为2大类,来自缅甸的11个种源聚成一类,来自澳大利亚和印度的种源聚成另外一类。结果表明,ISSR分子标记技术适合于印楝的遗传多样性分析。  相似文献   

5.
为从分子水平探讨杉木(Cunninghamia lanceolata)种源空间遗传变异模式,采用ISSR分子标记对杉木全分布区内的40个种源进行遗传多样性分析。结果显示:9条ISSR引物共检测出133条带,其中122条多态性条带,多态条带百分率(PPB)为91.73%,各种源PPB和Shannon表型多样性指数(HPOP)分别为37.46%~55.75%和0.201 5~0.344 5,物种水平多态性条带百分率和Shannon信息指数(HSP)分别为89.86%和0.565 5;分子方差分析(AMOVA)揭示,种源间遗传分化系数(ΦST)为0.4651,这表明杉木种源具有较高的遗传多样性,种源间遗传分化较大。UPGMA法聚类表明,参试的40个杉木种源可分为7地理种源区。  相似文献   

6.
【目的】在我国野生土沉香被大量被采伐,种质资源越来越少,甚至面临消失的情况下,为了利用与保护野生土沉香提供理论依据,采用SRAP分子标记对其种源遗传多样性进行分析。【方法】基于我国11个土沉香种源群体和越南2个土沉香种源群体的SRAP结果,应用POPGEN32软件对遗传多样性参数进行计算。【结果】各群体Nei's基因多样度指数的变化范围为0.1715~0.5394,Shannon多样性指数的变化范围为0.2491~0.4837,多态位点百分比的变化范围为42.03%~76.81%。运用GenAlex 6.4软件对土沉香13个群体进行分子方差分析(Analysis of molecular variance,AMOVA),结果显示有30%的遗传变异来自土沉香群体间,70%的遗传变异来自土沉香群体内。【结论】13个土沉香种源有中度的遗传多样性和遗传分化,野生土沉香种质资源正日渐稀少,应该加强资源的保护与利用。  相似文献   

7.
三尖杉种源遗传多样性   总被引:4,自引:0,他引:4  
应用ISSR分子标记对我国三尖杉主要分布区16个地理种源的遗传多样性和遗传分化进行分析.结果表明,三尖杉具有丰富的遗传多样性,总的种源基因多样性为0.337 7.研究发现,不同种源的遗传多样性差异较大,遗传多样性较高的种源主要来自三尖杉自然分布区的东部和偏中东部地区.由于小种群效应, 以及缺乏有效的基因流和生境的片断化,三尖杉种源间的遗传分化较大,25.9%的遗传变异存在于种源间,而74.1%的遗传变异来自于种源内.聚类结果显示,来自东部和偏中东部、遗传多样性较高的种源聚成一支.该区域和边缘分布区种源间遗传多样性的差异在很大程度上可能归因于长叶和短叶2种类型三尖杉种源间的差异.研究还表明,种源间的遗传距离与其地理距离相关不显著.  相似文献   

8.
在大、小兴安岭地区12个红皮云杉种源分布区内,分别选取调查样方,进行红皮云杉种群更新研究,同时以12个种源的144个样本为材料,采用RAPD分子标记技术进行遗传多样性研究,在种群更新研究结果的基础上分析其遗传多样性,最终为谷地红皮云杉衰退机制研究提供种群水平及分子水平的相关证据。结果表明:红皮云杉在DNA水平上具有较高的遗传变异,多态位点百分率达到98.81%;红皮云杉种源总的Nei遗传多样性指数(H)为0.363 2,Shannon指数(I)为0.540 5;种源间和种源内遗传分化分别为27.72%和72.28%,12个红皮云杉种源间的基因分化指数Gst=0.277 2,基因流系数Nm为1.304 0;各种源间具有较高水平的遗传一致度,变化范围为0.751 10.948 1。遗传距离聚类分析表明,12个种源可聚为3大类:新青、乌伊岭、红星种源为第1类;五营、友好、美溪、乌马河、带岭、南岔、双丰种源为第2类;蒙克山、塔林为第3类。种群更新数据表明:大兴安岭和小兴安岭新青、乌伊岭、红星种源为进展种群,小兴安岭五营、友好、美溪、乌马河、带岭、南岔、双丰种源为衰退种群,与遗传距离聚类分析结果一致。这一研究结果可为进一步寻找谷地云冷杉林衰退机制提供一定的数据基础,也可为红皮云杉种群遗传多样性的保护以及种群生态恢复提供科学依据。  相似文献   

9.
基于SSR标记的西藏光核桃群体遗传多样性和遗传结构分析   总被引:1,自引:0,他引:1  
【目的】利用SSR标记深入研究西藏光核桃的遗传多样性及遗传结构,揭示其遗传结构与地理分布、海拔梯度等的相关性,为西藏光核桃资源的有效利用与科学保护提供理论依据。【方法】利用25对SSR引物,分析西藏地区21个光核桃天然群体420份个体的遗传多样性和遗传结构。应用Gen Al Ex 6.501、Arlequin v3.1、NTSYS pc version 2.10、STRUCTURE、STRUCTURE Harvester、CLUMP和Distruct等软件进行遗传参数估算、主坐标分析、遗传变异分析、聚类图构建及遗传结构分析。【结果】基于25个SSR分子标记的遗传多样性分析表明,西藏光核桃群体遗传多样性和近亲繁殖水平适中,其平均等位基因数(Na)、有效等位基因数(Ne)、期望杂合度(He)、观察杂合度(Ho)、Shannon’s信息指数(I)和近交系数(F)分别为3.8、2.5、0.52、0.44、0.95和0.17,其中,P17群体遗传多样性最高(Ne=4.7,He=0.63,Ho=0.56,I=1.57),而P18群体遗传多样性最低(Ne=1.7,He=0.30,Ho=0.22,I=0.49)。西藏光核桃的贝叶斯遗传结构分析(STRUCTURE)与遗传距离的主坐标分析(PCo A)、UPGMA聚类分析结果基本一致,均将供试420份光核桃个体划分为3个类群,其分组结果具有明显的地理区域特性。Mantel检测显示遗传距离与地理距离(r=0.50,P0.01)、海拔梯度(r=0.61,P0.01)呈显著正相关。分子方差分析(AMOVA)显示,16.3%的遗传变异来自群体间,群体间的遗传分化水平为中等,而大部分遗传变异(83.7%)来自群体内。【结论】西藏光核桃遗传多样性适中,群体间存在地理隔离效应和海拔梯度的遗传变异,其遗传分化程度较高,这可能源于西藏光核桃生境片段化、海拔梯度的影响以及山脉阻隔引起的地理隔离效应。西藏光核桃受人为干扰较严重,且个体间的近亲繁殖较频繁,若不及时采取保护措施,其遗传多样性将会逐渐降低。基于遗传结构分析,确定西藏光核桃3个保护单元,并建议限制人为活动对其破坏,实施就地保护的同时,促进不同居群间的基因交流,保护西藏光核桃的遗传多样性。  相似文献   

10.
南方红豆杉种源遗传多样性和遗传分化   总被引:12,自引:1,他引:11  
利用ISSR分子标记对来自10省区15个南方红豆杉代表性种源,研究揭示其种源遗传多样性及地理变化、种源遗传分化等.结果表明:南方红豆杉具有丰富的遗传多样性,物种水平上的遗传多样性为0.419 2,多态百分率(PPL)、Nei's基因多样性(HE)和Shannon信息多样性指数(I)分别变化在80.00%~93.33%、0.339 3~O.3873、O.492 6~O.5615.南方红豆杉种源遗传多样性受其产地经度和纬度非线性共同影响,偏南和偏西地区种源的遗传多样性较低,而偏东和偏北地区种源遗传多样性则较高.因试验的南方红豆杉种源其原产地种群皆是较大的古树群,且片断化的时间较短,加上其特有的繁育特性,种源问基因分化系数为O.1211,仅有8.75%的遗传变异存在于种源间,而91.25%的遗传变异来自于种源内.UPMGA聚类结果还显示,除福建武平和武夷山2个较小种群的种源外,试验种源可按地域大致划分为偏东和偏北,及偏南和偏西2个种源区.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号