首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
ObjectiveTo assess the effects of two sizes of silicone endotracheal tubes with internal diameter 26 mm (ETT26) and 30 mm (ETT30) inflated to minimum occlusive volume on tracheal and laryngeal mucosa of adult horses anesthetized for 2 hours with isoflurane.Study designProspective, randomized, blinded, crossover experimental study.AnimalsA total of eight healthy adult mares.MethodsUpper airway endoscopy and ultrasound measurements of internal tracheal diameter were performed the day before anesthesia. Horses were anesthetized and orotracheally intubated with ETT26 or ETT30. Ease of intubation was scored. The cuff was inflated in 10 mL increments to produce a seal. Final volume of air used and intracuff (IC) pressure (measured by pressure transducer) were recorded. At the end of anesthesia, a manometer was used to measure IC pressure and these measurements compared against measurements from the pressure transducer. Laryngeal and tracheal mucosa were assessed via endoscopy and assigned a score 0–3 before anesthesia, and at 2 and 24 hours following extubation.ResultsData are from seven horses because one horse with laryngeal hemiplegia was excluded. Mean tracheal ultrasound measurement was 3.5 ± 0.4 cm. No significant differences were noted between endotracheal tube sizes for intubation score, IC pressures, inflation volumes or tracheal or laryngeal injury scores at any time point. IC pressure measured by manometer was slightly higher than that by transducer (+1.0 ± 2.8 mmHg).Conclusions and clinical relevanceResults identified no clear advantage of one endotracheal tube size over the other in the population of horses studied, when endotracheal intubation is properly applied and IC pressure is carefully monitored. However, given that ETT26 was associated with the highest observed IC pressures and the only observed incidents of tracheal circumferential erythema, the larger ETT30 may be the better choice in most cases where tracheal size is sufficient.  相似文献   

2.
ObjectiveTo evaluate the influence of reservoir bag types, volumes and previous use on the peak pressures (Pmax) and the times to develop 30 cmH2O pressure (P30) within a nonrebreathing system with a closed adjustable pressure-limiting (APL) valve.Study designIn vitro study using three-way factorial design with repeated measure on one factor.SubjectsA total of 75 new anesthesia reservoir bags (five types, three volumes, five bags from each type × volume). The bag types were reusable latex (RL), disposable latex (DL) and three disposable neoprene (DN-1, DN-2 and DN-3).MethodsEach bag was tested three times (treatments): new, after prestretching and 1 week later. The bags were attached to a Bain system and anesthesia machine with closed APL valve and patient port with O2 flow 2 L minute–1 until Pmax was reached. The Pmax and time to reach P30 values were determined from recorded pressure traces. General linear mixed model analysis was used to examine the effects of bag type, volume and treatment. One-sided 95% upper prediction limits of Pmax were calculated to test the null hypothesis that predicted Pmax of new bags would be ≥ 50 cmH2O for each factor combination.ResultsRL bags were the least and DN-3 bags were the most compliant. Prestretching increased compliance in all bag types. Smaller bags of RL, DL and DN-1 were less compliant than larger ones. The predicted Pmax values were < 50 cmH2O only for DN-3 bags after prestretching. The time to reach P30 was critically low when using 0.5 L bags (median 17 seconds).Conclusions and clinical relevanceTo minimize the risk of barotrauma, highly compliant reservoir bags (e.g. DN-3) are recommended and reusable bags should be avoided. Bags should be prestretched before first use, 0.5 L bags should be avoided and fresh gas flow minimized.  相似文献   

3.
ObjectiveTo evaluate and compare the cardiopulmonary effects of induction of anesthesia with isoflurane (Iso), ketamine–diazepam (KD), or propofol–diazepam (PD) in hypovolemic dogs.Study designProspective randomized cross–over trial.AnimalsSix healthy intact, mixed breed, female dogs weighing 20.7 ± 4.2 kg and aged 22 ± 2 months.MethodsDogs had 30 mL kg?1 of blood removed at a rate of 1.5 mL kg?1 minute?1 under isoflurane anesthesia. Following a 30–minute recovery period, anesthesia was reinduced. Dogs were assigned to one of three treatments: isoflurane via facemask using 0.5% incremental increases in the delivered concentration every 30 seconds, 1.25 mg kg?1 ketamine and 0.0625 mg kg?1 diazepam intravenously (IV) with doses repeated every 30 seconds as required, and 2 mg kg?1 propofol and 0.2 mg kg?1 diazepam IV followed by 1 mg kg?1 propofol increments IV every 30 seconds as required. Following endotracheal intubation all dogs received 1.7% end–tidal isoflurane in oxygen. Cardiopulmonary variables were recorded at baseline (before induction) and at 5 or 10 minute intervals following endotracheal intubation.ResultsInduction time was longer in Iso (4.98 ± 0.47 minutes) compared to KD (3.10 ± 0.47 minutes) or PD (3.22 ± 0.45 minutes). To produce anesthesia, KD received 4.9 ± 2.3 mg kg?1 ketamine and 0.24 ± 0.1 mg kg?1 diazepam, while PD received 2.2 ± 0.4 mg kg?1 propofol and 0.2 mg kg?1 diazepam. End–tidal isoflurane concentration immediately following intubation was 1.7 ± 0.4% in Iso. Arterial blood pressure and heart rate were significantly higher in KD and PD compared to Iso and in KD compared to PD. Arterial carbon dioxide partial pressure was significantly higher in PD compared to KD and Iso immediately after induction.Conclusions and clinical relevanceIn hypovolemic dogs, KD or PD, as used in this study to induce anesthesia, resulted in less hemodynamic depression compared to isoflurane.  相似文献   

4.
ObjectiveTo compare blind and endoscopic-guided techniques for orotracheal intubation in rabbits and the number of intubation attempts with laryngeal/tracheal damage.Study designProspective, randomized experimental study.AnimalsA total of 24 healthy, intact female New Zealand White rabbits, weighing 2.2 ± 0.2 kg (mean ± standard deviation).MethodsRabbits were randomly assigned to blind (group B) or endoscopic-guided (group E) orotracheal intubation with a 2.0 mm internal diameter uncuffed tube. Intramuscular (IM) alfaxalone (7 mg kg–1), hydromorphone (0.1 mg kg–1) and dexmedetomidine (0.005 mg kg–1) were administered, and additional IM alfaxalone (3–5 mg kg–1) and dexmedetomidine (0.025 mg kg–1) were administered to rabbits with strong jaw tone. An intubation attempt was defined as the advancement of the endotracheal tube from the incisors to the laryngeal entrance. Tracheal intubation was confirmed via capnography and anesthesia was maintained with isoflurane for 2 hours. Following euthanasia, laryngeal and tracheal tissues were submitted for histopathology. Quality of anesthesia for orotracheal intubation, intubation procedure and tissue damage were numerically scored. Data were analyzed using Poisson regression, Spearman’s correlation, t test, mixed anova, Mann–Whitney U test, Friedman and Chi square tests as appropriate.ResultsMedian (range) intubation attempts were 2 (1–8) and 1 (1–3) for groups B and E, respectively. More rabbits in group E (91.6%) required additional alfaxalone and dexmedetomidine than in group B (16.7%). Median (range) cumulative histopathology scores were 6 (3–10) and 6 (2–9) for groups B and E, respectively. Scores were highest in the cranial trachea, but there was no difference between groups and no correlation between laryngeal/tracheal damage and the number of intubation attempts.Conclusions and clinical relevanceBoth orotracheal intubation techniques were associated with laryngeal/tracheal damage. Although blind orotracheal intubation was associated with a higher number of attempts, the tissue damage was similar between groups.  相似文献   

5.
ObjectiveTo evaluate the heart rate (HR) and systemic arterial pressure (sAP) effects, and propofol induction dose requirements in healthy dogs administered propofol with or without guaifenesin for the induction of anesthesia.Study designProspective blinded crossover experimental study.AnimalsA total of 10 healthy adult female Beagle dogs.MethodsDogs were premedicated with intravenous (IV) butorphanol (0.4 mg kg–1) and administered guaifenesin 5% at 50 mg kg–1 (treatment G50), 100 mg kg–1 (treatment G100) or saline (treatment saline) IV prior to anesthetic induction with propofol. HR, invasive sAP and respiratory rate (fR) were recorded after butorphanol administration, after guaifenesin administration and after propofol and endotracheal intubation. Propofol doses for intubation were recorded. Repeated measures analysis of variance (anova) was used to determine differences in propofol dose requirements among treatments, and differences in cardiopulmonary values over time and among treatments with p < 0.05 considered statistically significant.ResultsPropofol doses (mean ± standard deviation) for treatments saline, G50 and G100 were 3.3 ± 1.0, 2.7 ± 0.7 and 2.1 ± 0.8 mg kg–1, respectively. Propofol administered was significantly lower in treatment G100 than in treatment saline (p = 0.04). In treatments G50 and G100, HR increased following induction of anesthesia and intubation compared with baseline measurements. HR was higher in treatment G100 than in treatments G50 and saline following induction of anesthesia. In all treatments, sAP decreased following intubation compared with baseline values. There were no significant differences in sAP among treatments. fR was lower following intubation than baseline and post co-induction values and did not differ significantly among treatments.Conclusions and clinical relevanceWhen administered as a co-induction agent in dogs, guaifenesin reduced propofol requirements for tracheal intubation. HR increased and sAP and fR decreased, but mean values remained clinically acceptable.  相似文献   

6.
ObjectiveTo compare cardiopulmonary variables and blood gas analytes in guinea pigs (Cavia porcellus) during anesthesia with and without abdominal carbon dioxide (CO2) insufflation at intra-abdominal pressures (IAPs) 4 and 6 mmHg, with and without endotracheal intubation.Study designProspective experimental trial.AnimalsA total of six intact female Hartley guinea pigs.MethodsA crossover study with sequence randomization for IAP and intubation status was used. The animals were sedated with intramuscular midazolam (1.5 mg kg–1) and buprenorphine (0.2 mg kg–1) and anesthetized with isoflurane, and an abdominal catheter was inserted for CO2 insufflation. Animals with endotracheal intubation were mechanically ventilated and animals maintained using a facemask breathed spontaneously. After 15 minutes of insufflation, the following variables were obtained at each IAP: pulse rate, respiratory rate, rectal temperature, oxygen saturation, end-tidal CO2 (intubated only), peak inspiratory pressure (intubated only), noninvasive blood pressure and blood gas and electrolyte values, with a rest period of 5 minutes between consecutive IAPs. After 4 weeks, the procedure was repeated with the guinea pigs assigned the opposite intubation status.ResultsIntubated guinea pigs had significantly higher pH and lower partial pressure of CO2 in cranial vena cava blood (PvCO2) than nonintubated guinea pigs. An IAP of 6 mmHg resulted in a significantly higher PvCO2 (65.9 ± 19.0 mmHg; 8.8 ± 2.5 kPa) than at 0 (53.2 ± 17.2 mmHg; 7.1 ± 2.3 kPa) and 4 mmHg (52.6 ± 10.8 mmHg; 7.01 ± 1.4 kPa), mean ± standard deviation, with intubated and nonintubated animals combined.Conclusions and clinical relevanceAlthough the oral anatomy of guinea pigs makes endotracheal intubation difficult, capnoperitoneum during anesthesia induces marked hypercapnia in the absence of mechanical ventilation. An IAP of 4 mmHg should be further evaluated for laparoscopic procedures in guinea pigs because hypercapnia may be less severe than with 6 mmHg.  相似文献   

7.
BackgroundGastroesophageal reflux (GER) has been reported to be a common finding in dogs under general anesthesia.ObjectivesThe aim of this retrospective study was to assess the esophageal and gastric contents in a population of dogs undergoing computed tomographic myelography (myelo-CT) examination and to evaluate the factors influencing the presence of esophageal fluid (gastric content, duration of anesthesia, body position, and intrinsic factors).MethodsEsophageal and gastric contents of 83 non-brachycephalic dogs were retrospectively assessed based on plain and myelo-CT scans. Age, weight, breed, sex, and the time between the 2 computed tomography [CT] scans were included.ResultsEsophageal fluid was present in 19% (16/83) of the animals, and 14% (12/83) and 46% (37/83), respectively, had fluid or food material in their stomachs. The frequency of observing esophageal fluid on myelo-CT scans was significantly increased compared with plain CT scans (p = 0.006). The presence of gastric fluid was significantly associated with an increased frequency of observing esophageal fluid compared to other gastric contents (p = 0.049; odds ratio, 3.1). The presence of esophageal fluid was not correlated with alimentary gastric contents (p = 0.17). Increased body weight and duration of anesthesia were significantly associated with an increased frequency of observing esophageal fluid (p = 0.022, p = 0.021).ConclusionsUnlike alimentary gastric contents, fluid gastric contents were correlated with the presence of esophageal fluid upon myelo-CT. The observation of fluid in the esophagus may be consistent with GER. This study provides data additional to pH monitoring studies of GER and may support previous studies recommending shorter pre-anesthetic fasting periods in dogs.  相似文献   

8.
ObjectiveTo evaluate selected effects of midazolam or lidocaine administered prior to etomidate for co-induction of anesthesia in healthy dogs.Study designProspective crossover experimental study.AnimalsA group of 12 healthy adult female Beagle dogs.MethodsDogs were premedicated with intravenous (IV) butorphanol (0.3 mg kg–1), and anesthesia was induced with etomidate following midazolam (0.3 mg kg–1), lidocaine (2 mg kg–1) or physiologic saline (1 mL) IV. Heart rate (HR), arterial blood pressure, respiratory rate (fR) and intraocular pressure (IOP) were recorded following butorphanol, after co-induction administration, after etomidate administration and immediately following intubation. Baseline IOP values were also obtained prior to sedation. Etomidate dose requirements and the presence of myoclonus, as well as coughing or gagging during intubation were recorded. Serum cortisol concentrations were measured prior to premedication and 6 hours following etomidate administration.ResultsBlood pressure, fR and IOP were similar among treatments. Blood pressure decreased in all treatments following etomidate administration and generally returned to sedated values following intubation. HR increased following intubation with midazolam and lidocaine but remained stable in the saline treatment. The dose of etomidate (median, interquartile range, range) required for intubation was lower following midazolam (2.2, 2.1–2.6, 1.7–4.1 mg kg−1) compared with lidocaine (2.7, 2.4–3.6, 2.2–5.1 mg kg−1, p = 0.012) or saline (3.0, 2.8–3.8, 1.9–5.1 mg kg−1, p = 0.015). Coughing or gagging was less frequent with midazolam compared with saline. Myoclonus was not observed. Changes in serum cortisol concentrations were not different among treatments.Conclusions and clinical relevanceMidazolam administration reduced etomidate dose requirements and improved intubation conditions compared with lidocaine or saline treatments. Neither co-induction agent caused clinically relevant differences in measured cardiopulmonary function, IOP or cortisol concentrations compared with saline in healthy dogs. Apnea was noted in all treatments following the induction of anesthesia and preoxygenation is recommended.  相似文献   

9.
ObjectiveTo determine the dose and cardiopulmonary effects of propofol alone or with midazolam for induction of anesthesia in American Society of Anesthesiologists status ≥III dogs requiring emergency abdominal surgery.Study designProspective, randomized, blinded, clinical trial.AnimalsA total of 19 client-owned dogs.MethodsDogs were sedated with fentanyl (2 μg kg–1) intravenously (IV) for instrumentation for measurement of heart rate, arterial blood pressure, cardiac index, systemic vascular resistance index, arterial blood gases, respiratory rate and rectal temperature. After additional IV fentanyl (3 μg kg–1), the quality of sedation was scored and cardiopulmonary variables recorded. Induction of anesthesia was with IV propofol (1 mg kg–1) and saline (0.06 mL kg–1; group PS; nine dogs) or midazolam (0.3 mg kg–1; group PM; 10 dogs), with additional propofol (0.25 mg kg–1) IV every 6 seconds until endotracheal intubation. Induction/intubation quality was scored, and anesthesia was maintained with isoflurane. Variables were recorded for 5 minutes with the dog in lateral recumbency, breathing spontaneously, and then in dorsal recumbency with mechanical ventilation for the next 15 minutes. A general linear mixed model was used with post hoc analysis for multiple comparisons between groups (p < 0.05).ResultsThere were no differences in group demographics, temperature and cardiopulmonary variables between groups or within groups before or after induction. The propofol doses for induction of anesthesia were significantly different between groups, 1.9 ± 0.5 and 1.1 ± 0.5 mg kg–1 for groups PS and PM, respectively, and the induction/intubation score was significantly better for group PM.Conclusions and clinical relevanceMidazolam co-induction reduced the propofol induction dose and improved the quality of induction in critically ill dogs without an improvement in cardiopulmonary variables, when compared with a higher dose of propofol alone.  相似文献   

10.
ObjectiveTo assess the efficacy of butorphanol–azaperone–medetomidine (BAM) and butorphanol–midazolam–medetomidine (BMM) protocols for immobilization of wild common palm civets (Paradoxurus musangus) with subsequent antagonization with atipamezole.Study designProspective, randomized, blinded clinical trial.AnimalsA total of 40 adult wild common palm civets, 24 female and 16 male, weighing 1.5–3.4 kg.MethodsThe civets were randomly assigned for anesthesia with butorphanol, azaperone and medetomidine (0.6, 0.6 and 0.2 mg kg–1, respectively; group BAM) or with butorphanol, midazolam and medetomidine (0.3, 0.4 and 0.1 mg kg–1, respectively; group BMM) intramuscularly (IM) in a squeeze cage. When adequately relaxed, the trachea was intubated for oxygen administration. Physiological variables were recorded every 5 minutes after intubation. Following morphometric measurements, sampling, microchipping and parasite treatment, medetomidine was reversed with atipamezole at 1.0 or 0.5 mg kg–1 IM to groups BAM and BMM, respectively. Physiological variables and times to reach the different stages of anesthesia were compared between groups.ResultsOnset time of sedation and recumbency was similar in both groups; time to achieve complete relaxation and tracheal intubation was longer in group BAM. Supplementation with isoflurane was required to enable intubation in five civets in group BAM and one civet in group BMM. All civets in group BAM required topical lidocaine to facilitate intubation. End-tidal carbon dioxide partial pressure was lower in group BAM, but heart rate, respiratory rate, rectal temperature, peripheral hemoglobin oxygen saturation and mean arterial blood pressure were not different. All civets in both groups recovered well following administration of atipamezole.Conclusions and clinical relevanceBoth BAM and BMM combinations were effective for immobilizing wild common palm civets. The BMM combination had the advantage of producing complete relaxation that allowed intubation more rapidly.  相似文献   

11.
ObjectiveTo characterize the effects of a combination protocol of dexmedetomidine–midazolam–ketamine (DMK) administered intramuscularly (IM) in ornate box turtles (Terrapene ornata ornata).Study designProspective experimental trial.AnimalsA total of 16 apparently clinically healthy adult ornate box turtles (eight male, eight female).MethodsEach turtle was treated with dexmedetomidine (0.1 mg kg−1), midazolam (1 mg kg−1) and ketamine (10 mg kg−1) administered IM. Time to first response, time to maximal effect, the plateau phase and time to recovery from reversal administration were recorded. Physiologic variables, muscle tone, reflexes and the ability to perform endotracheal intubation were recorded at 5 minute intervals. Movement in response to an IM injection of 0.1 mL sterile 0.9% NaCl administered in the left pelvic limb, using a 25 gauge needle to a depth of just past the bevel of the needle, was assessed every 15 minutes. Atipamezole (0.5 mg kg−1) IM and flumazenil (0.05 mg kg−1) SC were administered 60 minutes after the initial DMK injections.ResultsThe mean time to first response, time to maximal effect, the plateau phase and time to recovery were 2.1, 14.9, 38.7 and 7.8 minutes, respectively. A respiratory rate was not observed in most turtles. The body temperature significantly increased over time. The palpebral reflex was persistent in 43% of turtles and the tail pinch reflex remained intact in 13% of turtles. All turtles recovered with no observed adverse effects.Conclusions and clinical relevanceIn this study, this DMK protocol administered to ornate box turtles resulted in a rapid-onset, light anesthesia lasting approximately 40 minutes and a smooth recovery with no adverse effects noted.  相似文献   

12.
ObjectiveTo determine the effects of propofol or thiopental induction on intraocular pressures (IOP) in normal dogs.Study designProspective randomized experimental study.AnimalsTwenty-two random-source dogs weighing 19.5 ± 5.3 kg.MethodsDogs were randomly assigned to receive propofol 8 mg kg−1 IV (group P) or thiopental 18 mg kg−1 IV (group T) until loss of jaw tone. Direct arterial blood pressure, arterial blood gasses, and IOP were measured at baseline, after pre-oxygenation but before induction, before endotracheal intubation, and after intubation.ResultsThere were no significant differences between groups with regard to weight, body condition score, breed group, or baseline or before-induction IOP, arterial blood pressure, or blood gases. The baseline IOP was 12.9 mmHg. Before endotracheal intubation, IOP was significantly higher compared to baseline and before induction in dogs receiving propofol. After intubation with propofol, IOP was significantly higher compared to thiopental and was significantly higher compared to before induction. After intubation, IOP was significantly lower compared to before intubation in dogs receiving thiopental. Propofol increased IOP before intubation by 26% over the before-induction score and thiopental increased IOP by 6% at the same interval. The IOP in group P remained 24% over the before induction score whereas thiopental ultimately decreased IOP 9% below baseline after intubation. There was no significant relationship between any cardiovascular or blood gas parameter and IOP at any time. There was no significant relationship between the changes in any cardiovascular or blood gas parameter and the changes in IOP between time points.Conclusions and clinical relevancePropofol caused a significant increase in IOP compared to baseline and thiopental. Thiopental caused an insignificant increase in IOP which decreased after intubation. Propofol should be avoided when possible in induction of anesthesia in animals where a moderate increase in IOP could be harmful.  相似文献   

13.
ObjectiveTo compare the effect of propofol, alfaxalone and ketamine on intraocular pressure (IOP) in cats.Study designProspective, masked, randomized clinical trial.AnimalsA total of 43 ophthalmologically normal cats scheduled to undergo general anesthesia for various procedures.MethodsFollowing baseline IOP measurements using applanation tonometry, anesthesia was induced with propofol (n = 15), alfaxalone (n = 14) or ketamine (n = 14) administered intravenously to effect. Then, midazolam (0.3 mg kg?1) was administered intravenously and endotracheal intubation was performed without application of topical anesthesia. The IOP was measured following each intervention. Data was analyzed using one-way anova and repeated-measures mixed design with post hoc analysis. A p-value <0.05 was considered significant.ResultsMean ± standard error IOP at baseline was not different among groups (propofol, 18 ± 0.6; alfaxalone, 18 ± 0.7; ketamine, 17 ± 0.5 mmHg). Following induction of anesthesia, IOP increased significantly compared with baseline in the propofol (20 ± 0.7 mmHg), but not in the alfaxalone (19 ± 0.8 mmHg) or ketamine (16 ± 0.7 mmHg) groups. Midazolam administration resulted in significant decrease from the previous measurement in the alfaxalone group (16 ± 0.7 mmHg), but not in the propofol group (19 ± 0.7 mmHg) or the ketamine (16 ± 0.8 mmHg) group. A further decrease was measured after intubation in the alfaxalone group (15 ± 0.9 mmHg).Conclusions and clinical relevancePropofol should be used with caution in cats predisposed to perforation or glaucoma, as any increase in IOP should be avoided.  相似文献   

14.
Tramadol is a centrally acting analgesic with opioid and monoaminergic actions. Its clinical effects have been well characterized in humans, where it has been in use for many years, but little is known for veterinary species. This study evaluated the sedative, emetic, thiopental‐sparing and intraoperative respiratory and hemodynamic effects of tramadol in comparison to morphine for pre‐medication of dogs undergoing orthopedic surgery under halothane anesthesia. Sixteen adult, healthy, mixed breed dogs (8.0 ± 2.6 kg) were studied. Eight dogs were pre‐medicated with tramadol (1.0 mg kg‐1 IM) and the other eight with morphine (1.0 mg kg–1 IM). After 20 minutes, anesthesia was induced with thiopental and subsequently maintained with halothane in oxygen using a Bain system, with spontaneous respiration. Degree of sedation and occurrence of emesis were evaluated after pre‐anesthetic medication. Dose of thiopental necessary for tracheal intubation was compared between the two groups. Arterial blood gas analyzes were done before pre‐medication and at 60 minutes of anesthesia. Heart rate and noninvasive arterial blood pressure were recorded before pre‐medication and every 10 minutes during anesthesia. Observer was blinded of the treatment given for each dog. Tramadol produced no visible sedation and no vomiting, while morphine induced a moderate degree of sedation in all dogs and vomiting in 62% of them. Dogs pre‐medicated with tramadol required significantly more thiopental (17 ± 3.8 mg kg–1) for induction of anesthesia than those pre‐medicated with morphine (12 ± 1.8 mg kg–1). Pre‐medication with morphine was associated with significantly higher PaCO2 and lower pH at 60 minutes of anesthesia. The remaining respiratory parameters and the hemodynamic variables were similar between the two groups. In conclusion, dogs pre‐medicated with tramadol at 1 mg kg–1 IM do not become visibly sedated and require a greater amount of thiopental for induction of anesthesia than pre‐medication with morphine. As intraoperative respiratory function is better preserved with tramadol, it may be useful for pre‐medication of respiratory compromised patients.  相似文献   

15.
ObjectiveTo evaluate the effects of the co-administration of midazolam on the dose requirement for propofol anesthesia induction, heart rate (HR), systolic arterial pressure (SAP) and the incidence of excitement.Study designProspective, randomized, controlled and blinded clinical study, with owner consent.AnimalsSeventeen healthy, client owned dogs weighing 28 ± 18 kg and aged 4.9 ± 3.9 years old.MethodsDogs were sedated with acepromazine 0.025 mg kg?1 and morphine 0.25 mg kg?1 intramuscularly (IM), 30 minutes prior to induction of anesthesia. Patients were randomly allocated to receive midazolam (MP; 0.2 mg kg?1) or sterile normal saline (CP; 0.04 mL kg?1) intravenously (IV) over 15 seconds. Propofol was administered IV immediately following test drug and delivered at 3 mg kg?1 minute?1 until intubation was possible. Scoring of pre-induction sedation, ease of intubation, quality of induction, and presence or absence of excitement following co-induction agent, was recorded. HR, SAP and respiratory rate (fR) were obtained immediately prior to, immediately following, and 5 minutes following induction of anesthesia.ResultsThere were no significant differences between groups with regard to weight, age, gender, or sedation. Excitement occurred in 5/9 dogs following midazolam administration, with none noted in the control group. The dose of propofol administered to the midazolam group was significantly less than in the control group. Differences in HR were not significant between groups. SAP was significantly lower in the midazolam group compared with baseline values 5 minutes after its administration. However, values remained clinically acceptable.Conclusions and clinical relevanceThe co-administration of midazolam with propofol decreased the total dose of propofol needed for induction of anesthesia in sedated healthy dogs, caused some excitement and a clinically unimportant decrease in SAP.  相似文献   

16.
17.
ObjectiveTo determine the potency ratio between S-ketamine and racemic ketamine as inductive agents for achieving tracheal intubation in dogs.Study designProspective, randomized, ‘blinded’, clinical trial conducted in two consecutive phases.Animals112 client-owned dogs (ASA I or II).MethodsAll animals were premedicated with intramuscular acepromazine (0.02 mg kg−1) and methadone (0.2 mg kg−1). In phase 1, midazolam (0.2 mg kg−1) with either 3 mg kg−1 of racemic ketamine (group K) or 1.5 mg kg−1 of S-ketamine (group S) was administered IV, for induction of anaesthesia and intubation. Up to two additional doses of racemic (1.5 mg kg−1) or S-ketamine (0.75 mg kg−1) were administered if required. In phase 2, midazolam (0.2 mg kg−1) with 1 mg kg−1 of either racemic ketamine (group K) or S-ketamine (group S) was injected and followed by a continuous infusion (1 mg kg minute−1) of each respective drug. Differences between groups were statistically analyzed via t-test, Fisher exact test and ANOVA for repeated measures.ResultsDemographics and quality and duration of premedication, induction and intubation were comparable among groups. During phase 1 it was possible to achieve tracheal intubation after a single dose in more dogs in group K (n = 25) than in group S (n = 16) (p = 0.046). A dose of 3 mg kg−1 S-ketamine allowed tracheal intubation in the same number of dogs as 4.5 mg kg−1 of racemic ketamine. The estimated potency ratio was 1.5:1. During phase 2, the total dose (mean ± SD) of S-ketamine (4.02 ±1.56 mg kg−1) and racemic ketamine (4.01 ± 1.42) required for tracheal intubation was similar.Conclusion and clinical relevanceRacemic and S-ketamine provide a similar quality of anaesthetic induction and intubation. S-ketamine is not twice as potent as racemic ketamine and, if infused, the potency ratio is 1:1.  相似文献   

18.
ObjectiveTo document the effects of two doses of dexmedetomidine on the induction characteristics and dose requirements of alfaxalone.Study designRandomized controlled clinical trial.AnimalsSixty one client owned dogs, status ASA I-II.MethodsDogs were allocated randomly into three groups, receiving as pre-anaesthetic medication, no dexmedetomidine (D0), 1 μg kg?1 dexmedetomidine (D1) intramuscularly (IM) or 3 μg kg?1 dexmedetomidine IM (D3). All dogs also received 0.2 mg kg?1 methadone IM. Level of sedation was assessed prior to induction of anaesthesia. Induction of general anaesthesia was performed with alfaxalone administered intravenously to effect at a rate of 1 mg kg?1 minute?1; the required dose to achieve tracheal intubation was recorded. Anaesthesia was maintained with isoflurane in oxygen. Cardiopulmonary parameters were recorded throughout the anaesthetic period. Quality of intubation, induction and recovery of anaesthesia were recorded. Quantitative data were compared with one-way anova or Kruskal-Wallis test. Repeated measures were log-transformed and analysed with repeated measures anova (p < 0.05).ResultsTreatment groups were similar for categorical data, with exception of sedation level (p < 0.001). The doses (mean ± SD) of alfaxalone required for intubation were D0 1.68 ± 0.24, D1 1.60 ± 0.36 and D3 1.41 ± 0.43, the difference between D0 and D3 being statistically significant (p = 0.036). Heart and respiratory rates during the anaesthetic period were significantly different over time and between groups (p < 0.001); systolic arterial blood pressure was significantly different over time (p < 0.001) but not between groups (p = 0.833). Induction quality and recovery scores were similar between groups (p = 1.000 and p = 0.414, respectively).Conclusions and clinical relevanceThe administration of alfaxalone resulted in a good quality anaesthetic induction which was not affected by the dose of dexmedetomidine. Dexmedetomidine at 3 μg kg?1 IM combined with methadone provides good sedation and enables a reduction of alfaxalone requirements.  相似文献   

19.
ObjectivesTo evaluate alfaxalone–midazolam anesthesia in Egyptian fruit bats (Rousettus aegyptiacus) and the effect of flumazenil administration on recovery time and quality.Study designRandomized, blinded, crossover and controlled, experimental trial.AnimalsA total of 10 male Egyptian fruit bats.MethodsBats were anesthetized with alfaxalone (15 mg kg?1) and midazolam (2 mg kg?1) administered subcutaneously. During anesthesia, vital signs, muscle tone and reflexes were monitored every 10 minutes. Flumazenil (0.3 mg kg?1) or saline at an equal volume was administered subcutaneously 60 minutes after anesthetic administration. Time to induction, time to first movement and recovery time (flying) were measured. Quality of induction, anesthesia and recovery were assessed on a 1–3 scale (1, poor; 2, good; 3, excellent).ResultsTime to induction was 4.2 ± 1.9 minutes (mean ± standard deviation), with median quality score of 2 (range, 1–3). Anesthesia quality score was 3 (1–3). During anesthesia, heart rate and respiratory frequency decreased significantly and penis relaxation, indicating muscle tone, increased significantly. Administration of flumazenil significantly reduced mean recovery time compared with saline (10 ± 5 versus 45 ± 17 minutes, respectively), and significantly improved the quality of recovery [2.5 (2–3) versus 1 (1–2), respectively].Conclusions and clinical relevanceAlfaxalone–midazolam anesthesia resulted in good induction, muscle relaxation and sufficient anesthesia to perform routine diagnostic and therapeutic procedures for approximately 40 minutes. Reversal of midazolam with flumazenil is recommended, resulting in quicker and better recovery.  相似文献   

20.
ObjectiveTo assess the cardiorespiratory and hypnotic-sparing effects of ketamine co-induction with target-controlled infusion of propofol in dogs.Study designProspective, randomized, blinded clinical study.AnimalsNinety healthy dogs (ASA grades I/II). Mean body mass 30.5 ± SD 8.6 kg and mean age 4.2 ± 2.6 years.MethodsAll dogs received pre-anaesthetic medication with acepromazine (0.03 mg kg?1) and morphine (0.2 mg kg?1) administered intramuscularly 30 minutes prior to induction of anaesthesia. Heart rate and respiratory rate were recorded prior to pre-medication. Animals were allocated into three different groups: Group 1 (control) received 0.9% NaCl, group 2, 0.25 mg kg?1 ketamine and group 3, 0.5 mg kg?1 ketamine, intravenously 1 minute prior to induction of anaesthesia, which was accomplished using a propofol target-controlled infusion system. The target propofol concentration was gradually increased until endotracheal intubation was possible and the target concentration at intubation was recorded. Heart rate, respiratory rate and noninvasive blood pressure were recorded immediately prior to induction, at successful intubation and at 3 and 5 minutes post-intubation. The quality of induction was graded according to the amount of muscle twitching and paddling observed. Data were analysed using a combination of chi-squared tests, Fisher's exact tests, Kruskal–Wallis, and anova with significance assumed at p< 0.05.ResultsThere were no significant differences between groups in the blood propofol targets required to achieve endotracheal intubation, nor with respect to heart rate, noninvasive blood pressure or quality of induction. Compared with the other groups, the incidence of post-induction apnoea was significantly higher in group 3, but despite this dogs in this group had higher respiratory rates overall.Conclusions and clinical relevanceUnder the conditions of this study, ketamine does not seem to be a useful agent for co-induction of anaesthesia with propofol in dogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号