首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Soil respiration and soil carbon dioxide (CO2) concentration were investigated in a tropical monsoon forest in northern Thailand, from 1998 to 2000. Soil respiration was relatively high during the rainy season and low during the dry season, although interannual fluctuations were large. Soil moisture was widely different between the dry and wet seasons, while soil temperature changed little throughout the year. As a result, the rate of soil respiration is determined predominantly by soil moisture, not by soil temperature. The roughly estimated annual soil respiration rate was 2560gCm–2year–1. The soil CO2 concentration also increased in the rainy season and decreased in the dry season, and showed clearer seasonality than soil respiration did.  相似文献   

2.
Tropical forests, like boreal forests, are considered key ecosystems with regard to climate change. The temperature sensitivity of soil CO2 production in tropical forests is unclear, especially in eastern Asia, because of a lack of data. The year-round variation in temperature is very small in tropical forests such that it is difficult to evaluate the temperature sensitivity of soil CO2 production using field observations, unlike the conditions that occur in temperate and boreal forests. This study examined the temperature sensitivity of soil CO2 production in the tropical hill evergreen forest that covers northern Thailand, Laos, and Myanmar; this forest has small temperature seasonality. Using an undisturbed soil sample (0.2 m diameter, 0.4 m long), CO2 production rates were measured at three different temperatures. The CO2 production (SR, mg CO2 m−2 s−1) increased exponentially with temperature (T, °C); the fitted curve was SR = 0.023 e0.077T, with Q10 = 2.2. Although still limited, our result supports the possibility that even a small increase in the temperature of this region might accelerate carbon release because of the exponential sensitivity and high average temperature.  相似文献   

3.
The impacts of elevated atmospheric CO2 concentrations (500 μmol·mol−1 and 700 μmol·mol−1) on total soil respiration and the contribution of root respiration ofPinus koraiensis seedlings were investigated from May to October in 2003 at the Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences, Jilin Province, China. After four growing seasons in top-open chambers exposed to elevated CO2, the total soil respiration and roots respiration ofPinus koraiensis seedlings were measured by a Li-6400-09 soil CO2 flux chamber. Three PVC cylinders in each chamber were inserted about 30 cm into the soil instantaneously to terminate the supply of current photosynthates from the tree canopy to roots for separating the root respiration from total soil respiration. Soil respirations both inside and outside of the cylinders were measured on June 16, August 20 and October 8, respectively. The results indicated that: there was a marked diurnal change in air temperature and soil temperature at depth of 5 cm on June 16, the maximum of soil temperature at depth of 5 cm lagged behind that of air temperature, no differences in temperature between treatments were found (P>0.05). The total soil respiration and soil respiration with roots severed showed strong diurnal and seasonal patterns. There was marked difference in total soil respiration and soil respiration with roots severed between treatments (P<0.01); Mean total soil respiration and contribution of root under different treatments were 3.26, 4.78 and 1.47 μmol·m−2·s−1, 11.5%, 43.1% and 27.9% on June 16, August 20 and October 8, respectively. Foundation item: This study was supported by the Knowledge Innovation Project of the Chinese Academy of Sciences (KZCX1-SW-01) and the National Natural Science Foundation of China (30070158). Biography: LIU Ying (1976-), female, Ph. D. Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P. R. China. Responsible editor: Song Funan  相似文献   

4.
Reduced soil respiration in gaps in logged lowland dipterocarp forests   总被引:1,自引:0,他引:1  
We studied the effects of forest composition and structure, and related biotic and abiotic factors on soil respiration rates in a tropical logged forest in Malaysian Borneo. Forest stands were classified into gap, pioneer, non-pioneer and mixed (pioneer, non-pioneer and unclassified trees) based on the species composition of trees >10 cm diameter breast height. Soil respiration rates did not differ significantly between non-gap sites (1290 ± 210 mg CO2 m−2 h−1) but were double those in gap sites (640 ± 130 mg CO2 m−2 h−1). Post hoc analyses found that an increase in soil temperature and a decrease in litterfall and fine root biomass explained 72% of the difference between gap and non-gap sites. The significant decrease of soil respiration rates in gaps, irrespective of day or night time, suggests that autotrophic respiration may be an important contributor to total soil respiration in logged forests. We conclude that biosphere-atmosphere carbon exchange models in tropical systems should incorporate gap frequency and that future research in tropical forest should emphasize the contribution of autotrophic respiration to total soil respiration.  相似文献   

5.
It was hypothesized that soil respiration can be affected by canopy composition. Hence, admixture of trees as a common forest management practice may cause significant change in the carbon cycling. This study was conducted in a mixed spruce-beech stand at Solling forest in central Germany to investigate the effect of canopy composition on soil respiration. The canopy cover was classified in four major canopy classes (pure beech, pure spruce, mixed and gap), and the area under each canopy class was identified as a sub-plot. Soil respiration in each sub-plot (n=4) was measured monthly from Jun 2005 to July 2006. Results show significant difference in annual soil respiration between the beech (359 g·m−2·a−1 C) and gap (211 g·m−2·a−1 C) sub-plots. The estimation of the total below-ground carbon allocation (TBCA) based on a model given by Raich and Nadelhoffer revealed considerably higher root CO2 production in the beech sub-plot (231 g·m−2·a−1 C) compare to the gap sub-plot (51 g·m−2·a−1 C). The contribution of the root respiration to the total soil respiration was higher in the soil under the beech canopy (59%) compared with the soil in the gap (29%). The findings suggested that the condition under the beech canopy may cause more desirable micro-site for autotrophic respiration and consequently higher CO2 release into the atmosphere.  相似文献   

6.
Soil CO2 levels reflect CO2 production and transport in soil and provide valuable information about soil CO2 dynamics. However, extracting information from soil CO2 profiles is often difficult because of the complexity of these profiles. In this study, we constructed a simple numerical model that simulated soil CO2 dynamics and performed sensitivity analyses for CO2 production rates, soil water content and temperature, and gas diffusivity at the soil surface to clarify the relationships among these parameters. Increased soil surface CO2 flux did not always coincide with higher soil CO2 concentrations; increased CO2 production at shallow depths had little effect on soil CO2 concentrations, while the opposite may be true for high levels of soil water content. Higher soil CO2 concentration did not always coincide with greater soil surface CO2 flux; under high soil water conditions, soil surface CO2 flux sometimes decreased despite increased soil CO2 concentration. Increases in soil water content did not always enhance both soil surface CO2 flux and soil CO2 concentration. Under high soil water conditions, increases in soil water content could lower soil surface CO2 flux and increase soil CO2 concentration. Increases in soil temperature resulted in greater soil surface CO2 flux and higher soil CO2 concentration in our simulation (extremely high temperatures were not assumed in this study). Gas diffusivity in very shallow layers did affect, albeit weakly, soil CO2 concentration. The findings of this study may help direct future observations and aid in the interpretation of their results.  相似文献   

7.
Variability of soil CO2 efflux strongly depends on soil temperature, soil moisture and plant phenology. Separating the effects of these factors is critical to understand the belowground carbon dynamics of forest ecosystem. In Ethiopia with its unreliable seasonal rainfall, variability of soil CO2 efflux may be particularly associated with seasonal variation. In this study, soil respiration was measured in nine plots under the canopies of three indigenous trees (Croton macrostachys, Podocarpus falcatus and Prunus africana) growing in an Afromontane forest of south-eastern Ethiopia. Our objectives were to investigate seasonal and diurnal variation in soil CO2 flux rate as a function of soil temperature and soil moisture, and to investigate the impact of tree species composition on soil respiration. Results showed that soil respiration displayed strong seasonal patterns, being lower during dry periods and higher during wet periods. The dependence of soil respiration on soil moisture under the three tree species explained about 50% of the seasonal variability. The relation followed a Gaussian function, and indicated a decrease in soil respiration at soil volumetric water contents exceeding a threshold of about 30%. Under more moist conditions soil respiration is tentatively limited by low oxygen supply. On a diurnal basis temperature dependency was observed, but not during dry periods when plant and soil microbial activities were restrained by moisture deficiency. Tree species influenced soil respiration, and there was a significant interaction effect of tree species and soil moisture on soil CO2 efflux variability. During wet (and cloudy) period, when shade tolerant late successional P. falcatus is having a physiological advantage, soil respiration under this tree species exceeded that under the other two species. In contrast, soil CO2 efflux rates under light demanding pioneer C. macrostachys appeared to be least sensitive to dry (but sunny) conditions. This is probably related to the relatively higher carbon assimilation rates and associated root respiration. We conclude that besides the anticipated changes in precipitation pattern in Ethiopia any anthropogenic disturbance fostering the pioneer species may alter the future ecosystem carbon balance by its impact on soil respiration.  相似文献   

8.
Forests accumulate much less carbon than the amount fixed through photosynthesis because of an almost equally large opposing flux of CO2 from the ecosystem. Most of the return flux to the atmosphere is through soil respiration, which has two major sources, one heterotrophic (organisms decomposing organic matter) and one autotrophic (roots, mycorrhizal fungi and other root-associated microbes dependent on recent photosynthate). We used tree-girdling to stop the flow of photosynthate to the belowground system, hence, blocking autotrophic soil activity in a 120-yr-old boreal Picea abies forest. We found that at the end of the summer, two months after girdling, the treatment had reduced soil respiration by up to 53%. This figure adds to a growing body of evidence indicating (t-test, d.f. = 7, p < 0.05) that autotrophic respiration may contribute more to total soil respiration in boreal (mean 53 ± 2%) as compared to temperate forests (mean 44 ± 3%). Our data also suggests that there is a seasonal hysteresis in the response of total soil respiration to changes in temperature. We propose that this reflects seasonality in the tree below-ground carbon allocation.  相似文献   

9.
The soil CO2 evolution rate was measured in a virgin Korean pine forest. The results in June showed that the lowest value of evolution rate was 220 mg/(m2·h) and appeared at 6:00 a.m. The highest value was 460 mg/(m2·h) at 18:00. The rates of CO2 evolution were related with soil temperature. On the basis of the constructed regression equation and the monthly average values of temperature, the magnitude of CO2 evolution from Korean pine forest soil was 10.4 t/hm2 during a growing season. This project was funded by the Opened Research Station of Changbai Mountain Forest Ecosystem, Chinese Academy of Sciences. Responsible editor: Zhu Hong  相似文献   

10.
Measurement of soil CO2 concentrations is important for investigating the dynamics and diffusion of CO2 in soil. In this study, we developed a small CO2 analyzer for measuring in situ-soil CO2 concentrations. The CO2 analyzer consists of a module containing an infrared CO2 gas sensor, a temperature sensor, and a relative humidity sensor. These sensors are installed in a protective box with an air vent, which is suitable for burying in the soil. The output response time of the CO2 analyzer was 349 s, as evaluated from the phase lag after input of known CO2 concentrations. This response time is short enough to measure soil CO2 concentrations, because variations in concentration are slower than the response time of the analyzer. In a field test, we used the CO2 analyzer to measure soil CO2 concentrations at five depths (0–50 cm) over 2.5 months. While the CO2 concentration generally increased with depth, the amplitude of the variation in CO2 concentration decreased with depth. The phase lag of the variations in soil CO2 concentration also increased with depth, as did soil temperature. The tests confirm that the CO2 analyzer is applicable to continuous monitoring of soil CO2 concentrations.  相似文献   

11.
随着大气CO2浓度的升高,主要由其引起的温室效应与对生物新陈代谢的影响变得越来越显著。森林生态系统在全球碳循环中扮演着重要的角色。为了评估和理解森林土壤CO2通量及其随空气和土壤温度的季节和昼夜变化规律,我们在长白山北坡典型阔叶红松林内利用静态箱技术进行了原位观测。实验在整个生长季(6月初至9月末)昼夜进行,利用气相色谱进行气体分析。结果表明: 长白山阔叶红松林土壤是大气二氧化碳源,其CO2通量具有明显的季节和昼夜变化规律。通量的变化范围是(0.30-2.42)μmol穖-2穝-1,平均值为0.98μmol穖-2穝-1。土壤CO2排放的季节规律表明,土壤CO2通量的变化与气温和土壤温度的变化有关。CO2平均通量的最大值出现在7月((1.27±23%)μmol穖-2穝-1),最小值出现在9月((0.5±28%)μmol穖-2穝-1)。土壤CO2的昼夜波动与土壤温度变化有关,而在时间上滞后于温度的变化。森林下垫面土壤CO2通量与土壤温度显著相关,与6cm深度土层温度相关系数最大。基于气温和土壤温度计算的Q10值范围为2.09-3.40。图2表3参37。  相似文献   

12.
Partitioning soil respiration into three components is vital to identify CO2 sink or source and can help us better understand soil carbon dynamics. However, knowledge about the influences of soil depth and the priming effect on soil respiration components under field has been limited. Three components of soil respiration (root respiration, rhizomicrobial respiration and basal respiration) in a plantation in the hilly area of the North China were separated by the 13C natural abundance method. The results showed that the average proportions of rhizomicrobial respiration, root respiration and basal respiration at the 25–65 cm depths were about 14, 23 and 63 %, respectively. Three components of soil respiration varied with soil depth, and root respiration was the main component of soil respiration in deeper soil. The priming effect was obvious for the deep soil respiration, especially at the 40–50 cm depth. Thus, depth and priming effect should be taken into account to increase the accuracy of estimations of soil carbon flux.  相似文献   

13.
This study examined the effect of tree species identity and diversity on soil respiration in a 3-year-old tropical tree biodiversity plantation in Central Panamá. We hypothesized that tree pairs in mixed-species plots would have higher soil respiration rates than those in monoculture plots as a result of increased primary productivity and complementarity leading to greater root and microbial biomass and soil respiration. In addition to soil respiration, we measured potential controls including root, tree, and microbial biomass, soil moisture, surface temperature, bulk density. Over the course of the wet season, soil respiration decreased from the June highs (7.2 ± 3.5 μmol CO2/(m2 s−1) to a low of 2.3 ± 1.9 μmol CO2/(m2 s−1) in the last 2 weeks of October. The lowest rates of soil respiration were at the peak of the dry season (1.0 ± 0.7 μmol CO2/(m2 s−1)). Contrary to our hypothesis, soil respiration was 19–31% higher in monoculture than in pairs and plots with higher diversity in the dry and rainy seasons. Although tree biomass was significantly higher in pairs and plots with higher diversity, there were no significant differences in either root or microbial biomass between monoculture and two-species pairs. Path analyses allow the comparison of different pathways relating soil respiration to either biotic or abiotic controls factors. The path linking crown volume to soil temperature then respiration has the highest correlation, with a value of 0.560, suggesting that canopy controls on soil climate may drive soil respiration.  相似文献   

14.
Forest soil is a huge reserve of carbon in the biosphere. Therefore to understand the carbon cycle in forest ecosystems, it is important to determine the dynamics of soil CO2 efflux. This study was conducted to describe temporal variations in soil CO2 efflux and identify the environmental factors that affect it. We measured soil CO2 efflux continuously in a beech secondary forest in the Appi Highlands in Iwate Prefecture for two years (except when there was snow cover) using four dynamic closed chambers that automatically open after taking measurements. Temporal changes in soil temperature and volumetric soil water content were also measured at a depth of 5 cm. The soil CO2 efflux ranged from 14 mg CO2 m−2 h−1 to 2,329 mg CO2 m−2 h−1, the peak occurring at the beginning of August. The relationship between soil temperature and soil CO2 efflux was well represented by an exponential function. Most of temporal variation in soil CO2 efflux was explained by soil temperature rather than volumetric soil water content. The Q 10 values were 3.7 ± 0.8 and estimated annual carbon emissions were 837 ± 210 g C m−2 year−1. These results provide a foundation for further development of models for prediction of soil CO2 efflux driven by environmental factors.  相似文献   

15.
We conducted a trenching experiment in a mountain forest in order to assess the contribution of the autotrophic respiration to total soil respiration and evaluate trenching as a technique to achieve it. We hypothesised that the trenching experiment would alter both microbial biomass and microbial community structure and that fine roots (less than 2 mm diameter) would be decomposed within one growing season. Soil CO2 efflux was measured roughly biweekly over two growing seasons. Root presence and morphology parameters, as well as the soil microbial community were measured prior to trenching, 5 and 15 months after trenching. The trenched plots emitted about 20 and 30% less CO2 than the control plots in the first and second growing season, respectively. Roots died in trenched plots, but root decay was slow. After 5 and 15 months, fine root biomass was decreased by 9% (not statistically different) and 30%, (statistically different) respectively. When we corrected for the additional trenched-plot CO2 efflux due to fine root decomposition, the autotrophic soil respiration rose to ~26% of the total soil respiration for the first growing season, and to ~44% for the second growing season. Soil microbial biomass and community structure was not altered by the end of the second growing season. We conclude that trenching can give accurate estimates of the autotrophic and heterotrophic components of soil respiration, if methodological side effects are accounted for, only.  相似文献   

16.
The potential for agricultural soils to act as a sink and sequester carbon (C) or a source and emit carbon dioxide (CO2) is largely dependent upon the agricultural management system. The establishment of permanent vegetation, such as trees and grass contour buffer strips, may cause accumulation of above- and below-ground C over time, thereby acting as a sink for tropospheric CO2. However, the effects of contour grass strips and grass-tree strips (agroforestry) on soil CO2 emissions have not been extensively studied in row-crop watersheds in the temperate regions. The objective of this study was to determine the effects of agroforestry and grass contour buffer strips and landscape position on soil surface efflux rate of CO2 in three adjacent agricultural watersheds with claypan soils in northeast Missouri. The three watersheds were in a corn-soybean rotation, and contained (1) cropped only (CR), (2) cropped with grass contour strips (GR), or (3) cropped with tree-grass contour strips (AF) management systems. Soil surface CO2 efflux was measured throughout the 2004 growing season at the upper (UBS), middle (MBS), and lower (LBS) backslope landscape positions within the three watersheds. The cumulative soil CO2 production was lowest in the CR (0.9 kg CO2-C m−2) compared to the AF (1.5 kg CO2-C m−2) and GR watersheds (1.5 kg CO2-C m−2). The lower backslope position (1.6 kg CO2-C m−2) across all three watersheds produced 32 and 40% greater cumulative soil CO2 than the upper and middle backslope positions, respectively. A 72-day incubation study determined the effects of 40, 60, 80, and 100% soil water-filled pore space (WFPS) and N rate (0 and 1.39 g KNO3 kg soil−1) on soil CO2 efflux from bulk soil collected under each management system. The cumulative CO2 production was highest in the grass soil (1,279 mg CO2-C kg soil−1) compared to the agroforestry (661 mg CO2-C kg soil−1) and cropped (483 mg CO2-C kg soil−1) soils regardless of WFPS and N rate. The highest cumulative CO2 production for the grass soil (1,279 mg CO2-C kg soil−1) occurred at 80% WFPS, and was approximately 2 to 2.6 times greater than the agroforestry and cropped soils at 80% WFPS. The results of this study indicate that conservation management practices, such as grass and grass-tree contour buffer strips, and landscape position affect soil surface CO2 production and accumulation of soil organic C that may influence soil C sequestration.  相似文献   

17.
Partitioning the respiratory components of soil surface CO2 efflux is important in understanding carbon turnover and in identifying the soil carbon sink/source function in response to land-use change. The sensitivities of soil respiration components on changing climate patterns are currently not fully understood. We used trench and isotopic methods to separate total soil respiration into autotrophic (R A ) and heterotrophic components (R H ). This study was undertaken on a Robinia pseudoacacia L. plantation in the southern Taihang Mountains, China. The fractionation of soil 13CO2 was analyzed by comparing the δ13C of soil CO2 extracted from buried steel tubes with results from Gas Vapor Probe Kits at a depth of 50 cm at the preliminary test (2.03‰). The results showed that the contribution of autotrophic respiration (fR A ) increased with increasing soil depth. The contribution of heterotrophic respiration (fR H ) declined with increasing soil depth. The contribution of autotrophic respiration was similar whether estimated by the trench method (fR A , 23.50%) or by the isotopic method in which a difference in value of 13C between soil and plant prevailed in the natural state (RC, 21.03%). The experimental error produced by the trench method was insignificant as compared with that produced by the isotopic method, providing a technical basis for further investigations.  相似文献   

18.
The two main components of soil respiration, i.e., root/rhizosphere and microbial respiration, respond differently to elevated atmospheric CO2 concentrations both in mechanism and sensitivity because they have different substrates derived from plant and soil organic matter, respectively. To model the carbon cycle and predict the carbon source/sink of forest ecosystems, we must first understand the relative contributions of root/rhizosphere and microbial respiration to total soil respiration under elevated CO2 concentrations. Root/rhizosphere and soil microbial respiration have been shown to increase, decrease and remain unchanged under elevated CO2 concentrations. A significantly positive relationship between root biomass and root/rhizosphere respiration has been found. Fine roots respond more strongly to elevated CO2 concentrations than coarse roots. Evidence suggests that soil microbial respiration is highly variable and uncertain under elevated CO2 concentrations. Microbial biomass and activity are related or unrelated to rates of microbial respiration. Because substrate availability drives microbial metabolism in soils, it is likely that much of the variability in microbial respiration results from differences in the response of root growth to elevated CO2 concentrations and subsequent changes in substrate production. Biotic and abiotic factors affecting soil respiration were found to affect both root/rhizosphere and microbial respiration. __________ Translated from Journal of Plant Ecology, 2007, 31(3): 386–393 [译自: 植物生态学报]  相似文献   

19.
A study was conducted to determine the effects of elevated CO2 on soil N process at Changbai Mountain in Jilin Province, northeastern China (42°24′N, 128°06′E, and 738 m elevation). A randomized complete block design of ambient and elevated CO2 was established in an open-top chamber facility in the spring of 1999. Changpai Scotch pine (Pinus sylvestris var. sylvestriformis seeds were sowed in May, 1999 and CO2 fumigation treatments began after seeds germination. In each year, the exposure started at the end of April and stopped at the end of October. Soil samples were collected in June and August 2006 and in June 2007, and soil nitrifying, denitrifying and N2-fixing enzyme activities were measured. Results show that soil nitrifying enzyme activities (NEA) in the 5–10 cm soil layer were significantly increased at elevated CO2 by 30.3% in June 2006, by 30.9% in August 2006 and by 11.3% in June 2007. Soil denitrifying enzyme activities (DEA) were significantly decreased by elevated CO2 treatment in June 2006 (P < 0.012) and August 2006 (P < 0.005) samplings in our study; no significant difference was detected in June 2007, and no significant changes in N2-fixing enzyme activity were found. This study suggests that elevated CO2 can alter soil nitrifying enzyme and denitrifying enzyme activities. Foundation project: This research was supported by the National Natural Science Foundation of China (No. 90411020) and Major State Basic Research Development Program of China (973 Program) (2002CB412502).  相似文献   

20.
At the Takayama deciduous broadleaved forest Asiaflux site in Japan, the ecosystem carbon dynamics have been studied for more than two decades. In 2005, we installed non-dispersive infrared CO2 sensors in the soil below the site’s flux tower to systematically study vertical soil–air CO2 dynamics and explain the behavior of soil surface CO2 efflux. Soil–air CO2 concentrations measured from June 2005 through May 2006 showed sinusoidal variation, with maxima in July and minima in winter, similar to the soil CO2 effluxes measured simultaneously using open-flow chambers. Soil–air CO2 concentrations increased with soil depth from 5 to 50 cm: from 2,000 to 8,000 ppm in the summer and from 2,000 to 3,000 ppm in the winter under snow. Summer soil–air CO2 concentrations were positively correlated with soil moisture on daily and weekly scales, indicating that the Oi, Oe, and A horizons, where decomposition is accelerated by high-moisture conditions, contributed substantially to CO2 emissions. This result is consistent with the short residence time (about 2 h) of CO2 in the soil and larger emissions in shallow soil layers based on our diffusion model. We revealed for the first time that soil–air CO2 concentrations in winter were correlated with both snow depth and wind speed. CO2 transfer through the snow was hundreds of times the gas diffusion rates in the soil. Our estimate of the CO2 efflux during the snow-cover season was larger than previous estimates at TKY, and confirmed the important contribution of the snow-cover season to the site’s carbon dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号