首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
弹齿式苗间除草装置关键部件设计与试验   总被引:6,自引:1,他引:6  
设计了一种水田苗间除草作业的弹齿式除草装置,采用钢丝软轴传动,除草盘为弧形。分别在秧苗生长到第7天和第14天时采用二次旋转正交设计进行土槽试验,利用Design-Expert软件分析,获得除草盘转速、机器前进速度、耕作深度之间交互作用及对除草率和伤苗率的影响。最终确定第7天作业时除草装置的最佳工作参数为:除草盘转速230r/min、机器前进速度1.02m/s、耕作深度18mm,此时除草率73%及伤苗率0.13%;第14天作业的最优组合为:除草盘转速230r/min,机器前进速度0.48m/s,耕作深度27mm。根据第7天试验最佳工作参数组合进行验证试验,结果表明此参数组合能满足除草率要求,且伤苗率最小。  相似文献   

2.
有机水稻田的杂草处理是影响有机大米产量与质量的一个重要因素。鉴于有机稻田的零化学残留属性,机械除草技术成为有机稻生产过程中降低成本的重要环节,其中如何提高除草率以及降低除草过程中除草部件对秧苗的损伤成为研究的难点。对此,对水田除草机苗间除草装置的除草以及伤苗情况进行了试验,通过记录数据得到机具作业时前进速度、除草部件转速、除草深度这几项指标对除草率与伤苗率的影响,从而得到在保证除草率与伤苗率的最优情况下,机具的最佳作业参数。  相似文献   

3.
针对现有稻田株间除草装置除草率低、伤苗率高的问题,对已设计的倒V型稻田株间除草装置进行有限元虚拟仿真。采用ALE多物质单元体算法建立土壤—水耦合模型,运用罚函数法,对除草爪与土壤—水模型进行流固耦合。采用二次正交旋转组合试验设计方法选取机器前进速度、除草爪转速与水层厚度进行虚拟仿真试验与分析,得到各因素及其一级交互作用对除草爪与土壤—水模型扰动率的影响规律,影响扰动率因素为除草爪转速>水层厚度>机器前进速度。通过对虚拟仿真试验结果进行优化设计,得到倒V型株间除草装置最佳因素参数组合为机器前进速度为053 m/s,除草爪转速为180 r/min,水层厚度为0.01 m。通过对仿真优化设计结果室内试验验证可知,倒V型稻田株间除草装置在最佳因素参数组合下进行除草作业平均除草率85.04%、平均伤苗率3.62%,满足稻田机械株间除草农艺要求。  相似文献   

4.
马铃薯中耕前期圆盘式中耕机设计与试验   总被引:1,自引:0,他引:1  
针对现有马铃薯中耕机在第1次中耕作业时存在作业效果不佳、易伤苗的问题,对圆盘式马铃薯中耕机进行设计与试验。阐述了该机的工作原理,通过理论计算对其关键部件进行设计,根据农艺培土、除草等作业要求,确定了圆盘式马铃薯中耕机主要结构参数和作业参数;采用单因素和二次旋转正交组合试验,以耕作深度、机车前进速度、调节角为试验因素,以除草率及伤苗率为试验指标进行了样机试验。试验结果表明,当耕作深度为0.13 m、机车前进速度为4.6 km/h、调节角为52°时,除草率为95.2%,伤苗率为3.9%,满足国家标准伤苗率不大于5%、除草率不小于90%的要求。  相似文献   

5.
韩豹  吴文福  李兴 《农业工程》2011,1(1):16-19
设计了一种适合玉米和大豆作物株间作业的组合梳齿式除草机构,为优化该机构的设计并确定其关键参数的最优组合,利用正交试验方法对试验数据进行处理,通过极差分析,确定了除草部件工作参数对株间除草率和伤苗率的影响程度,优化出最佳工作参数组合。试验结果表明,梳齿数目和梳齿盘转速对株间除草机构的性能影响显著。最佳优化方案:梳齿数目6、梳齿间距50mm、梳齿盘转速180r/min 和作业速度2.3m/s,该条件下苗间除草装置的伤苗率为2.73%、苗间除草率可达87.6%。研究结果为设计性能可靠的株间除草机构提供了理论依据。   相似文献   

6.
基于振动减阻原理的旋转中耕机关键部件设计与试验   总被引:2,自引:0,他引:2  
针对传统中耕机粘重土壤环境作业时切削阻力大、能耗高等问题,借鉴农业机械设计中振动减阻方法,对旋转中耕机关键部件进行设计。通过建立旋转单体运动方程,对碎土刀切削土壤阻力及旋转单体减阻机理进行分析,为旋转中耕机关键部件设计提供理论依据。采用二次正交旋转组合试验,以机器前进速度、刀辊转速和弹簧刚度为试验因素,以作业功耗、碎土率为试验指标,在室内进行台架试验,并运用Design-Expert软件对试验数据进行方差分析和响应面分析,得到影响因素与响应指标之间的数学模型,对数学模型进行优化及验证。试验结果表明,在刀辊转速为247~268 r/min、机器前进速度为0. 5~1. 0 m/s、弹簧刚度为11. 39~15. 16 N/mm时,相应试验指标作业功耗为1. 55~1. 90 k W、碎土率为91. 3%~92. 9%。选取最优水平组合中的一组进行验证及对比试验,结果表明,通过振动可有效降低旋转中耕机的作业功耗,与传统机型相比,其作业功耗下降了32%。在最优组合参数下进行田间试验,得到其作业功耗为1. 95 k W,碎土率为92. 8%,其作业性能满足中耕机作业要求。  相似文献   

7.
针对甘蓝传统栽植装置存在栽植深浅不一、倒伏率及伤苗率高、影响机收作业性能的问题,以甘蓝基质块苗为对象,设计了一种双排链式栽植装置,通过对该装置及关键部件进行理论分析,确定装置的工作参数。搭建甘蓝基质块苗双排链式栽植装置试验台,以前进速度、栽植频率、栽植器内夹板夹力为试验因素对倒伏率和伤苗率进行三因素五水平二次回归正交旋转组合试验:通过Design-Expert 8.0.6软件建立回归模型,分析了各因素对指标的影响关系,同时采用响应面法对影响因素进行了综合优化,得到最优参数组合:前进速度1.6 km/h、栽植频率57株/min、内夹板夹力91.83 N,对应倒伏率2.9%、伤苗率2.83%。对参数组合进行台架试验验证,结果为倒伏率3.13%、伤苗率3.07%,与优化结果基本一致,验证了所建模型与优化参数的合理性。田间试验结果为:倒伏率3.35%、伤苗率3.14%,与两指标的优化结果相对误差分别为0.45%和0.31%,表明该装置具有较高的稳定性。  相似文献   

8.
基于刮削与振动原理的减粘降阻镇压装置研究   总被引:3,自引:0,他引:3  
针对镇压作业时,土壤粘附严重、牵引阻力大等问题,借鉴地面机械触土部件减粘降阻法,设计了一种机械式减粘降阻镇压装置。进行镇压装置运动过程分析、镇压轮表面脱土机理分析和刮削板脱土机理分析,为确定镇压装置减粘降阻的能力提供了理论依据,并在此基础上对镇压装置的关键机构进行了设计。为研究机械式减粘降阻镇压装置的工作性能,以弹簧刚度、前进速度和刮削角为试验因素,以牵引阻力、土壤粘附量为试验指标,在室内土槽中进行L9(34)正交试验。试验结果表明:各因素对指标影响的主次顺序为弹簧刚度、刮削角、前进速度;最优水平组合为弹簧刚度40 N/mm、刮削角30°、前进速度7 km/h。以最优水平组合进行验证试验,得到牵引阻力39.6 N,土壤粘附量43.24 g。与传统镇压装置的对比试验表明,机械式减粘降阻镇压装置使牵引阻力降低17.8%,土壤粘附量降低34.8%。  相似文献   

9.
针对秸秆还田机对根茬处理效果较差、功率损耗较大等问题,提出了一种安装在玉米秸秆还田机上的玉米根茬挖切装置。以刀轴转速、台车前进速度、挖茬深度为因素,挖茬功耗为指标,运用二次回归正交旋转试验方法安排试验,建立了挖茬功耗与各影响因素之间的回归数学模型。通过Design-Expert 8.0软件对试验参数进行优化,确定刀轴转速640r/min,台车前进速度1.2m/s,挖茬深度31mm为最佳参数组合,此时玉米根茬挖切装置的挖茬功耗为615W,表明该组合下试验误差较小。同时,对刀轴转速做了单因素试验,用Origin 8.0进行数据拟合并绘图,计算显示:固定挖茬深度为31mm、台车前进速度为1.2m/s条件下,完成根茬挖切作业的最低刀轴转速为626r/min。  相似文献   

10.
4 YZPDK-4玉米收获秸秆打捆一体机的设计和试验   总被引:1,自引:0,他引:1  
针对目前我国玉米秸秆回收利用率不断增长的实际需求和穗茎兼收型玉米收获机有效供给相对不足等问题,研制了一种玉米收获秸秆打捆一体机,前割台进行玉米果穗收获,中部通过甩刀式秸秆切碎装置对秸秆进行切碎收获和打捆装置打捆,使机器同时进行玉米果穗收获与秸秆打捆收获。为此,对整机机构及关键部件进行了理论分析,确定了整机结构参数;以机具前进速度、粉碎刀辊转速、打捆装置输入转速作为试验因素对草捆密度进行三因素三水平二次回归正交试验;通过Design-Expert 8. 0. 6数据分析软件,建立各因素与指标的响应面数学模型,分析了各因素与评价指标之间的关系,并对影响因素进行了综合优化。试验结果表明:各因素对草捆密度均有显著影响,影响主次顺序为粉碎刀辊转速机具前进速度打捆装置输入转速;各试验因素最优参数组合:机具前进速度为0. 53m/s,粉碎刀辊转速为1 747r/min,打捆装置输入转速为711r/min,对应的草捆密度为180. 676kg/m~3。根据该试验参数组合,进行田间试验验证,得到评价指标与理论优化值相差0. 876kg/m~3,相对误差为0. 48%,优化预测模型可靠。该研究实现了玉米果穗收获和秸秆打捆一体化,为穗茎兼收型玉米收获机提出了新的思路,可为畜牧业饲料收集提供新的途径。  相似文献   

11.
八爪式株间机械除草装置虚拟设计与运动仿   总被引:9,自引:1,他引:8  
设计了一种适合作物株间作业的八爪式机械除草装置,采用Pro/E进行了虚拟样机设计,建立了除草装置的装配模型,利用ADAMS软件对该装置进行运动学仿真,得出在不同速比下的除草铲齿运动轨迹,通过计算得到除草铲齿与土壤接触部分的面积,并对每个铲齿的覆盖区域以及相邻铲齿覆盖的重合区域进行分析,确定的合理速比为λ=0.754,优化了装置的结构和运动参数.  相似文献   

12.
水田株间除草机械除草机理研究与关键部件设计   总被引:2,自引:0,他引:2  
针对现有水田株间除草机伤苗率高等问题,进行机理分析和改进设计,采用左、右2组弹齿盘对称安装,通过软轴带动除草弹齿盘旋转,完成除草功能。通过对除草关键部件弹齿盘的运动学和水田植物(水稻稻苗和稗草)的强度分析,建立了弹齿盘的运动学模型以及水田植物的受力模型、应力模型。通过水田植物的应力模型分析,建立了水田植物的强度条件,并根据水田植物(水稻稻苗和稗草)的物理特性、弹齿盘基本参数,获得了除草盘转动角速度、弹齿数量的取值范围,并通过室内土槽试验确定了弹齿盘转动角速度为25.1 rad/s、弹齿数量为5。通过田间性能检测,结果表明,除草率为80%、伤苗率为4.5%,均达到了农艺技术指标的要求。  相似文献   

13.
针对株间机械除草时末端执行器存在损伤玉米根系风险的问题,提出了一种基于玉米根系保护的除草铲土上避苗除草模式,并设计了一套智能株间除草机器人系统。该机器人系统由机器人移动平台、除草装置、视觉检测系统和控制系统组成。其中视觉检测系统采用YOLO V4网络模型来检测玉米苗和杂草;除草装置是基于除草铲空间立体运动轨迹设计,使得除草铲可以完成土上和土下2种避苗除草作业模式。田间试验表明,在机器人移动平台前进速度为1.2km/h时,玉米苗和杂草的检测率分别为96.04%和92.57%,且2种除草模式的除草率均高于81%。除草铲土上避苗除草模式的平均伤根率为3.35%,相较于除草铲土下避苗除草模式降低了36.40个百分点。结果证明该除草机器人系统运行稳定,且除草铲土上避苗除草模式具有较优的玉米根系保护性能。  相似文献   

14.
针对丘陵山区前胡种植使用除草机时存在草土不分离导致杂草复生、碎石飞射伤人的问题,设计了一款抛推组合式草土分离除草机。对称螺旋结构的除草轮将土推向两侧,避免碎石飞射伤人。刀齿将杂草抛向后方实现草土分离,防止杂草复生。螺旋结构除草轮采用中轴对称左右旋向相反布置,使得碎石沿轴向两边飞离,有效防止碎石飞射伤到后方机手。通过理论分析确定除草轮的齿形、齿数,分别进行除草轮在杂草-土壤、碎石-土壤模型中的运动分析。使用EDEM和ANSYS耦合仿真,验证其工作性能和物理性能。通过田间试验,验证除草轮能够实现草土分离,得出机具的最佳工作参数为:除草轮转速13 r/s、前进速度400 mm/s、除草深度35 mm,平均除净率为86.7%。  相似文献   

15.
稻田株间除草机构除草过程中伤秧影响的试验研究   总被引:1,自引:0,他引:1  
稻田杂草是影响大米产量和质量的一个重要因素。鉴于化学除草的负面影响,机械除草技术一直是国内外科研攻关的重点,但如何降低除草过程中工作装置对秧苗的损伤和影响成为研究的难点。为此,对稻田机械式株间除草机构的主要因素的秧苗损伤情况进行了试验研究。试验在机插稻田进行,稻苗行间距28~31cm,株间距14~15cm。试验在秧苗移栽后7天左右进行,该时间为稻田第一个出草高峰期,试验采用二次旋转正交试验方法,应用Design-Expert进行试验分析,获得了株间除草主要工作因素机器前进速度、除草盘转速、除草深度之间单因子及交互作用对伤秧率的影响。移栽7天时,田间试验在保证除草率的前提下确定了低伤秧率株间除草机构的工作参数为机器前进速度为0.38m/s,除草盘转速162.75r/min,除草深度为43.9mm,此时除草率为80.5%、伤秧率为3.8%。  相似文献   

16.
凸轮摇杆双向挤压核桃破壳装置设计与试验   总被引:1,自引:0,他引:1  
针对当前核桃破壳装置自定位结构复杂,破壳行程无法控制,脱壳率低,核仁损伤率高的技术问题,通过对核桃失稳破壳、裂纹扩展临界条件及破壳位移分析,基于定间隙单果挤压破壳原理,设计了一种凸轮摇杆双向挤压核桃破壳装置.进行了双螺杆定量喂料、凸轮摇杆双向挤压破壳机构、挤压/落料U形块结构、凸轮机构运动角及位移、摇杆位移方程以及凸轮...  相似文献   

17.
温室株间电驱锄草机控制系统设计与试验   总被引:2,自引:0,他引:2  
根据温室机械锄草的需要,针对电驱锄草机械设计了一种圆盘锄刀株间锄草控制系统。该系统以MC9S12DG128双核单片机为硬件核心,融合霍尔传感器、旋转编码器的信号实时输入,通过RS232串口中断实时接收上位机(PC)视觉信息,采用CAN总线与下位机(电动机驱动器)实时通信,对圆盘锄刀转速与转角进行实时控制,从而实现株间锄草和避苗。温室大棚内锄草试验结果表明,前进速度为1.2 km/h时,伤苗率小于10%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号