首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In salt-affected soils, soil organic carbon (SOC) levels are usually low as a result of poor plant growth; additionally, decomposition of soil organic matter (SOM) may be negatively affected. Soil organic carbon models, such as the Rothamsted Carbon Model (RothC), that are used to estimate carbon dioxide (CO2) emission and SOC stocks at various spatial scales, do not consider the effect of salinity on CO2 emissions and may therefore over-estimate CO2 release from saline soils. Two laboratory incubation experiments were conducted to assess the effect of soil texture on the response of CO2 release to salinity, and to calculate a rate modifier for salinity to be introduced into the RothC model. The soils used were a sandy loam (18.7% clay) and a sandy clay loam (22.5% clay) in one experiment and a loamy sand (6.3% clay) and a clay (42% clay) in another experiment. The water content was adjusted to 75%, 55%, 50% and 45% water holding capacity (WHC) for the loamy sand, sandy loam, sandy clay loam and the clay, respectively to ensure optimal soil moisture for decomposition. Sodium chloride (NaCl) was used to develop a range of salinities: electrical conductivity of the 1:5 soil: water extract (EC1:5) 1, 2, 3, 4 and 5 dS m−1. The soils were amended with 2% (w/w) wheat residues and CO2 emission was measured over 4 months. Carbon dioxide release was also measured from five salt-affected soils from the field for model evaluation. In all soils, cumulative CO2-C g−1 soil significantly decreased with increasing EC1:5 developed by addition of NaCl, but the relative decrease differed among the soils. In the salt-amended soils, the reduction in normalised cumulative respiration (in percentage for the control) at EC1:5 > 1.0 dS m−1 was most pronounced in the loamy sand. This is due to the differential water content of the soils, at the same EC1:5; the salt concentration in the soil solution is higher in the coarser textured soils than in fine textured soils because in the former soils, the water content for optimal decomposition is lower. When salinity was expressed as osmotic potential, the decrease in normalised cumulative respiration with increasing salinity was less than with EC1:5. The osmotic potential of the soil solution is a more appropriate parameter for estimating the salinity effect on microbial activity than the electrical conductivity (EC) because osmotic potential, unlike EC, takes account into salt concentration in the soil solution as a function of the water content. The decrease in particulate organic carbon (POC) was smaller in soils with low osmotic potential whereas total organic carbon, humus-C and charcoal-C did not change over time, and were not significantly affected by salinity. The modelling of cumulative respiration data using a two compartment model showed that the decomposition of labile carbon (C) pool is more sensitive to salinity than that of the slow C pool. The evaluation of RothC, modified to include the decomposition rate modifier for salinity developed from the salt-amended soils, against saline soils from the field, suggested that salinity had a greater effect on cumulative respiration in the salt-amended soils. The results of this study show (i) salinity needs to be taken into account when modelling CO2 release and SOC turnover in salt-affected soils, and (ii) a decomposition rate modifier developed from salt-amended soils may overestimate the effect of salinity on CO2 release.  相似文献   

2.
Soil degradation affects soil properties such as structure, water retention, porosity, electrical conductivity (EC), sodium adsorption ratio (SAR), and soil flora and fauna. This study was conducted to evaluate the response of contrasting textured soils irrigated with water having different EC:SAR ratios along with amendments: gypsum (G), farm manure (FM), and mulch (M). Water of different qualities viz. EC 0.6 + SAR 6, EC 1.0 + SAR 12, EC 2.0 + SAR 18, and EC 4.0 + SAR 30 was used in different textured soils with G at 100% soil gypsum requirement, FM at 10 Mg ha?1, and M as wheat straw was added on surface soil at 10 Mg ha?1. Results revealed that the applied amendments in soils significantly decreased pHs and electrical conductivity (ECe) of saturated paste and SAR. Four pore volumes of applied water with leaching fraction 0.75, 0.77, and 0.78 removed salts 3008, 4965, and 5048 kg ha?1 in loamy sand, silty clay loam, and sandy clay loam soils, respectively. First four irrigations with LF of 0.82, 0.79, 0.75, and 0.71, removed 5682, 5000, 3967, and 2941 kg ha?1 salts, respectively. The decreasing order for salt removal with amendments was FM > G > M > C with LF = 0.85, 0.84, 0.71, and 0.68, respectively. This study highlights a potential role of soil textures to initiate any mega program for reclamation of saline-sodic soils in the perspective of national development strategies.  相似文献   

3.
As saline soils dry, the salt in the remaining solution phase is concentrated and the microbes are subjected to both water and osmotic stress. However, little is known about the interactive effect of matric potential (MP) and osmotic potential (OP) on microbial activity and community structure. We conducted an experiment in which two non-saline soils, a sand and a sandy loam, were pre-incubated at optimal water content (for microbial activity) but different osmotic potentials achieved by adding NaCl. The EC of the saturated paste (ECe) ranged between 1.6 and 11.6 dS m−1 in the sand and between 0.6 and 17.7 dS m−1 in the sandy loam. After the 14-day pre-incubation, the soils were dried to different water contents: 25-35 g kg−1 in the sand and 95-200 g kg−1 in the sandy loam. Water potential (WP, the sum of osmotic + matric potential) ranged from −0.7 to −6.8 MPa in the sand and from −0.1 to −4.4 MPa in the sandy loam. After addition of ground pea straw to increase the concentration of readily available substrate, respiration was measured over 14 days and microbial community composition was assessed by phospholipid fatty acid analysis (PLFA) at the end of the experiment. In both soils, cumulative respiration at a given soil water content (WC) decreased with decreasing osmotic potential, but the effect of decreasing water content differed between the two soils. In the sand, cumulative respiration at the two lowest water contents (WC25 and WC28) was always significantly lower than that at the highest water content (WC35). In the sandy loam, cumulative respiration was significantly lower at the lowest water content (WC95) compared to the highest water content (WC200) only in treatments with added salt. The reduction of cumulative respiration at a given WP was similar in the two soils with a 50% reduction compared to the control (optimal water content, no salt added) at WP −3 MPa. In the sand at WP <−2 MPa, the reduction in fungal fatty acids was greater than that of bacterial fatty acids whereas in the sandy loam, the response of bacteria and fungi to decreasing WP was similar. In both soils, microbial biomass decreased by 35-50% as WP decreased to about −2 MPa but then remained stable with further decreases of WP. Microbial community composition changed with WP in both soils. Our results suggest that there are two strategies by which microbes respond to water potential. A decrease in WP up to −2 MPa kills a proportion of the microbial community, but the remaining microbes adapt and maintain their activity per unit biomass. At lower WP however, the adaptation mechanisms are not sufficient and although the microbes survive, their activity per unit biomass is reduced.  相似文献   

4.
Salt-affected soils are widespread, particularly in arid climates, but information on nutrient dynamics and carbon dioxide (CO2) efflux from salt-affected soils is scarce. Four laboratory incubation experiments were conducted with three soils. To determine the influence of calcium carbonate (CaCO3) on respiration in saline and non-saline soils, a loamy sand (6.3% clay) was left unamended or amended with NaCl to obtain an electrical conductivity (EC) of 1.0 dS?m?1 in a 1:5 soil/water extract. Powdered CaCO3 at rates of 0%, 0.5%, 1.0%, 2.5%, 5.0% and 10.0% (w/w) and 0.25-2 mm mature wheat residue at 0% and 2% (w/w) were then added. Cumulative CO2-C emission from the salt amended and unamended soils was not affected by CaCO3 addition. To investigate the effect of EC on microbial activity, soil respiration was measured after amending a sandy loam (18.8% clay) and a silt loam (22.5% clay) with varying amount of NaCl to obtain an EC1:5 of 1.0–8.0 dS?m?1 and 2.5 g glucose C?kg?1 soil. Soil respiration was reduced by more than 50% at EC1:5?≥?5.0 dS?m?1. In a further experiment, salinity up to an EC1:5 of 5.0 dS?m?1 was developed in the silt loam with NaCl or CaCl2. No differences in respiration at a given EC were obtained between the two salts, indicating that Na and Ca did not differ in toxicity to microbial activity. The effect of different addition rates (0.25–2.0%) of mature wheat residue on the response of respiration to salinity was investigated by adding NaCl to the silt loam to obtain an EC1:5 of 2.0 and 4.0 dS?m?1. The clearest difference between salinity levels was with 2% residue rate. At a given salinity level, the modelled decomposition constant ‘k’ increased with increasing residue addition rate up to 1% and then remained constant. Particulate organic carbon left after decomposition from the added wheat residues was negatively correlated with cumulative respiration but positively correlated with EC. Inorganic N (NH 4 + -N and NO 3 ? -N) and resin P significantly decreased with increasing salinity. Resin P was significantly decreased by addition of CaCl2 and CaCO3.  相似文献   

5.
Annual potassium (K) balances have been calculated over a 40‐year period for five field experiments located on varying parent materials (from loamy sand to clay) in south and central Sweden. Each experiment consisted of a number of K fertilizer regimes and was divided into two crop rotations, mixed arable/livestock (I) and arable only (II). Annual calculations were based on data for K inputs through manure and fertilizer, and outputs in crop removal. Plots receiving no K fertilizer showed negative K balances which ranged from 30 to 65 kg ha?1 year?1 in rotation I, compared with 10–26 kg ha?1 year?1 for rotation II. On sandy loam and clay soils, the K yield of nil K plots (rotation I) increased significantly with time during the experimental period indicating increasing release of K from soil minerals, uptake from deeper soil horizons and/or depletion of exchangeable soil K (Kex). Significant depletion of Kex in the topsoil was only found in the loamy sand indicating a K supply from internal sources in the sandy loam and clay soils. On silty clay and clay soils, a grass/clover ley K concentration of ~2% (dry weight) was maintained during the 40‐year study period on the nil K plots, but on the sandy loam, loam and loamy sand, herbage concentrations were generally less than 2% K.  相似文献   

6.
Abstract

Irrigation is becoming a more commonly used practice on glacially derived soils of the Northern Great Plains. Threshold salinity and sodicity water quality criteria for soil‐water compatibility in these sulfatic soils are not well defined. This study was conducted to relate soil salinity and sodicity to clay dispersion and saturated hydraulic conductivity (Ksat) in four representative soils. Soil salinity (EC treatment levels of 0.1 and 0.4 S m‐1) and sodicity (SAR treatment levels of 3, 9, and 15) levels were established to produce a range of conditions similar to those that might be found under irrigation. The response of each soil to changes in salinity and sodicity was unique. In general, as sodicity increased clay dispersion also increase, but the magnitude of the increase varied among the soils. In two of the soils, clay dispersion across a range of sodicity levels was lower under the 0.4 S m‐1 treatment than under the 0.1 S m‐1 treatment and in the other two soils, clay dispersion across a range of sodicity levels was similar between the two salinity treatments. Changes in Ksat were greatest in the finer textured soil (decreasing an order of magnitude across the range of sodicity levels), but was unchanged in the coarse textured soils. Results suggest that these sulfatic soils are more susceptible to sodicity induced deterioration than chloridic soils. These results and earlier field observations suggest that sustainable irrigation may be limited to sites with a water source having a SAR <5 and an EC not exceeding 0.3 S m‐1 for these sulfatic glacially derived soils.  相似文献   

7.
Salinization is a global land degradation issue which inhibits microbial activity and plant growth. The effect of salinity on microbial activity and biomass has been studied extensively, but little is known about the response of microbes from different soils to increasing salinity although soil salinity may fluctuate in the field, for example, depending on the quality of the irrigation water or seasonally. An incubation experiment with five soils (one non-saline, four saline with electrical conductivity (ECe) ranging from 1 to 50 dS m−1) was conducted in which the EC was increased to 37 ECe levels (from 3 to 119 dS m−1) by adding NaCl. After amendment with 2% (w/w) pea straw to provide a nutrient source, the soils were incubated at optimal water content for 15 days, microbial respiration was measured continuously and chloroform-labile C was determined every three days. Both cumulative respiration and microbial biomass (indicated by chloroform-labile C) were negatively correlated with EC. Irrespective of the original soil EC, cumulative respiration at a given adjusted EC was similar. Thus, microorganisms from previously saline soils were not more tolerant to a given adjusted EC than those in originally non-saline soil. Microbial biomass in all soils increased from day 0 to day 3, then decreased. The relative increase was greater in soils which had a lower microbial biomass on day 0 (which were more saline). Therefore the relative increase in microbial biomass appears to be a function of the biomass on day 0 rather than the EC. Hence, the results suggest that microbes from originally saline soils are not more tolerant to increases in salinity than those from originally non-saline soils. The strong increase in microbial biomass upon pea straw addition suggests that there is a subset of microbes in all soils that can respond to increased substrate availability even in highly saline environments.  相似文献   

8.
The large genotypic variation for salt tolerance in rice and wheat is the driving force behind efforts to identify appropriate cultivars for salt‐prone environments where large variations in salinity (electrical conductivity, EC) and sodicity (sodium adsorption ratio, SAR) levels exist. An evaluation of the commonly grown rice and wheat cultivars at different EC/SAR ratios may thus help in coping with the crop failures on salt‐affected soils. Accordingly, we evaluated some salt‐tolerant cultivars of rice and wheat for growth and yield at different soil salinity and sodicity levels in a sandy clay loam soil. Among the cultivars tested, rice ‘SSRI‐8’ produced the highest productive tillers and paddy yield, and wheat cultivar ‘SIS‐32’ produced the highest tillers and grain and straw yields. The high EC/SAR ratios proved more hazardous for rice than for wheat. Irrespective of the varieties tested, the highest levels of EC and SAR (T5 and T6) caused significant reduction in paddy yield, whereas at the lowest levels of EC and SAR (T1 and T2), paddy yield was not affected significantly when compared with the control. However, in case of wheat crop, all the levels [i.e., the lowest (T1 and T2), medium (T3 and T4), and the highest (T5 and T6) of EC and SAR tested] affected wheat yield adversely with significant differences. For both the crops, there were little or no differences in yield between the two ratios tested (i.e., 1:2 and 1:4) at all the levels of EC and SAR.  相似文献   

9.
Previous studies have shown that carbon (C) mineralization in saline or sodic soils is affected by various factors including organic C content, salt concentration and water content in saline soils and soil structure in sodic soils, but there is little information about which soil properties control carbon dioxide (CO2) emission from saline-sodic soils. In this study, eight field-collected saline–sodic soils, varying in electrical conductivity (ECe, a measure of salinity, ranging from 3 to 262 dS m−1) and sodium adsorption ratio (SARe, a measure of sodicity, ranging from 11 to 62), were left unamended or amended with mature wheat or vetch residues (2% w/w). Carbon dioxide release was measured over 42 days at constant temperature and soil water content. Cumulative respiration expressed per gram SOC increased in the following order: unamended soil<soil amended with wheat residues (C/N ratio 122)<soil with vetch residue (C/N ratio 18). Cumulative respiration was significantly (p < 0.05) negatively correlated with ECe but not with SARe. Our results show that the response to ECe and SARe of the microbial community activated by addition of organic C does not differ from that of the less active microbial community in unamended soils and that salinity is the main influential factor for C mineralization in saline–sodic soils.  相似文献   

10.
Net carbon dioxide (CO2) emission from soils is controlled by the input rate of organic material and the rate of decomposition which in turn are affected by temperature, moisture and soil factors. While the relationships between CO2 emission and soil factors are well-studied in non-salt-affected soils, little is known about soil properties controlling CO2 emission from salt-affected soils. To close this knowledge gap, non-salt-affected and salt-affected soils (0-0.30 m) were collected from two agricultural regions: in India (irrigation induced salinity) and in Australia (salinity associated with ground water or non-ground water associated salinity). A subset (50 Indian and 70 Australian soils) covering the range of electrical conductivity (EC) and sodium adsorption ratio (SAR) in each region was used in a laboratory incubation experiment. The soils were left unamended or amended with mature wheat residues (2% w/w) and CO2 release was measured over 120 days at constant temperature and soil water content. Residues were added to overcome carbon limitation for soil respiration. For the unamended soils, separation in multidimensional scaling plots was a function of differences in soil texture (clay, sand), SOC pools (particulate organic carbon (POC) and humus-C) and also EC. Cumulative CO2-C emission from unamended and amended soils was related to soil properties by stepwise regression models. Cumulative CO2-C emission was negatively correlated with EC in saline soils (R2 = 0.50, p < 0.05) from both regions. In the unamended non-salt-affected soils, cumulative CO2-C emission was significantly positively related to the content of POC for the Indian soils and negatively related to clay content for the Australian soils. In the wheat residue amended soils, cumulative CO2-C emission had positive relationship with POC and humus-C but a negative correlation with EC for both Indian and Australian soils. SAR was negatively related (β = −0.66, p < 0.05) with cumulative CO2-C emission only for the unamended saline-sodic soils of Australia. Cumulative CO2-C emission was significantly negatively correlated with bulk density in amended soils from both regions. The study showed that in salt-affected soils, EC was the main factor influencing for soil respiration but the content of POC, humus-C and clay were also influential with the magnitude of influence depending on whether the soils were salt affected or not.  相似文献   

11.
Impacts of crop residue biochar on soil C and N dynamics have been found to be subtly inconsistent in diverse soils. In the present study, three soils differing in texture (loamy sand, sandy clay loam and clay) were amended with different rates (0%, 0.5%, 1%, 2% and 4%) of rice-residue biochar and incubated at 25°C for 60 days. Soil respiration was measured throughout the incubation period whereas, microbial biomass C (MBC), dissolved organic C (DOC), NH4+-N and NO3N were analysed after 2, 7, 14, 28 and 60 days of incubation. Carbon mineralization differed significantly between the soils with loamy sand evolving the greatest CO2 followed by sandy clay loam and clay. Likewise, irrespective of the sampling period, MBC, DOC, NH4+-N and NO3N increased significantly with increasing rate of biochar addition, with consistently higher values in loamy sand than the other two soils. Furthermore, regardless of the biochar rates, NO3-N concentration increased significantly with increasing period of incubation, but in contrast, NH4+-N temporarily increased and thereafter, decreased until day 60 in all soils. It is concluded that C and N mineralization in the biochar amended soils varied with the texture and native organic C status of the soils.  相似文献   

12.
In the Far West Texas region in the USA, long‐term irrigation of fine‐textured valley soils with saline Rio Grande River water has led to soil salinity and sodicity problems. Soil salinity [measured by saturated paste electrical conductivity (ECe)] and sodicity [measured by sodium adsorption ratio (SAR)] in the irrigated areas have resulted in poor growing conditions, reduced crop yields, and declining farm profitability. Understanding the spatial distribution of ECe and SAR within the affected areas is necessary for developing management practices. Conventional methods of assessing ECe and SAR distribution at a high spatial resolution are expensive and time consuming. This study evaluated the accuracy of electromagnetic induction (EMI), which measures apparent electrical conductivity (ECa), to delineate ECe and SAR distribution in two cotton fields located in the Hudspeth and El Paso Counties of Texas, USA. Calibration equations for converting ECa into ECe and SAR were derived using the multiple linear regression (MLR) model included in the ECe Sampling Assessment and Prediction program package developed by the US Salinity Laboratory. Correlations between ECa and soil variables (clay content, ECe, SAR) were highly significant (p ≤ 0·05). This was further confirmed by significant (p ≤ 0·05) MLRs used for estimating ECe and SAR. The ECe and SAR determined by ECa closely matched the measured ECe and SAR values of the study site soils, which ranged from 0·47 to 9·87 dS m−1 and 2·27 to 27·4 mmol1/2 L−1/2, respectively. High R2 values between estimated and measured soil ECe and SAR values validated the MLR model results. Results of this study indicated that the EMI method can be used for rapid and accurate delineation of salinity and sodicity distribution within the affected area. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Osmotic potential (OP) of soil solution may be a more appropriate parameter than electrical conductivity (EC) to evaluate the effect of salts on plant growth and soil biomass.However,this has not been examined in detail with respect to microbial activity and dissolved organic matter in soils with different texture.This study evaluated the effect of salinity and sodicity on respiration and dissolved organic matter dynamics in salt-affected soils with different texture.Four non-saline and non-sodic soils differing in texture (S-4,S-13,S-24 and S-40 with 4%,13%,24% and 40% clay,respectively) were leached using combinations of 1 mol L-1 NaC1 and 1 mol L-1 CaC12 stock solutions,resulting in EC (1:5 soil:water ratio) between 0.4 and 5.0 dS m-1 with two levels of sodicity (sodium absorption ratio (SAR) < 3 (non-sodic) and 20 (sodic),1:5 soil:water ratio).Adjusting the water content to levels optimal for microbial activity,which differed among the soils,resulted in four ranges of OP in all the soils:from-0.06 to--0.24 (controls,without salt added),-0.55 to-0.92,-1.25 to-1.62 and-2.77 to-3.00 Mpa.Finely ground mature wheat straw (20 g kg-1) was added to stimulate microbial activity.At a given EC,cumulative soil respiration was lower in the lighter-textured soils (S-4 and S-13) than in the heavier-textured soils (S-24 and S-40).Cumulative soil respiration decreased with decreasing OP to a similar extent in all the soils,with a greater decrease on Day 40 than on Day 10.Cumulative soil respiration was greater at SAR =20 than at SAR < 3 only at the OP levels between-0.62 and-1.62 MPa on Day 40.In all the soils and at both sampling times,concentrations of dissolved organic C and N were higher at the lowest OP levels (from-2.74 to-3.0 MPa) than in the controls (from-0.06 to-0.24 MPa).Thus,OP is a better parameter than EC to evaluate the effect of salinity on dissolved organic matter and microbial activity in different textured soils.  相似文献   

14.
In saline soils under semi-arid climate, low matric and osmotic potential are the main stressors for microbes. But little is known about the impact of water potential (sum of matric and osmotic potential) and substrate composition on microbial activity and biomass in field collected saline soils. Three sandy loam soils with electrical conductivity of the saturated soil extract (ECe) 3.8, 11 and 21 dS m?1 (hereafter referred to EC3.8, EC11 and EC21) were kept at optimal water content for 14 days. After this pre-incubation, the soils were either left at optimal water content or dried to achieve water potentials of ?2.33, ?2.82, ?3.04 and ?4.04 MPa. Then, the soils were amended with 20 g?kg?1 pea or wheat residue to increase nutrient supply. Carbon dioxide emission was measured over 14 days; microbial biomass C was measured at the end of the experiment. Cumulative respiration decreased with decreasing water potential and was significantly (P?<?0.05) lower in soils at water potential ?4 MPa than in soils at optimal water content. The effect of residue type on the response of cumulative respiration was inconsistent; with residue type having no effect in the saline soils (EC11 and EC21) whereas in the non-saline soil (EC3.8), the decrease in respiration with decreasing water potential was less with wheat than with pea residue. At a given water potential, the absolute and relative (in percentage of optimal water content) cumulative respiration was lower in the saline soils than in the non-saline soil. This can be explained by the lower osmotic potential and the smaller microbial biomass in the saline soils. However, even at a similar osmotic potential, cumulative respiration was higher in the non-saline soil. It can be concluded that high salt concentrations in the soil solution strongly reduce microbial activity even if the water content is relatively high. The stronger relative decrease in microbial activity in the saline soils at a given osmotic potential compared to the non-saline soil suggests that the small biomass in saline soils is less able to tolerate low osmotic potential. Hence, drying of soil will have a stronger negative effect on microbial activity in saline than in non-saline soils.  相似文献   

15.
Drying and rewetting are common events in soils during summer, particularly in Mediterranean climate where soil microbes may be further challenged by salinity. Previous studies in non-saline soils have shown that rewetting induces a flush of soil respiration, but little is known about how the extent of drying affects the size of the respiration flush or how drying and rewetting affects soil respiration in saline soils. Five sandy loam soils, ranging in electrical conductivity of the saturated soil extract (ECe) from 2 to 48 dS m−1 (EC2, EC9, EC19, EC33 and EC48), were kept at soil water content optimal for respiration or dried for 1, 2, 3, 4 or 5 days (referred to 1D, 2D, 3D, 4D and 5D) and maintained at the achieved water content for 4 days. Then the soils were rewet to optimal water content and incubated moist for 5 days. Water potential decreased with increasing drying time; in the 5D treatment, the water potential ranged between −15 and −30 MPa, with the lowest potentials in soil EC33. In moist and dry conditions, respiration rates per unit soil organic C (SOC) were highest in soil EC19. Respiration rates decreased with increasing time of drying; when expressed relative to constantly moist soil, the decline was similar in all soils. Rewetting of soils only induced a flush of respiration compared to constantly moist soil when the soils were dried for 3 or more days. The flush in respiration was greatest in 5D and smallest in 3D, and greater in EC2 than in the saline soils. Cumulative respiration per unit SOC was highest in soil EC19 and lowest in soil EC2 Cumulative respiration decreased with increasing time of drying, but in a given soil, the relationship between water potential during the dry phase and cumulative respiration at the end of the experiment was weaker than that between respiration rate during drying and water potential. In conclusion, rewetting induced a flush in respiration only if the water potential of the soils was previously decreased at least 3-fold compared to the constantly moist soil. Hence, only marked increases in water potential induce a flush in respiration upon rewetting. The smaller flush in respiration upon rewetting of saline soils suggests that these soils may be less prone to lose C when exposed to drying and rewetting compared to non-saline soils.  相似文献   

16.
The effect of total electrolyte concentration (TEC) and sodium adsorption ratio (SAR) of water on ESR‐SAR relationships of clay (Typic Haplustert), clay loam (Vertic Haplustept) and silt loam (Lithic Haplorthent) soils was studied in a laboratory experiment. Twenty four solutions, encompassing four TEC levels viz., 5, 10, 20, and 50 mmolc l—1 and six SAR levels viz., 2.5, 5, 10, 15, 20, and 30 mmol1/2l—1/2 were synthesized to equilibrate the soil samples using pure chloride salts of calcium, magnesium, and sodium at Mg:Ca = 1:2. SAR of equilibrium solution decreased as compared to the equilibrating solution and more so in waters of low salt concentration and high SAR. At low electrolyte concentration, high SAR values were not attained in the equilibrium solution because of addition of calcium and magnesium from the mineral dissolution and from the exchange phase. Irrespective of TEC, exchangeable sodium in all the soils increased by about 4.5 to 5‐fold and irrespective of SAR, it increased by about 1.4‐ to 1.8‐fold. A positive interaction of TEC and SAR influenced the ESP build‐up and CEC played a major role in the visual disparity in sodication of these soils. At higher TEC levels, considerable increase in ESP was observed when it was corrected for anion exclusion and more so in silt loam followed by clay loam and clay soils. The values for Gapons' constant were in the range 0.0110—0.0176, 0.0142—0.0246, and 0.0189—0.0344 mmol—1/2l1/2 in clay, clay loam, and silt loam soils, respectively. Increase in TEC from 5 to 50 mmolc l—1 resulted in 5.84, 8.33, and 9.77 % decrease in Gapons' constant of clay, clay loam, and silt loam soils, respectively. The soils exhibited differential affinity for Ca2+, Mg2+ or Na+ under different quality waters. Regression coefficients of ESR‐SAR relationship were lower for low TEC as compared with high TEC waters. The exchange equilibrium was strongly affected by TEC of the solution phase. Variation in soil pH was gradual with respect to TEC and SAR of equilibrating solution and no sharp change was observed. Soluble salt concentration was doubled upon equilibration with low salt waters at all SAR levels in all the soils. However, the salt concentration remained unchanged upon equilibration with high salt waters. Considering pH 8.5 a boundary between soil salinity and sodicity, ESP values attained at TEC 5 mmolc l—1 were 7.34, 8.02, and 14.32 for clay, clay loam, and silt loam soils, respectively.  相似文献   

17.
Changes to soil nutrient availability and increases for crop yield and soil organic C (SOC) concentration on biochar‐amended soil under temperate climate conditions have only been reported in a few publications. The objective of this work was to determine if biochar application rates up to 20 Mg ha?1 affect nutrient availability in soil, SOC stocks and yield of corn (Zea mays L.), soybean (Glycine max L.), and switchgrass (Panicum virgatum L.) on two coarse‐textured soils (loamy sand, sandy clay loam) in S Quebec, Canada. Data were collected from field experiments for a 3‐y period following application of pine wood biochar at rates of 0, 10, and 20 Mg ha?1. For corn plots, at harvest 3 y after biochar application, 20 Mg biochar ha?1 resulted in 41.2% lower soil NH on the loamy sand; the same effect was not present on the sandy clay loam soil. On the loamy sand, 20 Mg biochar ha?1 increased corn yields by 14.2% compared to the control 3 y after application; the same effect was not present on the sandy clay loam soil. Biochar did not alter yield or nutrient availability in soil on soybean or switchgrass plots on either soil type. After 3 y, SOC concentration was 83 and 258% greater after 10 and 20 Mg ha?1 biochar applications, respectively, than the control in sandy clay loam soil under switchgrass production. The same effect was not present on the sandy clay loam soil. A 67% higher SOC concentration was noted with biochar application at 20 Mg ha?1 to sandy clay loam soil under corn.  相似文献   

18.
《Geoderma》2006,130(1-2):1-13
Dilution of high-sodicity soil water by low-sodicity rainfall or irrigation water can cause declining soil hydraulic conductivity (K) by inducing swelling, aggregate slaking and clay particle dispersion. Investigations of sodicity-induced reduction in K are generally restricted to repacked laboratory cores of air-dried and sieved soil that are saturated and equilibrated with sodic solution before tests are conducted. This approach may not yield a complete picture of sodicity effects in the field, however, because of loss of antecedent soil structure, small sample size, detachment of the sample from the soil profile, reliance on chemical equilibrium, and differing time scales between laboratory and field processes. The objectives of this study were to: (i) compare the electrical conductivity (EC), exchangeable sodium percentage (ESP), and sodium adsorption ratio (SAR) in laboratory cores of intact field soil that had, or had not, undergone prior saturation and equilibration with sodic solution; (ii) compare the pressure infiltrometer (PI) field method with the intact laboratory soil core (SC) method for assessing sodicity effects on saturated soil hydraulic conductivity; and (iii) characterize hydraulic conductivity reduction in a salt-affected sandy loam soil and a salt-affected clay soil in Sicily as a result of diluting high-sodicity soil water with low-sodicity water.In terms of EC, ESP and SAR, quasi-equilibrium between soil and infiltrating solution was attainable in 0.08 m diameter by 0.05 m long laboratory cores of intact clay soil, regardless of whether or not the cores were previously saturated and equilibrated with solutions of SAR=0 or 30. In the sandy loam soil, the PI and SC methods produced statistically equivalent linear reductions in K as a result of diluting increasingly sodic soil water (SAR=0, 10, 20, 30) with deionised water. In the clay soil, the PI method produced no significant correlation between initial soil water SAR and K reduction, while the SC method produced a significant log-linear decline in K with increasing soil water SAR. Sodicity-induced reductions in K ranged from 3–8% (initial soil water SAR=0) to 85–94% (initial soil water SAR=30) in the sandy loam, and from 9–13% (initial soil water SAR=0) to 42–98% (initial soil water SAR=30) in the clay. The reductions in K were caused by aggregate slaking and partial blocking of soil pores by dispersed clay particles, as evidenced by the appearance of suspended clay in the SC effluent during infiltration of deionised water. As a result, maintenance of K in these two salt-affected soils will likely require procedures to prevent or control the build-up of sodicity.  相似文献   

19.
Clay mineralogy and K-Ca-exchange properties of surface soils from the nutrient potential trial Hallertau (Bavaria) In soils of four locations of the Hallertau nutrient potential trial, with a soil texture consisting of sand, silty sand, silty loam and sandy clayey loam, clay mineral properties were measured with the standardized glycerol expansion method and with n-alkylammonium (Rnc-NH3+-clay). The expandable minerals of the sandy soils consist exclusively of smectites s.s., (s.s. = sensu stricto) with 0.42 to 0.28 charge equivalents per formula unit (p.f.u.). The expandable minerals of the loams are an assemblage of smectites s.s. and vermiculites. The total layer charge of the smectites s.s. extend from 0.54 to 0.28 charge eq. p.f.u. The fine clay fractions (< 0.1 μm) do not contain vermiculites. The layer charge density of vermiculites with homogeneous charge in the coarse fractions varies between 0.60 and 0.95 charge eq. p.f.u. The immediate K-Ca-exchange was extended with the values of the continued K exchange versus Ca at low K intensity. The Q/I isotherms of sandy soils have a more pronounced curvature than the isotherms of the loams; in all cases, however, the exchange curves have a continuous form. This phenomen is discussed in terms of the clay mineralogy of the soils. After 8 years without K fertilizing, samples gave values between 168 and 497 kg smectite-K/ha for the surface soils. The constant rates of K-desorption vary between 12.8 and 28.7 kg K/ha (surface soil). The rates are better differentiated between unfertilized and fertilized soils for the loams than for the sandy soils. The constant rates of K release were found to be controlled at an AR-level between 1.6 · 10?4 M1/2 (unfertilized sandy soil) and 5.2 · 10?4 M1/2 (fertilized sandy clayey loam soil).  相似文献   

20.
The effect of added heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) on the rate of decomposition of glutamic acid was studied in four Dutch soil types in order to determine if such measurements would serve as sensitive indicators of heavy metal pollution in soil. The time required to reach the maximum respiration rate (referred to as the decomposition time) with glutamic acid was linearly related to increasing concentrations of Ni in a sandy loam soil.Changes in decomposition time were measured 18 months after addition of 55, 400 or 1000 mg kg? of Cd, Cr, Cu, Ni, Pb or Zn respectively to sand, silty loam, clay and sandy peat soils. A significant increase in the decomposition time occurred with a concentration of 55 mg kg?1 of Cd, Cu or Zn in the sand soil. At 400mgkg?1 adverse effects in the various soils are distinct. The sensitivity of the decomposition time of glutamic acid as a method to measure soil pollution is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号