首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The UK Farm Scale Evaluations (FSE) compared the effects on biodiversity of management of genetically modified herbicide-tolerant (GMHT) crops and conventional crops over the shorter term. We simulated population changes over seven 4-year rotations (28 years) for weeds in crop rotations that included cereals and spring-sown GMHT and conventional oilseed rape and beet, using FSE data and assuming the continuation of the weed management systems practised in the FSE. The weed density dependence that was modelled integrated change caused by population dynamics and farmers’ responses to changes in weed density. Predicted weed seed populations decreased under conventional management and at a greater rate under GMHT. Total seed densities were lower for GMHT cropping by a factor of 0.7–0.8. The predicted distributions of weeds had more fields with lower weed densities under GMHT cropping. Such changes could affect animal populations on farmland, depending on the scale of uptake of GMHT crop cultivars.  相似文献   

2.
We develop a new conceptual model we call the Resource Pool Diversity Hypothesis (RPDH) aimed at explaining how soil resource pool diversity may mediate competition for soil resources between weeds and crops. The primary tenets of the RPDH are that (i) in plant communities, the intensity of inter-specific competition can depend upon the degree to which niche differentiation and resource partitioning occur among species, (ii) agricultural systems are unique in that management practices, such as crop rotation, source of fertility and weed management, result in inputs to the soil and (iii) these inputs directly or indirectly become soil resource pools from which crops and weeds may partition resources. The RPDH leads to the novel prediction that along a gradient of increasing cropping system diversity, yield loss due to weed–crop competition (i.e. the impact on yield per unit weed density) for soil resources should decrease. Similarly, the degree to which crops and weeds overlap in soil resource niche breadth (which is determined by species-specific functional traits for resource acquisition), will determine the extent to which weed–crop competition weakens as resource pool diversity increases. While there have been no direct tests of the RPDH, we highlight evidence from the agricultural literature that provides strong support for components of the hypothesis. Validation of the RPDH would have important implications across a broad range of cropping systems for the development of management strategies that aim to reduce yield loss impact per unit weed plant density and the fundamental principles of integrated weed management, such as the concepts of weed thresholds and critical periods.  相似文献   

3.
Weeds have negative impacts on crop production but also play a role in sustaining biodiversity in agricultural landscapes. This trade‐off raises the question of whether it is possible to promote weed communities with low competitive potential but high value to biodiversity. Here, we explored how weed communities respond to different vineyard management practices in South Africa's Western Cape, aiming to identify whether any specific practices are associated with more beneficial weed communities. Eight weed community characteristics representative of abundance, diversity and functional composition were used as indicators of competitive potential and biodiversity value. We explored how these responded to farm management strategy (organic, low input or conventional) and weed management practices (herbicides, tillage, mowing or combinations of these) using ordination and mixed models. Mown sites were associated with weed communities of high biodiversity value, with higher weed cover in both winter and summer, higher diversity and more native weeds. Mowing also promoted shorter weeds than either tillage or herbicides, considered to be less competitive with grapevines. However, high summer weed cover may be problematic where competition for water is critical, in which case tillage offers a method to limit summer weed cover that did not adversely affect diversity or native weeds. In contrast, herbicide‐treated sites had characteristics indicative of a lower biodiversity value and higher potential for competitiveness with few native weeds, lower diversity and relatively tall, small‐seeded weeds. Mowing in winter combined with tillage in spring may thus optimise the biodiversity benefits and production costs of Western Cape vineyard weeds.  相似文献   

4.
Weed management in organic agriculture: are we addressing the right issues?   总被引:4,自引:0,他引:4  
P Bàrberi 《Weed Research》2002,42(3):177-193
Summary Despite the serious threat which weeds offer to organic crop production, relatively little attention has so far been paid to research on weed management in organic agriculture, an issue that is often approached from a reductionist perspective. This paper aims to outline why and how this problem should instead be tackled from a system perspective. Compared with conventional agriculture, in organic agriculture the effects of cultural practices (e.g. fertilization and direct weed control) on crop:weed interactions usually manifest themselves more slowly. It follows that weed management should be tackled in an extended time domain and needs deep integration with the other cultural practices, aiming to optimize the whole cropping system rather than weed control per se . In this respect, cover crop management is an important issue because of its implications for soil, nutrient, pest and weed management. It is stressed that direct (physical) weed control can only be successful where preventive and cultural weed management is applied to reduce weed emergence (e.g. through appropriate choice of crop sequence, tillage, smother/cover crops) and improve crop competitive ability (e.g. through appropriate choice of crop genotype, sowing/planting pattern and fertilization strategy). Two examples of system-oriented weed management systems designed for organic agriculture are illustrated as well as future perspectives and problems.  相似文献   

5.
发展化学除草重视综合治理   总被引:4,自引:0,他引:4  
我国农田杂草有250多种,全国农田受草害面积4300多万hm2,平均受草害减产13.4%,每年减产粮食1750万t,皮棉25.5万t和大豆50万t。传统农业生产采用机械作业及人力等除草。随着农村经济的发展,化学除草面积迅速扩大,全国农田化学除草面积从1975年的170万hm2增加到1995年的4133万hm2。但是,长期化学除草也带来了除草剂土壤残留对后茬作物药害、农田杂草种群更替和产生抗药性等新问题。必须重视农田杂草综合治理,通过采用各种有效的农业技术措施,为农作物保持良好的生态条件,结合化学除草才是最有效的防除杂草方法  相似文献   

6.
Despite modern weed control practices, weeds continue to be a threat to agricultural production. Considering the variability of weeds, a classification methodology for the risk of infestation in agricultural zones using fuzzy logic is proposed. The inputs for the classification are attributes extracted from estimated maps for weed seed production and weed coverage using kriging and map analysis and from the percentage of surface infested by grass weeds, in order to account for the presence of weed species with a high rate of development and proliferation. The output for the classification predicts the risk of infestation of regions of the field for the next crop. The risk classification methodology described in this paper integrates analysis techniques which may help to reduce costs and improve weed control practices. Results for the risk classification of the infestation in a maize crop field are presented. To illustrate the effectiveness of the proposed system, the risk of infestation over the entire field is checked against the yield loss map estimated by kriging and also with the average yield loss estimated from a hyperbolic model.  相似文献   

7.
Plants alter soil biota which subsequently modifies plant growth, plant–plant interactions and plant community dynamics. While much research has been conducted on the magnitude and importance of soil biota effects (SBEs) in natural systems, little is known in agro‐ecosystems. We investigated whether agricultural management systems could affect SBEs impacts on crop growth and crop–weed competition. Utilising soil collected from eight paired farms, we evaluated the extent to which SBEs differed between conventional and organic farming systems. Soils were conditioned by growing two common annual weeds: Amaranthus retroflexus (redroot pigweed) or Avena fatua (wild oat). Soil biota effects were measured in wheat (Triticum aestivum) growth and crop–weed competition, with SBEs calculated as the natural log of plant biomass in pots inoculated with living soil divided by the plant biomass in pots inoculated with sterilised soil. SBEs were generally more positive when soil inoculum was collected from organic farms compared with conventional farms, suggesting that cropping systems modify the relative abundance of mutualistic and pathogenic organisms responsible for the observed SBEs. Also, as feedbacks became more positive, crop–weed competition decreased and facilitation increased. In annual cropping systems, SBEs can alter plant growth and crop–weed competition. By identifying the management practices that promote positive SBEs, producers can minimise the impacts of crop–weed competition and decrease their reliance on off‐farm chemical and mechanical inputs to control weeds, enhancing agroecosystem sustainability.  相似文献   

8.
Weeds and weed control are major production costs in global agriculture, with increasing challenges associated with herbicide‐based management because of concerns with chemical residue and herbicide resistance. Non‐chemical weed management may address these challenges but requires the ability to differentiate weeds from crops. Harvest is an ideal opportunity for the differentiation of weeds that grow taller than the crop, however, the ability to differentiate late‐season weeds from the crop is unknown. Weed mapping enables farmers to locate weed patches, evaluate the success of previous weed management strategies, and assist with planning for future herbicide applications. The aim of this study was to determine whether weed patches could be differentiated from the crop plants, based on height differences. Field surveys were carried out before crop harvest in 2018 and 2019, where a total of 86 and 105 weedy patches were manually assessed respectively. The results of this study demonstrated that across the 191 assessed weedy patches, in 97% of patches with Avena fatua (wild oat) plants, 86% with Raphanus raphanistrum (wild radish) plants and 92% with Sonchus oleraceus L. (sow thistles) plants it was possible to distinguish the weeds taller than the 95% of the crop plants. Future work should be dedicated to the assessment of the ability of remote sensing methods such as Light Detection and Ranging to detect and map late‐season weed species based on the results from this study on crop and weed height differences.  相似文献   

9.
The aim of this study was to assess the effects of crop management practices on the diversity, structure, and composition of weed communities. A total of 30 fields (15 fields each) in low‐input and conventional farming systems were surveyed in north‐eastern Iran. In the conventional cropping system, both mineral fertilizers and herbicides were applied, while in the low‐input cropping system, the fertilizer was mainly manure and herbicides were avoided. The results showed that the pool of species, species richness, number of unique species, and Shannon's diversity index were greater in the low‐input system than in the conventional system. Both cropping systems had more broad‐leaved species than grasses and more annual species than perennial species. All the multivariate methods of analysis that were applied revealed that the weed community composition was significantly different between the two management types. The low‐input cropping favored herbicide‐susceptible broad‐leaved weeds, legumes, and weeds with biodiversity value, whereas a high proportion of herbicide‐tolerant grasses was found in the conventional fields. The results suggest that low‐input cropping can sustain high weed diversity and abundance.  相似文献   

10.
Planning effective weed control in cropping systems requires exact appraisal of the weed intensity and duration of their competition with the crops. This 2‐year study was carried out in order to determine the critical weed control period in sesame fields. Related and relative crop yields were monitored and analyzed using a four‐parametric log‐logistic model. We recorded data from weed‐free plots and compared these with data from different periods of weed interference. In both the study years, the longer period of weed interference decreased the relative yield of sesame, whereas the yield was increased with increasing duration of the weed‐free period. A 51–78.7% decline in sesame yield was noted if the weeds were allowed to compete with the crop from planting to harvest. In the first year, the duration of the critical period for weed control (CPWC) was 177–820 growing degree days (GDD), which corresponded to 14–64 days after crop emergence (DAE), and between 170 and 837 GDD (13–64 DAE) in the second year; this was based on a 5% acceptable yield loss. The results of this study clearly elaborated that maintaining weed‐free conditions is compulsory from as early as the second week after the emergence of sesame plants, and this should be maintained at least until the ninth week to avoid sesame yield losses by more than 5%. These findings show that growers can benefit from CPWC to improve weed control in sesame production, including the efficacy of a weed control program and its cost.  相似文献   

11.
Summary Weeds are major constraints on crop production, yet as part of the primary producers within farming systems, they may be important components of the agroecosystem. Using published literature, the role of weeds in arable systems for other above‐ground trophic levels are examined. In the UK, there is evidence that weed flora have changed over the past century, with some species declining in abundance, whereas others have increased. There is also some evidence for a decline in the size of arable weed seedbanks. Some of these changes reflect improved agricultural efficiency, changes to more winter‐sown crops in arable rotations and the use of more broad‐spectrum herbicide combinations. Interrogation of a database of records of phytophagous insects associated with plant species in the UK reveals that many arable weed species support a high diversity of insect species. Reductions in abundances of host plants may affect associated insects and other taxa. A number of insect groups and farmland birds have shown marked population declines over the past 30 years. Correlational studies indicate that many of these declines are associated with changes in agricultural practices. Certainly reductions in food availability in winter and for nestling birds in spring are implicated in the declines of several bird species, notably the grey partridge, Perdix perdix. Thus weeds have a role within agroecosystems in supporting biodiversity more generally. An understanding of weed competitivity and the importance of weeds for insects and birds may allow the identification of the most important weed species. This may form the first step in balancing the needs for weed control with the requirements for biodiversity and more sustainable production methods.  相似文献   

12.
Weeds may serve as reservoirs for new and invasive insect pests. The cassava root scale ( Protortonia navesi ) is a recent pest in the Brazilian 'Cerrado' that causes qualitative and quantitative damage by sucking plant sap. Recently, field surveys revealed that many common weeds in this region act as host for P. navesi in cassava fields. In a discrete survey, 15 weed species were identified that were hosting P. navesi . Among these, 13 species occurred during the cropping season and five were observed 4 months after cassava harvest. Eight months after harvest, only cassava volunteer plants were found to be hosting P. navesi . This survey provided a real example of the problem created when weeds host new crop pests. The management of weeds (including crop volunteers) needs to be considered as part of generalised pest management and pest invasion prevention schemes. Effective weed management can be a means of limiting the survival of new pests and the re-infestation of susceptible crop species in subsequent years. Simple studies like this point to a practical need to create greater collaborations between pest management researchers working within discrete pest categories.  相似文献   

13.
Agricultural practices exert selective forces on weed populations. As these practices change over time, weed adaptive traits also evolve, allowing weeds to persist in the new environment. However, only weeds having individuals showing the trait with adaptive significance will be able to cope with these changes, thus allowing a sub‐population to be selected for persistence. In addition, changes in agricultural practices can select new weed species showing functional traits with characteristics adaptive to the modified system. Seed dormancy has long been recognized as a trait with enormous adaptive value to adjust weed biology to cropping systems. In this paper, we illustrate with examples of success and failure, the value of seed dormancy as a functional trait to cope with long‐term changes in crop production systems. We show that successful outcomes are mostly related to the existence of sufficient variability for the functioning of physiological mechanisms that control dormancy characteristics as influenced by the agricultural environment. Presented examples illustrate how knowledge about the relationship that exists between agricultural practices and their selective pressure on seed dormancy can be instrumental in predicting changes in weed biotype dormancy characteristics or foreseeing the appearance of new weed species in future agricultural scenarios. © 2019 Society of Chemical Industry  相似文献   

14.
Integrating principles of ecological intensification into weed management strategies requires an understanding of the many relationships among weeds, crops and other organisms of agro‐ecosystems in a changing context. Extensively used during the last two decades in weed science, trait‐based approaches have provided general insights into weed community response to agricultural practices, and recently to understanding the effect of weeds on agro‐ecosystem functioning. In this review, we provide a holistic synthesis of the current knowledge on weed response and effect functional traits. Based on the literature and recent advances in weed science, we review current knowledge on (i) weed functional groups and ecological strategies, (ii) weed functional response traits to cropping systems and (iii) weed functional effect traits affecting agro‐ecosystem functioning. For each functional trait, we explicitly present the assumptions and evidence on the linkage between trait values and ecological functions, in response to either management practices, for example tillage, sowing and herbicides, or biotic interactions, for example crop–weed competition and pollination. Finally, we address and discuss major research avenues that may significantly improve the use of traits and the knowledge of functional diversity in weed science for the future, especially to design and implement more environmentally sustainable weed management strategies.  相似文献   

15.
Five fodder crop systems of different intensity (ranging from a double annual crop of Italian ryegrass + silage maize to a permanent meadow) were adopted for 30 years in the lowlands of Northern Italy under two input levels, differing mainly in their provision of organic fertiliser (manure). Herbicides were used in the maize crops included in all systems, except the meadow. After 30 years, the weed seedbank of all systems and input levels were assessed by the seedling emergence technique on soil samples from each plot. The cropping systems determined the abundance and composition of the weed assembly. Relatively few, frequent species made up the majority of the emerged seedlings in all systems, and there was no relationship between the total number of emerged seedlings and the mean number of species recorded in the different systems. Arabidopsis thaliana and Oxalis corniculata were abundant in the annual double crop and in the 3- and 6-year rotations that also comprised the annual double crop. These weeds, however, were unlikely to represent a major threat to the crops, due to their vigour and growth period. The permanent meadow tended to greater weed biodiversity than the other systems. The application of manure favoured the seedbank of species such as Lolium multiflorum, Digitaria sanguinalis and A. thaliana. Weed communities in the different systems were mainly determined by herbicide application, (through the ability of weeds to avoid its effects, determined by the weed life history and emergence period) and manure application (with its possible dual effect of spreading weed seeds and favouring nitrogen-responsive weeds).  相似文献   

16.
Herbicide-resistant populations of annual ryegrass (Lolium rigidum) are estimated to affect crop production on about 5000 farms in southern Australia. In order to manage resistant populations, some farmers have adopted a two-to-three-year pasture phase which allows use of grazing by sheep, and non-selective herbicides to deplete the weed seed-bank. However, in low-to-medium rainfall zones, where financial returns from pastures are relatively low, farmers have generally combined cultural practices for weed management with the use of alternative herbicides, mainly trifluralin. Used singly, none of the currently available cultural techniques provides an adequate level of weed control. However, when used in carefully planned combinations, extremely effective ryegrass control can be achieved. Some of the important cultural practices for ryegrass control include delayed sowing (sometimes in conjunction with a shallow autumn cultivation); stubble burning; cutting the crop for hay or green manure, increased crop density and capture of weed seeds at harvest. Selection of crop species and cultivars with superior weed suppression potential is also receiving considerable attention. ©1997 SCI  相似文献   

17.
Glyphosate sustainability in South American cropping systems   总被引:1,自引:0,他引:1  
South America represents about 12% of the global land area, and Brazil roughly corresponds to 47% of that. The major sustainable agricultural system in South America is based on a no-tillage cropping system, which is a worldwide adopted agricultural conservation system. Societal benefits of conservation systems in agriculture include greater use of conservation tillage, which reduces soil erosion and associated loading of pesticides, nutrients and sediments into the environment. However, overreliance on glyphosate and simpler cropping systems has resulted in the selection of tolerant weed species through weed shifts (WSs) and evolution of herbicide-resistant weed (HRW) biotypes to glyphosate. It is a challenge in South America to design herbicide- and non-herbicide-based strategies that effectively delay and/or manage evolution of HRWs and WSs to weeds tolerant to glyphosate in cropping systems based on recurrent glyphosate application, such as those used with glyphosate-resistant soybeans. The objectives of this paper are (i) to provide an overview of some factors that influence WSs and HRWs to glyphosate in South America, especially in Brazil, Argentina and Paraguay soybean cropped areas; (ii) to discuss the viability of using crop rotation and/or cover crops that might be integrated with forage crops in an economically and environmentally sustainable system; and (iii) to summarize the results of a survey of the perceptions of Brazilian farmers to problems with WSs and HRWs to glyphosate, and the level of adoption of good agricultural practices in order to prevent or manage it.  相似文献   

18.
Jordan  Zhang  & Huerd 《Weed Research》2000,40(5):397-410
The importance of interactions between arbuscular-mycorrhizal fungi (AMF) and weeds of agro-ecosystems is reviewed. Considerable evidence suggests that AMF can affect the nature of weed communities in agro-ecosystems in a variety of ways, including changing the relative abundance of mycotrophic weed species (hosts of AMF), and non-mycotrophic species (non-hosts). These effects may merely change the composition of weed communities without affecting the damage that these communities cause. However, it is quite plausible that interactions with AMF can increase the beneficial effects of weeds on the functioning of agro-ecosystems. Through a variety of mechanisms, weed:AMF interactions may reduce crop yield losses to weeds, limit weed species shifts, and increase positive effects of weeds on soil quality and beneficial organisms. If beneficial effects of AMF on the composition and functioning of weed communities can be confirmed by more direct evidence, then AMF could provide a new means of ecologically-based weed management. Intentional management will be required to increase diversity and abundance of AMF in many cropping systems, but these actions (e.g. conservation tillage and use of cover and green-manure crops) typically will confer a range of agronomic benefits in addition to potential improvements in weed management.  相似文献   

19.
There is a need to develop farming systems that enable both a satisfactory level of crop production and suitable environmental conditions for natural species. Wildlife‐friendly cropping techniques, such as a reduced amount of applied herbicide or a lower crop density, might be adopted in order to maintain populations of weed species of biological interest. An alternative might be to adopt an intensive cropping system in a part of the field and spare the other part as set‐aside or field margins, available for the natural development of plant species. The objective of this study was to present a method to compare two strategies for maintaining a desirable level of abundance of a given species of interest in agricultural areas, specifically (i) a strategy based on a wildlife‐friendly cropping system in a large cultivated area and (ii) a strategy based on a more intensive cropping system in a reduced area of cultivation, i.e. with land‐sparing. The principle is to calculate the ratio of crop production obtained with strategy (i) to the production obtained with strategy (ii) for a given target density of natural species. We show that the value of this ratio, and thus the relative performance of the two strategies, depends on the density of the weed species that can be maintained in an uncultivated ecological area. The method is applied in case studies of two plant species with contrasting ecology and conservation goals. The numerical results show that the strategy based on a wildlife‐friendly cropping system is more profitable in most situations.  相似文献   

20.
Genetically-modified (GM) sugar beet varieties tolerant to non-selective herbicides would be useful for managing weed beet, an annual form of Beta vulgaris impossible to eliminate with herbicides in sugar beet. However, it is highly probable that the herbicide-tolerance transgene would be transmitted to the weed through pollen flow. It is therefore essential to study how weed beet. particularly Herbicide-Tolerant (HT) populations, develop in cropping systems and how to optimise crop succession and management for controlling these weeds. As multiple interactions and long-term effects make field experiments impractical, we carried out a simulation study with a deterministic and mechanistic model, G ene S ys- B eet , which quantifies weed beet dynamics and gene flow in cropping systems with interactions with climate, soil structure and hydro-thermal conditions. The sensitivity analysis consisted of 250 000 random combinations of input variables to rank cropping system components according to their effect on both total and GM weed beet infestations. Frequency of sugar beet crops, crop succession, manual and mechanical weeding and tillage were identified as the most important variables. Several cultivation techniques must be combined to efficiently control weed beet. Our recommendations are complex, but a delayed return of sugar beet in the rotation. Harvest should be followed as soon as possible by a shallow tilling; tillage should always be as shallow and as early as possible, except before sugar beet where mouldboard ploughing is advisable. If possible, sowing dates should be delayed. Sugar beet should be weeded mechanically and/or manually, aiming at late and efficient, rather than early or frequent operations. Herbicides should be applied whenever possible and target all weed beet stages and genotypes. Set-aside must be cut as frequently and as late as possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号