首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
3.
Stem rust caused by Puccinia graminis f. sp. tritici is one of the most devastating diseases of wheat. Breakdown of host resistance under field conditions triggered by the evolution of new pathogenic races and pathotypes is a perennial threat for wheat cultivation. Rice, often grown in a rice–wheat cropping system, is immune to rust infection. Our microscopic studies revealed that P. graminis f. sp. tritici, although displaying nearly identical uredospore germination, stomatal entry, and epi- and endophytic mycelial growth in rice and wheat, failed to sporulate to cause rust disease in rice. We identified 18 key defence signalling genes in rice and unravelled their elicitation dynamics in time-course studies during infection. ICS1, NPR1-3, PRs, EDS1, PAD4, FMO1 (salicylic acid [SA] signalling), and ethylene-related genes (ACO4 and ACS6) were strongly elicited in rice. However, genes from the jasmonic acid (JA) signalling pathway (LOX2, AOS2, MYC2, PDF2.2, JAZ8, JAZ10) showed a delayed response during colonization in rice compared to an early or no induction in wheat. However, the JA/ethylene marker gene PDF2.2 was strongly induced in wheat as early as 12 hr postinoculation. Furthermore, rice and wheat displayed specific profiles of accumulation of various phenolic acids during P. graminis f. sp. tritici 40A infection. We propose a model where a differential modulation of the SA/JA-dependent defence network may modulate nonhost resistance. A deeper understanding of the molecular mechanism governing differential elicitation of defence signalling may provide a novel resistance mechanism for the sustainable management of rust diseases.  相似文献   

4.
5.
6.
When the biocontrol agent Pythium oligandrum (PO) colonizes the rhizosphere, it suppresses bacterial wilt disease in tomato (Solanum lycopersicum cv. Micro‐Tom) caused by Ralstonia solanacearum, and a homogenate of its mycelia exhibits elicitor activity, inducing an ethylene (ET)‐dependent defence response in Micro‐Tom. Since salicylic acid (SA) and jasmonic acid (JA) play an important role in plant defence responses to pathogens, the involvement of SA‐ and JA‐dependent signal transduction pathways in resistance to R. solanacearum was investigated in tomato roots treated with a mycelial homogenate of PO. Bacterial wilt disease was also suppressed in tomato cv. Moneymaker treated with the PO homogenate. However, the SA‐inducible PR‐1(P6) gene was not up‐regulated in either Micro‐Tom or Moneymaker. SA did not accumulate in homogenate‐treated roots in comparison with distilled water‐treated controls, even 24 h after inoculation. Induced resistance against R. solanacearum was not compromised in SA‐non‐accumulating NahG transgenic plants treated with the PO homogenate. On the other hand, the expression of the JA‐responsive gene for the basic PR‐6 protein was induced in both tomato cultivars treated with the PO homogenate. Furthermore, quantitative disease assays showed that the induced resistance against R. solanacearum was compromized in PO homogenate‐treated jai1‐1 mutant plants defective in JA signalling. These results indicated that the JA‐dependent signalling pathway is required for PO‐induced resistance against R. solanacearum in tomato.  相似文献   

7.
Resistance to the dicotyledenous parasite Orobanche cumana in sunflower is characterized by a low number of parasitic attachments and a confinement of the parasite in host tissues leading to its necrosis. To help understand what determines such resistance mechanisms, molecular, biochemical and histological approaches were employed before (early response) and after (late response) attachment of the broomrape parasite to susceptible (2603) and resistant (LR1) sunflower genotypes. The expression patterns of 11 defence-related genes known to be involved in different metabolic pathways (phenylpropanoids, jasmonate, ethylene) and/or in resistance mechanisms against microorganisms were investigated. RT-PCR and cDNA blot experiments revealed that the resistant genotype exhibited a stronger overall defence response against O. cumana than the susceptible one, involving marker genes of the jasmonate (JA) and salicylic acid (SA) pathways. Among them, the SA-responsive gene, def. (defensin), appeared to be characteristic of LR1 sunflower resistance. However, no JA accumulation and similar SA contents (250–300 ng g−1 FW) were measured by GC/MS in both genotypes, parasitized or not. In addition, three cDNAs, isolated by a suppression-subtractive hybridization, were shown to be strongly induced only in the resistant genotype 8 days post-inoculation, when the first O. cumana attachments occurred. These genes, putatively encoding a methionine synthase, a glutathione S-transferase and a quinone oxidoreductase, might be involved in detoxification of reactive oxygen species, suggesting the occurrence of an oxidative burst during the incompatible interaction. Finally, host cell-wall modifications leading to parasite-confinement were correlated with more intense callose depositions in the resistant genotype, concomitant with over-expression of the callose synthase cDNA HaGSL1 .  相似文献   

8.
9.
Induced resistance was studied in three sorghum genotypes (IS2205, ICSV1 and ICSV700) against Chilo partellus (Swinhoe) (Lepidoptera; Pyralidae) infestation and jasmonic acid (JA) and salicylic acid (SA) application. The activity of plant defensive enzymes [peroxidase (POD), polyphenol oxidase (PPO), superoxide dismutase (SOD), and catalase (CAT)], and the amounts of total phenols, hydrogen peroxide (H2O2), malondialdehyde (MDA), and proteins were recorded at 6 days after infestation. The induction of enzyme activities and the amounts of secondary metabolites varied among the genotypes and treatments. The genotype IS2205 showed a stronger effect than that of ICSV1 or ICSV 700. Treatment with JA followed by insect infestation induced greater levels of enzymes and secondary metabolites. The results suggest that JA induces greater levels of resistance components in sorghum plants against insect pests. Thus, pretreatment of plants with elicitors including JA and SA could provide a greater opportunity for plant defense against herbivores.  相似文献   

10.
L. Ma  J. Li  L. Ma  J. Wu  J. Wu 《Plant pathology》2017,66(2):277-284
The phytohormone ethylene plays an important role in plant defence responses to pathogen attack. When infected by the necrotrophic fungal pathogen Alternaria alternata (tobacco pathotype), which causes severe diseases in Nicotiana species, the wild tobacco plant Nicotiana attenuata accumulates a high amount of the jasmonate (JA)‐dependent phytoalexin scopoletin to defend itself against this fungal pathogen. However, it is still not known whether ethylene signalling is also involved in scopoletin biosynthesis and the resistance of N. attenuata. After infection, ethylene biosynthetic genes were highly elicited. Furthermore, plants strongly impaired in ethylene biosynthesis or perception had dramatically decreased scopoletin levels, and these plants became more susceptible to the fungus, while A. alternata‐elicited JA levels were increased, indicating that the decreased defence responses were not due to lower JA levels. Thus, it is concluded that after infection, ethylene signalling is activated together with JA signalling in N. attenuata plants and this subsequently regulates scopoletin biosynthesis and plant resistance.  相似文献   

11.
Selected strains of rhizosphere bacteria reduce disease by activating a resistance mechanism in the plant named rhizobacteria-mediated induced systemic resistance (ISR). Rhizobacteria-mediated ISR resembles pathogen-induced systemic acquired resistance (SAR) in that both types of induced resistance render uninfected plant parts more resistant towards a broad spectrum of plant pathogens. Some rhizobacteria trigger the salicylic acid (SA)-dependent SAR pathway by producing SA at the root surface. In other cases, rhizobacteria trigger a different signalling pathway that does not require SA. The existence of a SA-independent ISR pathway has been demonstrated in Arabidopsis thaliana. In contrast to pathogen-induced SAR, ISR induced by Pseudomonas fluorescens WCS417r is independent of SA accumulation and pathogenesis-related (PR) gene activation but, instead, requires responsiveness to the plant hormones jasmonic acid (JA) and ethylene. Mutant analyses showed that ISR follows a novel signalling pathway in which components from the JA and ethylene response are successively engaged to trigger a defensive state that, like SAR, is controlled by the regulatory factor NPR1. Interestingly, simultaneous activation of both the JA/ethylene-dependent ISR pathway and the SA-dependent SAR pathway results in an enhanced level of protection. Thus combining both types of induced resistance provides an attractive tool for the improvement of disease control. This review focuses on the current status of our research on triggering, signalling, and expression of rhizobacteria-mediated ISR in Arabidopsis.  相似文献   

12.
13.
Arbuscular mycorrhiza (AM) colonization led to a decrease in the severity of fusarium wilt disease caused by Fusarium oxysporum f. sp. lycopersici in tomato plants. The involvement of two plant defense hormones, namely methyl jasmonate (MeJA) and salicylic acid (SA), in the expression of mycorrhiza induced resistance (MIR) against this vascular pathogen was studied in the AM colonized and non-colonized (controls) plants. Activity of lipoxygenase (LOX), which plays a role in jasmonic acid (JA) biosynthesis, as well as levels of methyl jasmonate (MeJA) increased in AM colonized plants as compared to controls, but did not show any further changes in response to F. oxysporum inoculation. On the other hand, activity of phenylalanine ammonia lyase (PAL), which is an enzyme from salicylic acid (SA) biosynthetic pathway, as well as SA levels, increased in both controls and AM colonized plants in response to application of F. oxysporum spores. Hence the JA and not the SA signalling pathway appeared to play a role in the expression of MIR against this vascular pathogen. The resistance observed in AM colonized plants was completely compromised when plants were treated with the JA biosynthesis inhibitor salicylhydroxamic acid (SHAM). This confirmed that the AM-induced increase in JA levels was involved in the expression of resistance toward F. oxysporum. The SA response gene pathogenesis-related 1 (PR1) showed an increased expression in response to F. oxysporum infection in SHAM treated AM colonized plants as compared to plants that were not treated with this JA inhibitor. This suggested the possibility that JA inhibited SA responses, at least in the roots. AM colonization therefore appeared to prime plants for improved tolerance against the vascular pathogen F. oxysporum, which was mediated through the JA signalling pathway.  相似文献   

14.
15.
The effect of phytohormones on the defense response of wheat against Fusarium graminearum infection was investigated. Infection of heads with F. graminearum induced accumulation of salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA), and indole acetic acid (IAA). Exogenous phytohormone treatments showed crosstalk between them and a complex effect on expression of the genes ATB2, ExpB6, LEA Td16, PR1, Pdf1.2, PR4. JA treatment reduced F. graminearum growth and fusarium head blight (FHB) symptoms while an increase in FHB was observed with ABA. Transient down-regulation of allene oxide synthase (AOS) supports a complex role for JA in wheat head.  相似文献   

16.
Huanglongbing (HLB), caused by ‘Candidatus Liberibacter asiaticus’ (Las), is a devastating disease of citrus trees in Florida. Previous work showed that the rootstock cultivar Cleopatra mandarin (Citrus reticulata) has a higher population of Las in roots than Swingle citrumelo (C. paradisi × Poncirus trifoliata). Las reduced fibrous root biomass and sucrose content in Cleopatra mandarin more than in Swingle citrumelo. To understand the mechanisms for susceptibility to Las infection, sucrose and hormone metabolism status were evaluated in Cleopatra mandarin and Swingle citrumelo. In fibrous roots of Cleopatra mandarin, higher expression of genes related to sucrose cleavage was consistent with lower sucrose content compared to noninoculated seedlings at 5 weeks post‐root trimming (wpt). In fibrous roots of Swingle citrumelo, both sucrose content and gene expression related to sucrose cleavage were less disrupted by Las infection compared to Cleopatra mandarin at 5 wpt. Genes associated with salicylic acid (SA), ethylene (ET) and abscisic acid (ABA) synthesis, and ABA signalling, phospholipases D (PLD), and phospholipase A2 (PLA2) were activated by Las infection at 5 wpt in Cleopatra mandarin. Expression of downstream effectors of SA, i.e. NPR1, WRKY70 and PR1, did not change in Cleopatra mandarin, suggesting inhibition of the response to SA by the elevation of ABA, ET and PLD. In contrast, the up‐regulation of PR1, lower response of sucrose metabolism genes and down‐regulation of biosynthesis of phytohormones indicates that Swingle citrumelo activates a more effective defence against this biotrophic pathogen than Cleopatra mandarin.  相似文献   

17.
18.
In plant–pathogen interactions, strong structural and biochemical barriers may induce a cascade of reactions in planta, leading to host resistance. The kinetic speed and amplitudes of these defence mechanisms may discriminate resistance from susceptibility to necrotrophic fungi. The infection processes of two Ascochyta lentis isolates (FT13037 and F13082) on the recently identified ascochyta blight (AB)‐resistant Lens orientalis genotype ILWL180 and two cultivated genotypes, ILL7537 (resistant) and ILL6002 (susceptible), were assessed. Using histopathological methods, significant differences in early behaviour of the isolates and the subsequent differential defence responses of the hosts were revealed. Irrespective of virulence, both isolates had significantly lower germination, shorter germ tubes and delayed appressorium formation on the resistant genotypes (ILWL180 and ILL7537) compared to the susceptible genotype (ILL6002); furthermore, these were more pronounced on genotype ILWL180 than on genotype ILL7537. Subsequently, host perception of pathogen entry led to the faster accumulation and notably higher amounts of reactive oxygen species and phenolic compounds at the penetration sites of the resistance genotypes ILWL180 and ILL7537. In contrast, genotype ILL6002 responded slowly to the A. lentis infection and reaffirmed previous gross disease symptomology reports as highly susceptible. Interestingly, quantification of H2O2 was markedly higher in ILWL180 particularly at 12 h post‐inoculation compared to ILL7537, potentially indicative of its superior resistance capability. Faster recognition of A. lentis is likely to be a major contribution to the superior resistance observed in genotype ILWL180 to the highly aggressive isolates of A. lentis assessed.  相似文献   

19.
Globally, bread wheat production is threatened by fungal diseases, including the devastating disease Septoria tritici blotch (STB). Given the global importance of STB, and the difficulty in identifying novel sources of resistance to this disease, we screened a variety of wheat genotypes, including wild, ancestral, and mutagenized lines, for their STB response. This delineated a panel of wild wheat relatives and Watkins collection lines with exceptional resistance to a range of Zymoseptoria tritici isolates, some of which are highly virulent on modern, elite wheat varieties. Additionally, we characterized the STB susceptibility of 500 lines of the wheat cultivar Cadenza TILLING population and developed backcross derivatives of two TILLING lines that show dominant partial resistance to STB. These backcross lines are partially resistant to multiple isolates of Z. tritici, and, with the wild and ancestral lines identified, provide a useful reservoir of STB-resistant germplasm for use in wheat breeding programmes.  相似文献   

20.
Septoria tritici blotch (STB) caused by the fungal pathogen Zymoseptoria tritici continues to be the most economically destructive disease of winter wheat throughout Ireland. Due to the widespread development of fungicide resistance in the Irish Z. tritici population, integrated strategies to control STB are increasingly necessary. A key component of such strategies will be the deployment of winter wheat cultivars with improved levels of STB resistance. Unfortunately, due to the nature of Z. tritici, such resistances are at risk of being overcome by the pathogen. In late summer 2020, foci of STB were observed across a range of winter wheat cultivars under evaluation for recommendation in Ireland. Common amongst these was the cultivar Cougar in each of their pedigree. To determine if the foci observed in 2020 resulted from strains virulent to Cougar, isolate collections were established and virulence screens conducted on Cougar and a range of the cultivars currently under evaluation. These confirmed the presence of Cougar-virulent strains in the Irish Z. tritici population, and that this virulence affects not just Cougar, but also cultivars derived from it. Although the foci observed in 2020 were in both fungicide-untreated and -treated plots, there was no evidence that these strains are more sensitive or resistant to fungicides compared to the wider Irish Z. tritici population, with moderate resistance to the SDHIs and azoles dominating. Combined, the present study confirms the need to ensure a diversity of control measures for STB, including ensuring a range of STB resistances are used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号