首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
High‐quality japonica rices Yujing 6 and Fangxin 4 were cultured under ambient night temperature (ANT, 19.7°C) and high night temperature (HNT, 26.7°C) in a greenhouse for the analysis of amyloplast development and grain quality during the grain‐filling stage. Results indicated that the HNT treatment had distinct effects on the grain‐filling rate of Yujing 6 and Fangxin 4 1–10 days after anthesis. HNT increased the rate of grain filling by 9.89–40.45% and decreased the accumulation of grain‐filling matter, resulting in inferior appearance and poor milling qualities (e.g., brown rice rate, milled rice rate, head rice rate, imperfect rice rate, chalky rice rate, and chalkiness degree). Results from a rapid viscosity analyzer showed that the HNT treatment decreased the paste viscosity, depending on the rice cultivar. Differential scanning calorimetry results indicated that the gelatinization temperatures of HNT such as onset temperature, peak temperature, and final temperature were all significantly higher than those of ANT. However, HNT had no distinct effects on the X‐ray diffraction pattern of rice starch.  相似文献   

2.
Abstract

The effects of different night temperatures on grain yield were examined in rice (Oryza sativa L. Akita-63) during the ripening period. Plants were grown under two different night temperatures (22 and 27°C) from anthesis to harvesting. The day temperature was maintained at 27°C in both treatments. Although the final biomass at harvest did not differ between the treatments, the dry weight of the panicles was significantly greater in the cool night temperature treatment. This increase in panicle weight was associated with increases in the 1000-kernel weight and the ratio of filled spikelets. Although panicle respiration in the high night temperature treatment decreased to almost zero just after the cessation of grain filling, the net CO2 fixation rate per day in the whole plant in this treatment tended to be higher, and this was associated with a higher level of starch accumulation. After grain filling, the starch content decreased and the final dry weight of other plant parts, including dead organs and new tillers, was greater in the high night temperature treatment. Thus, the noted decline in yield at the high night temperature led to changes in carbon allocation to new sinks for vegetative reproduction at the whole plant level. From these results, we considered the possibility that a cool night temperature tends to favor carbon allocation to panicles, resulting in higher yield.  相似文献   

3.
《Cereal Chemistry》2017,94(4):683-692
In‐bin, on‐farm drying systems for rough rice present challenges for maintaining kernel quality when drying fronts stall and the top layer of grain maintains its harvest moisture content (MC) for extended periods. This high MC, in addition to ambient temperatures in early autumn in the Mid‐South United States, creates ideal conditions for quality losses to occur. This study evaluated the effects of rough rice storage at MCs of 12.5, 16, 19, and 21% for up to 16 weeks at temperatures of 20, 27, and 40°C on milling yields, kernel color, and functionality of three long‐grain cultivars. Head rice yield was negatively impacted only after other reductions in quality had occurred. Temperature‐specific discoloration patterns were observed at 27 and 40°C in 2014; the uniquely discolored kernels seen in 2014 at 27°C were absent from samples in 2015 under identical conditions. Peak viscosity, breakdown, and final viscosity tended to increase over storage duration at 20 and 27°C and all storage MCs but plateaued after 8 weeks. Storage of rice at 40°C and all MCs greatly reduced peak viscosity after 6 weeks. To prevent quality losses, in‐bin dryers should be monitored closely to avoid exceeding the thresholds of storage MC, temperature, and duration identified here.  相似文献   

4.
Chalk is an important quality characteristic in rice and occurs most commonly when high temperatures are experienced during grain development. The aims of this report are to determine whether chalk affects cooking quality and to attempt to explain the effects on the basis of starch and protein in chalky and translucent grains. Three cultivars of rice were grown in the glasshouse at either 38/21°C or 26/15°C (day/night temperatures). Rice grown at the higher temperature contained more chalky grains. Grains in the inferior position were more susceptible to forming chalk than were those in the superior position. The presence or absence of chalk affected cooking quality but neither amylose content, amylopectin structure nor protein composition explained the differences in cooking quality. However, the shape, size, and packing of amyloplasts and cells in chalky grains differed from those in translucent grains and might offer an explanation for the differences in cooking quality. It seems likely that the processes involved in the initiation or packing of amyloplasts are susceptible to high temperatures.  相似文献   

5.
Diminished quality of wheat (Triticum aestivum L.) from high temperature during maturation is usually attributed to direct effects of the stress on the shoots or grain. However, the upper soil temperature approaches the air temperature, and roots are highly sensitive and interact profoundly with other plant parts. The objective of this study was to determine the effect of differential shoot and root temperatures on quality of hard red spring wheat (cv. Len). Plants were grown in hydroponic containers at 15/10°C day/night until 10 days after anthesis, when shoot/root treatments of 15/15°C, 15/30°C, 30/15°C, and 30/30°C were imposed until the grain ripened. Both high shoot and high root temperature affected quality of the grain. Kernel size and weight were diminished more by high root than by high shoot temperature, but flour yield was decreased significantly only by the 30/30°C treatment. The percentage of starch in B granules was reduced by high shoot temperature, and the diameter of A granules was decreased by all heat treatments. Amylose concentration was increased by high temperatures of both shoot and root, resulting in decreased pasting characteristics. Flour protein increased after all heat treatments, but high shoot temperature decreased the polymer‐to‐monomer ratio and unextractable polymeric protein and it affected dough mixing. We concluded that stress on roots directly affects properties of the grain that are important for milling and baking.  相似文献   

6.
The effects of air temperature and light on the grain filling of an indica (IR20) and ajaponica rice (Fujisaka 5) was studied in artificially lighted cabinets. Within the daily mean temperature range of 16° to 28°C, the higher the temperature, the faster the grains filled and matured. At 28°C, the upper grains of IR20 rice took 13 days to reach the maximum weight, whereas those of Fujisaka 5 took 18 days. The optimum daily mean temperature range to achieve maximum weight per grain was 19° to 25°C for IR20 and 16° to 22°C for Fujisaka 5.

Apparently, IR20 rice is better adapted to higher temperatures during the ripening period than is Fujisaka 5 rice. More chalky grains occurred when the temperature was above or below the optimum range. Both day and night temperatures affected grain weight and grain quality.

The daily mean temperature was found to be the most meaningful expression for describing the effect of temperature on grain filling. Low light intensity appeared to cause a slight delay in the grain filling of the whole panicle and a reduction in the percentage of filled grains on the lower branches. A combination of high light intensity and low temperature gave the best ripening grade (grain weight × percent filled grains).  相似文献   

7.
Rapid drying with high‐temperature air has gained interest in the rice industry, but the effects of elevated‐temperature exposure on physicochemical properties of rice are of concern. This study investigated the effects of exposing rough rice to elevated temperatures for various durations without removing moisture. Physicochemical property response was evaluated in terms of head rice yield (HRY), germination rate (GR), milled‐rice yellowing, pasting properties, and gelatinization temperatures. Two long‐grain cultivars (pure‐line Wells and hybrid CL XL729) at initial moisture contents (IMCs) of 17.9 and 18.6%, respectively, and dried moisture content (DMC) of 12.5%, were hermetically sealed and exposed to 40, 60, and 80°C for various durations. Exposure to 80°C of IMC samples of Wells and CL XL729 resulted in a significant (2.3–2.5 percentage point) reduction in the HRYs. A 2 hr exposure of both cultivars at IMC level to 60°C completely inhibited GR, and exposure to 80°C of the cultivars at both moisture content (MC) levels immediately inhibited GR. Exposure to 80°C for almost all durations and 60°C for durations over 4 hr produced significant yellowing in both cultivars at IMC. Significant yellowing in both cultivars at DMC was also observed during a 28 day storage following 80°C exposure. In general, peak viscosities of both cultivars at IMC increased only after extended exposure to 40 and 60°C, but peak viscosities of the cultivars exposed to 80°C increased sharply and immediately upon exposure. No significant differences were observed in gelatinization temperatures of either cultivar at either MC level from elevated‐temperature exposure. Results from this study suggest that extreme‐temperature exposure of rough rice affects HRY, GRs, yellowing, and pasting properties of rice, but the extent of impact is MC dependent.  相似文献   

8.
Rice quality, specifically head rice yield (HRY), can vary inexplicably from one lot to another, and from year to year. In an effort to correlate air temperatures during various growth stages to HRY, growth staging data expressed in degree day units was used to predict the occurrence of sequential growth stages within a set of 17‐year historical data, which included HRY and 50% heading dates for two long‐grain rice cultivars, (Oryza sativa L) Newbonnet and Lemont, and area weather data. HRY was most strongly affected by the average daily low temperature (or nighttime temperature) during the R8 developmental stage. Lower HRY were associated with high nighttime air temperatures during this stage for both Newbonnet and Lemont. When used as a single variable in a regression model, the nighttime temperature during the R8 developmental stage explained over 25% of the variation in HRY.  相似文献   

9.
Abstract

The effects of night temperature on biomass accumulation and plant morphology were examined in rice (Oryza sativa L.) during vegetative growth. Plants were grown under three different night temperatures (17, 22 and 27°C) for 63 days. The day temperature was maintained at 27°C in all treatments. The final biomass of the plants was greatest in the plants grown at the highest night temperature. Total leaf area and tiller number were also the greatest in this treatment. Growth analysis indicated that the relative growth rate in the 27°C night-temperature treatment was maximal between days 21–42 and this was caused by increases in leaf area ratio, leaf weight ratio and specific leaf area. Plant total nitrogen contents did not differ among treatments. However, nitrogen allocation to the leaf blades was highest and the accumulation of sucrose and starch in the leaf blades and sheaths was the lowest in the 27°C night-temperature treatment by day 42. Despite this, dark respiration was also highest, and both the gross and net rates of CO2 uptake at the level of the whole plant at day 63 were the highest in the 27°C night-temperature treatment. Thus, high night temperature strongly stimulated the growth of leaf blades during the early stage of rice plant growth, leading to increased biomass during the vegetative stage of the rice plants. As the CO2 uptake rate per total leaf area was higher, photosynthesis at the level of the whole plant was also stimulated by a high night temperature.  相似文献   

10.
Rice quality can vary inexplicably from one lot to another and from year to year. One cause could be the variable temperatures experienced during the nighttime hours of rice kernel development. During the fall of 2004, a controlled temperature study was conducted using large growth chambers, testing nighttime temperatures of 18, 22, 26, and 30°C from 12 a.m. until 5 a.m. throughout kernel development, using rice cultivars Cypress, LaGrue, XP710, XL8, M204, and Bengal. As nighttime temperature increased, head rice yields (HRY) significantly decreased for all cultivars except Cypress and Bengal, for which HRY did not vary among nighttime temperature treatments. Kernel mass did not vary among temperature treatments for any cultivar. Grain dimensions generally decreased as nighttime temperature increased. The number of chalky kernels increased with an increase in nighttime temperature for all cultivars but Cypress. The amylose content of Cypress and LaGrue was significantly lower at the nighttime temperature of 30°C, while total brown rice lipid and protein contents did not vary among temperature treatments for all cultivars.  相似文献   

11.
利用2间玻璃室内夜间不同的温度条件,研究了生长期间夜温升高对早籼稻产量和品质的影响。结果表明,夜温升高促进早籼稻的生长发育,缩短早籼稻生育期;前期夜温升高能提高早籼稻的分蘖能力,增加有效穗;中后期夜温升高不利于早稻颖花分化和籽粒灌浆,导致结实率的下降;另外,夜温升高显著降低早籼稻稻米的碾磨和外观品质。但夜温升高对早籼稻产量的影响与生育期内的白天温度有关,白天温度较低时,夜温适度升高,有利于产量增加。  相似文献   

12.
Rising temperatures are a major threat to global wheat production, particularly when accompanied by other abiotic stressors such as mineral nutrient deficiencies. This study aimed to quantify the effects of supra‐optimal temperature on growth, photosynthetic performance, and antioxidative responses in bread wheat cultivars grown under varied zinc (Zn) supply. Two bread wheat cultivars (Triticum aestivum L., cvs. Lasani‐2008 and Faisalabad‐2008) with varied responsiveness to Zn supply and drought tolerance were cultured in nutrient solution with low (0.1 µM) or adequate (1.0 µM) Zn under optimal (25/20°C day/night) or supra‐optimal (36/28°C day/night) temperature regimes. Supra‐optimal temperature severely reduced root but not shoot biomass, whereas low Zn reduced shoot as well as root biomass. Shoot‐to‐root biomass ratio was reduced under low Zn but increased under supra‐optimal temperature. Supra‐optimal temperature inhibited root elongation and volume particularly in plants supplied with low Zn. In both cultivars, Zn efficiency index was reduced by supra‐optimal temperature, whereas heat tolerance index was reduced by low Zn supply. Supra‐optimal temperature decreased photosynthesis, quantum yield, and chlorophyll density in low‐Zn but not in adequate‐Zn plants. In comparison, low Zn decreased specific activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) and increased glutathione reductase (GR), where supra‐optimal temperature increased SOD, decreased GR and did not change APX activity in leaves and roots. Moreover, supra‐optimal temperature severely reduced shoot Zn concentration and Zn uptake per plant specifically under adequate Zn supply. Overall, supra‐optimal temperature exacerbated adverse effects of low Zn supply, resulting in severe reductions in growth traits viz. shoot and root biomass, root length and volume, and consequently impeded Zn uptake, enhanced oxidative stress and impaired photosynthetic performance. Adequate Zn nutrition is crucial to prevent yield loss in wheat cultivated under supra‐optimal temperatures.  相似文献   

13.
《Cereal Chemistry》2017,94(2):251-261
The objective for this study was to investigate the effectiveness of scaled‐up infrared (IR) heating followed by tempering steps to dry freshly harvested rough rice. An industrial‐type, pilot‐scale, IR heating system designed to dry rough rice was used in this study. The heating zone of the equipment had catalytic IR emitters that provided heat energy to the sample as it was conveyed on a vibrating belt. The sample comprised freshly harvested rough rice of long‐grain pureline (Cheniere), long‐grain hybrid (6XP 756), and medium‐grain (CL 271) cultivars at initial moisture contents of 23, 23.5, and 24% wb, respectively. Samples at a loading rate of 1.61 kg/m2 were heated with IR of radiation intensity 5.55 kW/m2 for 30, 50, 90, and 180 s followed by tempering at 60°C for 4 h, at a product‐to‐emitter‐gap size of 450 mm, in one‐ and two‐pass drying operations. Control samples were gently natural air dried in an equilibrium moisture content chamber set at relative humidity of 65% and temperature of 26°C to moisture content of 12.5% wb. The effects of IR treatments followed by tempering on percentage points of moisture removed, head rice yield, energy use, rice color, and pasting characteristics were evaluated. For all cultivars, percentage point moisture removed increased with increase in IR drying duration. For all rice cultivars, one‐pass IR treatments for 180 s resulted in head rice yield significantly lower than that of rice dried with natural air in the controlled‐environment conditions (P < 0.05). Energy required to dry rice increased with increase in drying duration. Viscosity values of all the experimental samples were significantly greater (P value < 0.05) than that of the control samples for all the cultivars, except those treated with IR for 180 s. There was a significant difference (P < 0.05) in the color index (ΔE ) of treated milled samples and the controls. In conclusion, the study provided information crucial to understanding the effects of scaled‐up radiant heating and tempering of rough rice on drying rates and rice quality for long‐grain pureline, long‐grain hybrid, and medium‐grain rice cultivars.  相似文献   

14.
花后增温对双季优质稻产量和品质的影响   总被引:2,自引:0,他引:2  
为明确未来气候变暖对双季优质稻产量和稻米品质的影响,采用开放式主动增温系统,早稻以金早47(常规籼稻)、两优287(杂交籼稻),晚稻以象牙香珍(常规籼稻)、万象优华占(杂交籼稻)和甬优5550(籼粳杂交稻)为试验材料,研究花后增温对双季优质稻产量和稻米品质的影响。结果表明,花后増温(早稻1.29℃,晚稻1.73℃)对早晚稻产量均无显著影响。增温条件下,早稻加工品质和垩白粒率均无显著变化,垩白度平均提高了16.0%;晚稻糙米率、整精米率、垩白粒率和垩白度分别平均提高了1.8%、3.5%、30.3%和27.2%;早晚稻蛋白质含量平均提高了6.27%,但直链淀粉含量平均降低了3.53%,淀粉颗粒的平均粒径提高了0.09 μm。增温对稻米RVA谱特征值的影响在季别和品种间存在较大变异。综上,花后增温对早晚稻产量无显著影响,有利于改善稻米的加工品质和营养品质,但降低了稻米的外观品质。本研究结果为未来气候变暖下双季优质稻的优质丰产栽培提供了理论依据。  相似文献   

15.
Flours and starches from rough rice dried using different treatment combinations of air temperature (T) and relative humidity (RH) were studied to better understand the effect of drying regime on rice functionality. Rough rice from cultivars Bengal and Cypress were dried to a moisture content of ≈12% by three drying regimes: low temperature (T 20°C, RH 50%), medium temperature (T 40°C, RH 12%), and high temperature (T 60, RH 17%). Head rice grains were processed into flour and starch and evaluated for pasting characteristics with a Brabender Viscoamylograph, thermal properties with differential scanning calorimetry, starch molecular‐size distribution with high‐performance size‐exclusion chromatography (HPSEC), and amylopectin chain‐length distribution with high‐performance anion‐exchange chromatography with pulsed amperometric detection (HPAEC‐PAD). Lower head rice and starch yields were obtained from the batch dried at 60°C which were accompanied by an increase in total soluble solids and total carbohydrates in the pooled alkaline supernatant and wash water used in extracting the starch. Drying regime caused no apparent changes on starch molecular‐size distribution and amylopectin chain‐length distribution. Starch fine structure differences were due to cultivar. The pasting properties of flour were affected by the drying treatments while those of starch were not, suggesting that the grain components removed in the isolation of starch by alkaline‐steeping were important to the observed drying‐related changes in rice functionality.  相似文献   

16.
ABSTRACT

High air temperatures during the grain-filling stage of rice (Oryza sativa L.) decrease grain yield and quality. Temperatures above the optimal growth temperature impair dry matter production due to reduced grain size. Since the arsenic (As) concentration in grain is determined by the As accumulation and the grain weight, we focused on the effect of air temperature before and after rice heading on the As concentration in grain. Rice plants have been planted in the same field every year since 1974 with a similar set-up and water management. We analyzed the As concentrations in stored rice grains produced in 1995–2014 and evaluated the possible relationships with the meteorological data for the associated production year. The average daily mean air temperatures (DMTs) from 2 weeks after the heading day to 4 weeks after the heading day were significantly correlated with the inorganic As concentrations in the grains, whereas there was no significant correlation between the grain As concentration and the average DMT during 1 week after the heading day or 3 weeks before the heading day. These findings indicate that high air temperature is more effective at increasing As in grain in the late ripening stage of rice than before the ripening stage or in the early ripening stage. Further experiments are necessary to clarify why As concentrations in grain increase when high air temperatures occur in the late ripening stage of rice.  相似文献   

17.
《Journal of plant nutrition》2013,36(4-5):623-637
Groundnuts (Arachis hypogaea L.) are frequently exposed to high temperatures in the semi-arid tropics. The objectives of the present research were: (i) to determine the response of groundnuts to different nitrogen sources; (ii) to quantify the effects of high air and soil temperatures on nodulation, dry matter production, partitioning and pod yields; and (iii) to discover whether plants dependent on symbiotic dinitrogen are more sensitive to heat stress than those dependent on inorganic nitrogen (N). Plants were grown at optimum air and ambient soil temperatures from sowing until the first flowering. Thereafter, plants were exposed to a factorial combination of two air temperatures [optimum: 28°/22°C (day/night) and high: 38°/22°C], two soil temperatures (ambient: 26°/24°C and high: 37°/30°C) and three N-sources [inoculated with Bradyrhizobium strain NC 92 (symbiotic N2); inoculated and supplied with 20 ppm inorganic N (symbiotic N2 plus 20 N); or not inoculated and supplied with 100 ppm inorganic N (inorganic N)]. At optimum air and ambient soil temperature dry matter and pod yields were greatest in plants dependent on inorganic N, intermediate in symbiotic N2 plus 20 N and least in symbiotic N2. High air or high soil temperatures significantly (P < 0.001) reduced pod yield to a similar extent and their effects were additive and without interaction. High soil, but not high air temperature, significantly (P < 0.001) reduced nodule numbers, nodule dry weight and 100 seed weight. High air and/or high soil temperature had no effect on pod yield in plants dependent on symbiotic N2 or symbiotic N2 plus 20 N, but significantly (P < 0.05) reduced pod yield in plants dependent on inorganic N. This suggest that effectively nodulated plants with small quantities of inorganic N are potentially more adaptable to hot environments than those relying on large quantities of inorganic N.  相似文献   

18.
During storage, the milling, physicochemical properties, and eating quality of rice change, which is generally termed “aging.” Aged rice is preferred by processors because of better processing characteristics, and therefore there are attempts to develop accelerated aging processes. In this study, the effects of various heat treatments and their influences on the milling, physicochemical, and cooking properties of two long‐grain rice cultivars during storage were investigated with a randomized complete block design with an 8 × 5 × 2 full‐factorial treatment design. Two long‐grain rice cultivars, Wells and XP723, were treated with eight different heat treatments, including two levels of UV irradiation, two levels of autoclaving, three levels of convection oven heating, and one control, and then stored for 180 days at room temperature. The heat treatments significantly influenced all properties, including head rice yield (HRY), surface lipid content, peak gelatinization temperature, pasting properties, and cooked rice texture. All properties except HRY exhibited a significant two‐way interaction of cultivar and heat treatment. The severe autoclaving treatment resulted in rice of significantly different protein compositions when compared with the control. Storage impacted all properties except HRY and peak gelatinization temperature. Autoclaving (particularly severe autoclaving) produced samples with more distinct characteristics for most properties. Cooked rice hardness and stickiness exhibited not only significant main effects but also significant two‐ and three‐factor interactions.  相似文献   

19.
Abstract

Oats were grown in perlite and nutrient solution at temperatures varying from 10/5°C (day/night) to 36/31°C. The optimum temperature for growth of tops was found to be 27°C day/22°C night over an eight week period. Plant S content showed an inverse relationship with yield.

Uptake of S was low at low temperature (10/5, 15/10°C), but was balanced by retarded growth at this temperature. Hence, uptake did not restrict growth at low temperature.  相似文献   

20.
Abstract

An investigation was conducted on an Olivier silt loam (fine‐silty, mixed, thermic aquic, Fragiudalfs) at two locations to determine the influence of 6 seasonal temperatures and 4 N rates on head diameter, head weight, tissue NO3 concentration and crop yield of 4 head lettuce (Lactuca sativa L.) cultivars. An analysis of covariance was used to establish prediction equations for each dependent variable. Temperature was shown to have a significant curvilinear influence on all crop parameters. There was a significant cultivar X temperature interaction with respect to all dependent variables except tissue NO3 concentration. Calculated optimum mean temperatures for maximum head diameters, head weights, and yields for all cultivars were found to range between 17.4° and 18.2°C.

Fertilizer N effects were significant on head weight and crop yield. Nitrogen rate did not significantly affect young leaf tissue N03 concentration. Greater tissue NO3 levels were found at lower temperatures in the covariate range.

At optimum temperatures, the cultivar ‘Fairton’ produced larger diameter heads and greater yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号