首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have suggested that growth-hormone-releasing factor (GRF) enhanced growth and advanced puberty onset along with hormonal changes in buffalo heifers (Bubalus bubalis). However, it is not known to what extent exogenous GRF could influence blood metabolites and minerals to bring about puberty in buffalo heifers. Therefore, we planned to investigate the effect of exogenous bovine GRF (bGRF) on blood metabolites and minerals in buffalo heifers during a 3-month pre-treatment period, 9-month treatment period and 1-month post-treatment period. Six buffalo heifers were treated intravenously with bGRF (10 mug per 100 kg body weight) at 15-day interval for 9 months. Another six buffalo heifers of weight- and age-matched received requisite amount of vehicle (0.9% NaCl solution) during the same period. Exogenous bGRF enhanced (p < 0.01) plasma non-esterified fatty acids (NEFA) concentrations in treatment group when compared with control group during the treatment and post-treatment period, while plasma alpha-amino nitrogen (AAN) concentrations showed a decreasing trend (p < 0.05) in the treatment group when compared with the control group during the treatment and post-treatment periods. The plasma inorganic phosphorus (Pi) was found to be higher (p < 0.05) in the treatment group animals in comparison with the levels recorded in the control group animals during the treatment as well as post-treatment periods. However, there was no change (p > 0.05) in plasma glucose and calcium concentrations between the two groups. Plasma NEFA was found to be positively correlated with plasma growth hormone (GH); however, it was only significant for the treatment group (r = + 0.76; p < 0.05). Plasma AAN in the treatment group exhibited negative correlation with plasma GH (r = 0.72; p < 0.05), while plasma AAN and GH were recorded to be positively correlated in the control group (r = 0.47; p < 0.05). The present findings suggest that exogenous bGRF induces GH release that increases plasma NEFA and Pi and decreases AAN concentrations, which probably help to reach a certain physiological state that initiates events necessary for bringing about puberty in buffalo heifers.  相似文献   

2.
We investigated the effect of increasing nutrient intake on the responsiveness of the GH/IGF-I system in calves fed a high-protein milk replacer. Fifty-four Holstein bull calves were fed one of three levels (low, medium, and high; n = 18 per treatment) of a 30% crude protein, 20% fat milk replacer to achieve target rates of gain of 0.50, 0.95, or 1.40 kg/d, respectively, for low, medium, and high. Six calves per treatment were slaughtered at approximately 65, 85, and 105 kg BW. Additionally, six calves were slaughtered at 1 d of age to provide baseline data. Plasma aliquots from blood samples collected weekly were analyzed for IGF-I, insulin, glucose, NEFA, and plasma urea nitrogen (PUN). Plasma IGF-I and insulin, measured weekly, increased (P < 0.001) with greater nutrient intake from wk 2 of life to slaughter. Plasma glucose and NEFA also increased (P < 0.05) with nutrient intake. In addition, each calf underwent a GH challenge beginning 4 d before the scheduled slaughter. Plasma from blood collected before the first GH injection and 14 and 24 h after the third injection was analyzed for IGF-I and PUN. Response to challenge, calculated as the absolute difference between the prechallenge and 14-h postchallenge plasma IGF-I concentrations, was significant in calves on all three treatments. Plasma urea nitrogen was not different among treatments as measured weekly but decreased (P < 0.001) following GH challenge in all calves. Results of ribonuclease protection assays showed increased expression of hepatic mRNA for GH receptor 1A and IGF-I with increased intake. The amounts of GH receptor and IGF-I mRNA in muscle and adipose, however, were not affected by intake. In summary, plasma IGF-I was elevated in calves with increased nutrient intake, and the elevations in plasma IGF-I following short-term administration of GH were significant in all calves by 65 kg BW. Data demonstrate that in well-managed milk-fed calves the somatotropic (GH/IGF-I) axis is functionally coordinated and sensitive to nutrient intake and GH.  相似文献   

3.
Gastric-derived peptide hormone ghrelin is known for its potent growth hormone (GH) stimulatory effects. The acyl-modification on N-terminal Ser(3) residue is reported to be important to stimulate the ghrelin receptor, GH secretagogue-receptor type1a (GHS-R1a). However, major portion of circulating ghrelin lacks in acylation, and some biological properties of des-acyl ghrelin have been reported in monogastric animals. In the present study, the responsiveness of plasma hormones and metabolites to ghrelin in steers was characterized, and role for des-acyl ghrelin in these changes was investigated. The repeated intravenous administrations of bovine ghrelin (1.0 microg/kg BW) every 2h for 8h to Holstein steers significantly increased the plasma acylated ghrelin, total ghrelin, GH, insulin and NEFA levels. The GH responses in peak values and area under the curves (AUCs) were attenuated by repeated injections of ghrelin, however, the responses of plasma total ghrelin were similar. Plasma insulin AUC decreased after fourth injection of ghrelin while plasma NEFA AUCs gradually increased by repeated injections of ghrelin. Pretreatment of des-acyl ghrelin (10.0 microg/kg BW) 5 min prior to the single injection of ghrelin (1.0 microg/kg BW) did not affect the ghrelin-induced hormonal changes. Moreover, the responses of plasma GH to bovine and porcine ghrelin, which differ in C-terminal amino acid residues, were similar in calves. These data show that (1) GH release was attenuated by repeated administration of ghrelin, (2) ghrelin regulates glucose and fatty acid metabolism probably via different pathway, and (3) des-acyl ghrelin is unlikely the antagonist for ghrelin to induce endocrine effects in Holstein steers.  相似文献   

4.
To investigate the effects of long-term growth hormone-releasing factor (GRF) administration on plasma growth hormone (GH), LH and progesterone and body weight gain in growing buffalo calves, 12 female Murrah buffaloes within the age group of 6-8 months of age were divided into two groups (treatment and control groups) of six each in such a way so that average body weights between the groups did not differ (p > 0.05). Control buffaloes were not given any hormonal treatment and treatment group buffaloes were treated with synthetic bovine GRF [bGRF (1-44)-NH(2)] at the rate of 10 microg/100 kg body weight intravenously at an interval of 15 days from week 6 (5-week pre-treatment period) till 18 injections were completed (week 6-42 treatment period) and thereafter, effect of exogenous GRF were observed for 10-week post-treatment period. Jugular blood samples were drawn twice a week at 3-4-day intervals for plasma GH, LH and progesterone quantification. Body weight of all animals was recorded twice a week. During pre-treatment period, mean plasma GH, LH and progesterone did not differ (p > 0.05) between the groups. But during treatment as well as post-treatment period, mean plasma GH levels were found to be significantly (p < 0.01) higher in treatment than control group of buffaloes. Administration of GRF for longer term sustained a higher level of plasma GH even after cessation of treatment. GRF-treated buffaloes attained higher (p < 0.01) body weight than the controls. Repeated GRF administration for long-term significantly (p < 0.01) increased plasma LH and progesterone. In conclusion, repeated long-term exogenous GRF administration induces and even enhances GH release without any sign of refractoriness. GRF may, therefore, be used to induce daily GH release without loss of responsiveness over an extended period of time in young growing female buffaloes and it may assist these animals to grow faster.  相似文献   

5.
The objective of these experiments was to establish the relationship of plasma ghrelin concentrations with feed intake and hormones indicative of nutritional state of cattle. In Exp.1, 4 steers (BW 450 +/- 14.3 kg) were used in a crossover design to compare plasma ghrelin concentrations of feed-deprived steers with those of steers allowed to consume feed and to establish the relationship of plasma ghrelin concentrations with those of GH, insulin (INS), glucose (GLU), and NEFA. After adaptation to a once-daily feed offering (0800), 2 steers continued the once-daily feeding schedule (FED), whereas feed was withheld from the other 2 steers (FAST). Serial blood samples were collected via indwelling jugular catheter from times equivalent to 22 h through 48 h of feed deprivation. Average plasma ghrelin concentrations were greater (P < 0.001) in FAST compared with FED (690 and 123 +/- 6.5 pg/mL) steers. Average plasma ghrelin concentrations for FED steers prefeeding were elevated (P < 0.001) when compared with those postfeeding (174 and 102 +/- 4.2 pg/mL, respectively). Average plasma GH concentration was elevated (P < 0.05) for FAST steers compared with FED steers. Plasma GLU concentrations were not different; however, for FAST steers, NEFA concentrations were elevated (P < 0.001) and INS concentrations were decreased (P < 0.001). In Exp. 2, 4 steers (BW 416 +/- 17.2 kg) were used in a crossover design to determine the effects of i.v. injection of bovine ghrelin (bGR) on plasma GH, INS, GLU, and NEFA concentrations; length of time spent eating; and DMI. Steers were offered feed once daily (0800). Serial blood samples were collected from steers via indwelling jugular catheter. Saline or bGR was injected via jugular catheter at 1200 and 1400. A dosage of 0.08 microg/kg of BW bGR was used to achieve a plasma ghrelin concentration similar to the physiological concentration measured in a FAST steer in Exp. 1 (1,000 pg/mL). Injection of bGR resulted in elevated (P < 0.005) plasma GH concentrations after the 1200 but not the 1400 injection. Plasma INS, GLU, and NEFA concentrations were not affected by bGR injection. For the combined 1-h periods postinjection, length of time spent eating was greater (P = 0.02) and DMI tended to be increased (P = 0.06) for bGR steers. These data are consistent with the hypothesis that ghrelin serves as a metabolic signal for feed intake or energy balance in ruminants.  相似文献   

6.
We determined the effects of short-term fasting and refeeding on temporal changes in plasma concentrations of leptin, insulin, insulin-like growth factor- 1 (IGF-1), growth hormone (GH), glucose, and nonesterified fatty acids (NEFA), in early lactating cows, non-lactating pregnant cows, and postpubertal heifers. In experiment 1, Holstein cows in early lactation were either fed ad libitum (Control, n=5) or feed deprived for 48 h (Fasted, n=6). Plasma leptin, insulin, and glucose concentrations rapidly declined (P<0.05) within 6h, and IGF-1 by 12h, but all these variables sharply returned to control levels (P>0.10) within 2h of refeeding. Plasma NEFA and GH concentrations were elevated (P<0.05) by 4 and 36 h of fasting and returned to control levels (P>0.10) by 8 and 24h after refeeding, respectively. In experiment 2, four ruminally cannulated pregnant non-lactating Holstein cows were used in a cross-over design and were fasted for 48 h (Fasted) or fasted with partial evacuation of rumen contents (Fasted-Evac). The plasma variables measured did not differ (P>0.10) between Fasted and Fasted-Evac cows. Plasma leptin, insulin, and IGF-1 concentrations were reduced by 10, 6, and 24h of fasting, respectively, in Fasted-Evac cows; and these variables were reduced by 24h in Fasted cows (P<0.05). Plasma glucose levels were reduced (P<0.05) by 48 h of fasting in both groups of fasted animals. Plasma NEFA and GH levels were increased (P<0.05) by 12 and 48 h of fasting, respectively. In experiment 3, postpubertal Holstein heifers were either fed ad libitum (Control, n=4) or feed deprived for 72 h (Fasted, n=5). Concentrations of leptin, insulin, IGF-1, and glucose in plasma were reduced (P<0.05) by 24, 10, 24, and 48 h of fasting, respectively. Plasma NEFA concentrations increased (P<0.05) by 4h, of fasting while GH levels were not significantly (P>0.10) affected by fasting. Collectively, our data provide evidence that plasma leptin concentrations are reduced with short-term fasting and rebound on refeeding in dairy cattle with the response dependent on the physiological state of the animals. Compared to the rapid induction of hypoleptinemia with fasting of early lactation cows, the fasting-induced hypoleptinemia was delayed in non-lactating cows and postpubertal heifers.  相似文献   

7.
OBJECTIVE: To evaluate the relationship between plasma leptin concentration and body fat content in dogs. ANIMALS: 20 spayed female Beagles that were 10 months old at the start of the experiment. PROCEDURE: Dogs were kept under regulated feeding and exercise conditions for 21 weeks, resulting in a wide range of body weights, body condition scores (BCS), and subcutaneous thicknesses. Plasma leptin concentration was measured by use of a canine leptin-specific ELISA test to evaluate its correlation to body fat content estimated by the deuterium oxide dilution method. Plasma concentrations of glucose, cholesterol, triglycerides (TG), and nonesterified fatty acids (NEFA) were also measured. RESULTS: Body fat content (9 to 60% of body weight) was positively and closely correlated (r = 0.920; n = 20; P < 0.001) to plasma leptin concentration (0.67 to 8.06 ng/ml), compared with other variables (ie, glucose, cholesterol, TG, and NEFA; r = 0.142, 0.412, 0.074, and 0.182, respectively). CONCLUSIONS AND CLINICAL RELEVANCE: The positive relationship between plasma leptin concentration and body fat content in dogs was similar to correlations reported for humans and rodents, suggesting that plasma leptin is a quantitative marker of adiposity in dogs.  相似文献   

8.
OBJECTIVE: The response to intravenous glucose loading in the buffalo using the intravenous glucose tolerance test (IGTT) was investigated to provide a reference for intravenous glucose injection in buffaloes. METHOD: Twelve healthy, fasted, male swamp buffaloes were divided into three groups. Group I: six buffaloes were given 50% glucose at a dosage of 1 g/kg body weight via the jugular vein. Group II: three buffaloes received normal saline. Group III: three buffaloes were not injected. Blood samples were taken from the opposite vein at 60 and 10 min pre-injection (pre60 and pre10), and at 1, 5, 10, 30, 60, 120, 180, 240, 300, 360 and 420 min post-glucose injection (PGI). Plasma glucose was analyzed by the oxidase method. Insulin and glucagon were soon determined with a human radioimmunoassay kit. The insulin (pmol/l)/glucose (mmol/l) ratios (IGR) were also calculated for each sampling time. RESULTS: Mean plasma glucose, insulin and glucagon concentrations of buffaloes in groups II and III were similar at all the sampling times (p > 0.05) and the curves of the IGR for group II and group III were flat throughout. Group I Buffaloes showed an immediate 20 times increase in the mean plasma glucose concentration PGI, over the pre60 and pre10. The peak plasma insulin concentration occurred at 30 min PGI. The mean plasma glucose and insulin concentrations remained above pre-administration levels until 420 min PGI (p < 0.05). However, the mean plasma glucagon concentrations were different only at 1 and 5 min PGI sampling times. The curve of the IGR for group I showed an initial decrease at 1 min PGI, and fluctuated from 10.18 to 25.55 for the remainder of the sampling period. The correlation analysis showed that the mean plasma glucose concentration was positively correlated with insulin level (r = 0.73, p < 0.005), and significantly negatively correlated with mean plasma glucagon (r = -0.58, p < 0.05). The mean plasma insulin level did not show significant correlation with the glucagon (r = 0.06, p > 0.05). CONCLUSION: The hyperglycemia, high insulin, and protracted glucose and insulin curves, the initial decrease in the insulin/glucose ratio indicates that there was an unexpected glucose tolerance to acute intravenous glucose loading in water buffalo compared with other ruminants. The possibly suggested intravenous glucose load in buffaloes is about 5.09-8.28 mmol/l.  相似文献   

9.
An isotope dilution method using [U-(13)C]glucose injection was applied to determine the effects of dietary energy intake and cold exposure on plasma glucose metabolism in sheep. The sheep were assigned to two dietary treatments and were fed on diets containing either 100% or 160% of ME and both containing 150% of dietary crude protein intake for maintenance. The sheep were exposed from a thermoneutral environment (23 degrees C) to a cold environment (2-4 degrees C) for 5 days. The isotope dilution method was performed on the 18th day in the thermoneutral environment and on the fifth day of cold exposure. Plasma concentrations of glucose and NEFA increased (p < 0.05) during cold exposure for both diets. Plasma glucose pool size remained unchanged (p = 0.67), but plasma glucose turnover rate tended to increase (p = 0.07) with increased energy intake. Both pool size and turnover rate of plasma glucose increased (p = 0.01 and p = 0.0001, respectively) during cold exposure. No significant diet x environment interaction was detected. It is concluded that plasma glucose metabolism was influenced by both dietary energy intake and cold exposure, and plasma glucose metabolism in response to cold exposure was not modified by energy intake in sheep under the conditions (2-4 degrees C on the fifth day) of the present experiment.  相似文献   

10.
Plasma lipid concentrations, lipoprotein composition, and glucose dynamics were measured and compared between mares fed diets containing added water, corn oil (CO), refined rice bran oil (RR), or crude rice bran oil (CR) to test the hypothesis that rice bran oil lowers plasma lipid concentrations, alters lipoprotein composition, and improves insulin sensitivity in mares. Eight healthy adult mares received a basal diet fed at 1.5 times the DE requirement for maintenance and each of the four treatments according to a repeated 4 x 4 Latin square design consisting of four 5-wk feeding periods. Blood samples were collected for lipid analysis after mares were deprived of feed overnight at 0 and 5 wk. Glucose dynamics were assessed at 0 and 4 wk in fed mares by combined intravenous glucose-insulin tolerance tests. Plasma glucose and insulin concentrations were measured, and estimated values of insulin sensitivity (SI), glucose effectiveness, and net insulin response were obtained using the minimal model. Mean BW increased (P = 0.014) by 29 kg (range = 10 to 50 kg) over 5 wk. Mean plasma concentrations of NEFA, triglyceride (TG), and very low-density lipoprotein (VLDL) decreased (P < 0.001) by 55, 30, and 39%, respectively, and plasma high-density lipoprotein and total cholesterol (TC) concentrations increased (P < 0.001) by 15 and 12%, respectively, over 5 wk. Changes in plasma NEFA (r = 0.58; P < 0.001) and TC (r = 0.44; P = 0.013) concentrations were positively correlated with weight gain over 5 wk. Lipid components of VLDL decreased (P < 0.001) in abundance over 5 wk, whereas the relative protein content of VLDL increased by 39% (P < 0.001). Addition of oil to the basal diet instead of water lowered plasma NEFA and TG concentrations further (P = 0.002 and 0.020, respectively) and increased plasma TC concentrations by a greater magnitude (P = 0.072). However, only plasma TG concentrations and VLDL free cholesterol content were affected (P = 0.024 and 0.009, respectively) by the type of oil added to the diet. Mean plasma TG concentration decreased by 14.2 mg/dL over 5 wk in the CR group, which was a larger (P < 0.05) decrease than the one (-5.3 mg/dL) detected in mares that received water. Consumption of experimental diets lowered S(I), but glucose dynamics were not affected by oil supplementation. Addition of oil to the diet altered blood lipid concentrations, and supplementation with CR instead of water specifically affected plasma TG concentrations and VLDL free cholesterol content.  相似文献   

11.
The role of growth hormone (GH) in postnatal somatic growth is well established. Its basal level and relation to growth performance in different age group mithun (Bos frontalis), a semiwild ruminant has not been characterized until now. To estimate the normal blood GH level and also to assess the influence of age and body weight (BW) on blood GH level in captive mithuns, a total of 65 female mithuns was divided into six age groups (group I, 0-6 months; group II, >6-12 months; group III, >1-2 years; group IV, >2-2.5 years; group V, >2.5-3.0 years and group VI, >3.0 years). Blood samples collected weekly for six consecutive weeks were assayed for GH. GH was also estimated in the samples collected from six growing mithuns at -60, -45, -30, -15, -10, -5 and 0 min prior to GH-releasing hormone (GHRH) administration for calculation of basal GH level and at 5, 10, 15, 30 min and thereafter at 15-min interval up to 8 h post-GHRH to assess blood GH response following GHRH administration in growing mithuns. For calculation of basal plasma GH in adult mithuns, GH was measured in blood samples collected at 30-min interval for 24 h from four animals. BW of all animals was recorded on two consecutive days per week and average of weekly BW was considered for growth rate calculation. It was found that both mean GH and GH per 100 kg BW between the age groups differ (p < 0.01). With increasing age and BW, GH and GH per 100 kg BW both decreased (p < 0.01). The age group with higher plasma GH and GH per 100 kg BW showed higher growth rates (r = 0.83 and 0.97 respectively). Interestingly, mean plasma GH for six consecutive weeks in all the groups showed much greater GH concentration (group I, 86.6 +/- 9.7 ng/ml to group VI 33.2 +/- 5 ng/ml) than reported in other species. Mean basal plasma GH calculated in growing and adult mithuns was 29.6 +/- 4.01 ng/ml and around 25 +/- 3.6 ng/ml respectively. The GH peak (444 +/- 21.3 ng/ml) was registered at 15 min post-GHRH administration in growing mithuns. In conclusion, age and BW influence plasma GH and GH per 100 kg BW but the latter is a better indicator of growth. The basal plasma GH and GH response to GHRH administration is six to eight and four to five times higher in mithun than in other species reported so far. An accurate assessment of the relationship between GH profiles and protein metabolism, proper receptor level study for GH action at the cellular level and the interaction of GH with other growth factors awaits better understanding of higher GH in this unique species.  相似文献   

12.
To determine the effects of BCS at parturition and postpartum lipid supplementation on blood metabolite and hormone concentrations, 3-yr-old Angus x Gelbvieh beef cows, which were nutritionally managed to achieve a BCS of 4 +/- 0.07 (479.3 +/- 36.3 kg of BW) or 6 +/- 0.07 (579.6 +/- 53.1 kg of BW) at parturition, were used in a 2-yr experiment (n = 36/yr). Beginning at 3 d postpartum, cows within each BCS were assigned randomly to be fed hay and a low-fat control supplement or lipid supplements with either cracked high-linoleate or high-oleate safflower seeds until d 61 of lactation. The diets were formulated to be isonitrogenous and isocaloric, and the safflower seed supplements were formulated to achieve 5% DMI as fat. On d 31 and 61 of lactation, blood samples were collected preprandially and then hourly postprandially (at 0, 1, 2, 3, and 4 h). Serum insulin (P = 0.27) and glucose (P = 0.64) were not affected by BCS at parturition. The mean concentrations of plasma NEFA (P = 0.08) and beta-hydroxybutyrate (P = 0.08) tended to be greater, and serum IGF-I was greater (P < 0.001) in BCS 6 than BCS 4 cows. Conversely, serum GH was greater (P = 0.003) for BCS 4 cows, indicating that regulation of IGF by GH may have been uncoupled in BCS 4 cows. The postpartum diet did not affect NEFA (P = 0.94), glucose (P = 0.15), IGF-I (P = 0.33), or GH (P = 0.62) concentrations. Oleate-supplemented cows had greater (P = 0.03) serum insulin concentrations, whereas control cows had greater (P = 0.01) plasma beta-hydroxybutyrate concentrations. Concentrations of NEFA (P = 0.05) and glucose (P < 0.001) were greater, and beta-hydroxybutyrate tended (P = 0.07), to be greater at d 3, whereas serum IGF-I was greater (P = 0.003) at d 6 of lactation. Similar concentrations of NEFA, glucose, GH, and IGF-I indicate that the nutritional status of beef cows during early lactation was not influenced by lipid supplementation. However, perturbations of the somatotropic axis in BCS 4 cows indicate that the influence of energy balance and BCS of the cow at parturition on postpartum performance should be considered when making managerial decisions.  相似文献   

13.
The objective of this experiment was to investigate the effect of fat supplementation during the transition period on pre and postpartum body weight (BW), body condition score (BCS), non‐esterified fatty acids (NEFA), glucose and leptin concentrations in Holstein cows. Holstein cows (n = 15) received a low fat diet (LF; 1.61 Mcal net energy for lactation (NEL)/kg of dry matter [DM]), moderate fat diet (MF; 1.68 Mcal NEL/kg DM) or a high fat diet (HF; 1.74 Mcal NEL/kg DM) for 4 weeks prior to calving. All cows were fed similar lactation diets ad libitum (1.74 Mcal NEL/kg DM) for 30 days after calving. Increasing diet energy density during transition period had no effect on prepartum DMI, BCS, BW, glucose and NEFA concentrations (P > 0.05); but leptin concentrations and energy balance (EB) were affected by treatments (P < 0.05). Animals fed HF had less plasma leptin prepartum. After parturition, BW, milk production, milk fat, protein, urea nitrogen and plasma glucose concentrations were affected by prepartum diets (P < 0.05). Fat supplementation prepartum did not affect postpartum NEFA. In conclusion, prepartum fat supplementation decreased leptin concentration prepartum.  相似文献   

14.
Ten dry and pregnant Murrah buffaloes were selected to investigate the effect of Asparagus racemosus feeding on hormones, metabolites, milk yield, and plasma cholesterol levels. The treatment groups of buffaloes were fed with A. racemosus (shatavari) @?150?g/day/animal during prepartum and @?300?g/day/animal during the postpartum period. Blood samples collected on ?6, ?4, ?2-week, day of parturition (0), and +2, +4, and +6-week postpartum were analyzed for plasma total cholesterol, triglycerides, HDL, low-density lipoproteins (LDL), prolactin, cortisol, and blood metabolites. Milk samples collected at weekly intervals (+1, +3, +5, and 7?weeks) were analyzed for total milk fat cholesterol. Prepartum plasma cholesterol concentrations were significantly higher in treatment group over the control (P?<?0.05). Mean plasma triglycerides, LDL cholesterol, HDL cholesterol, glucose, and nonesterified fatty acid (NEFA) levels varied nonsignificantly between groups. Plasma prolactin and cortisol concentrations were significantly (P?<?0.01) more in treatment group than in control group. On day of parturition, plasma prolactin, cortisol, LDL, and plasma total cholesterol were higher (P?<?0.01) in treatment group buffaloes in comparison to control group. A. racemosus feeding significantly (P?<?0.01) increased plasma prolactin, cortisol (P?<?0.01), and milk fat cholesterol (P?<?0.05) without affecting total cholesterol, HDL, LDL, glucose, and NEFA concentrations. The buffaloes of treatment group produced more milk (?@?0.526?kg/animal/day) suggesting thereby that A. racemosus is galactopoietic. It was concluded that feeding of A. racemosus increases plasma prolactin and cortisol and decreased plasma total cholesterol and LDL concentration.  相似文献   

15.
Four experiments were conducted to clarify the effect of intravenous (i.v.) administration of recombinant bovine tumor necrosis factor alpha (rbTNF) on selected metabolites and on hormone secretion in Holstein heifers (n = 6; 347.0 kg average BW). In Exp. 1, rbTNF was injected at three dosage levels in a Latin square; 0 (CONT), 2.5 (TNF2.5), or 5.0 (TNF5) microg/kg BW. Plasma glucose and triglyceride concentrations were at first elevated (P < .05) by rbTNF treatment and then were decreased (P < .05) by TNF2.5 and TNF5. Plasma NEFA concentrations were increased (P < .05) in rbTNF-treated groups. The injection of rbTNF resulted in an increase in plasma insulin levels (P < .05 with TNF5) during the period between 2 and 24 h, except for the period between 6 and 8 h, after the treatment. In Exp. 2, 3, and 4, each heifer received i.v. injections of glucose (.625 mM/kg BW) + rbTNF (5 microg/kg) or glucose + saline (10 mL) (Exp. 2), insulin (0.2 U/kg) + rbTNF or insulin + saline (Exp. 3), and GHRH (0.25 microg/kg) + rbTNF or GHRH + saline (Exp. 4) at 1-wk intervals. In Exp. 2, rbTNF inhibited (P < .05) glucose-stimulated insulin secretion during the initial phase. Thereafter, plasma insulin was higher (P < .01) with the glucose + rbTNF treatment than with the glucose + saline treatment. Treatment with rbTNF inhibited the insulin-stimulated glucose utilization (Exp. 3) and GHRH-stimulated GH secretion (Exp. 4) during the initial phase. These results suggest that rbTNF directly and(or) indirectly affects the intermediary metabolism and hormone secretion in Holstein heifers.  相似文献   

16.
Two experiments were conducted to determine the effect of phytase on plasma metabolites and AA and energy digestibility in swine. In Exp. 1, eight barrows (surgery BW = 52 kg) were fitted with steered ileocecal cannulas. The experiment was a Latin rectangle and the treatments were 1) corn-soybean meal diet adequate in Ca and P (0.5% Ca, 0.19% available P [aP]), 2) corn-soybean meal diet with reduced Ca and P (0.4% Ca, 0.09% aP), 3) Diet 1 with 500 phytase units/kg, or 4) Diet 2 with 500 phytase units/kg. Pigs were fed twice daily to a total daily energy intake of 2.6 x maintenance (106 kcal of ME/kg of BW(0.75)). For each ileal digesta sample, digesta samples were collected for two 24-h periods and combined for each pig. The combination of supplementing with phytase and decreasing the concentration of dietary Ca and P increased average ileal AA (P < 0.02), starch (P < 0.02), GE (P < 0.04), and DM (P < 0.03) digestibilities. In Exp. 2, a feeding challenge was conducted with barrows (eight per treatment; average BW of 53 kg). The treatments consisted of a corn-soybean meal diet or corn-soybean meal diet + 500 phytase units per kilogram of diet. In the diet with no phytase, Ca and aP were at 0.50% and 0.19%, respectively, and, in the diet with phytase, Ca and aP were each decreased by 0.12%. A catheter was surgically inserted into the anterior vena cava of each pig 6 d before the start of the feeding challenge. The barrows were penned individually, and the diets were fed for 3 d before the challenge. The pigs were held without feed for 16 h, and blood samples were obtained at -60, -30, and 0 min before the pigs were fed (2% of BW). Blood samples were then collected at 10, 20, 30, 40, 50, 60, 75, 90, 105, 120, 150, 180, 210, 240, 270, and 300 min after feeding. Glucose area under the response curve and plasma glucose, insulin, urea N, and total alpha-amino N concentrations were increased (P < 0.05) in pigs fed the diet with reduced Ca and P and the phytase addition. Area under the response curve for insulin, urea N, and total alpha-amino N; insulin:glucose; and plasma NEFA concentration, clearance, and half-life were not affected by diet. In conclusion, the combination of Ca and P reduction and phytase addition increased nutrient and energy digestibility in diets for pigs and increased plasma concentrations of glucose, insulin, urea N, and alpha-amino N.  相似文献   

17.
Two experiments were conducted to identify factors involved in the growth retardation of pigs housed in groups. In each experiment, 60 gilts were allotted to two treatments in a randomized complete block design. Twelve gilts were penned individually with one feeder, one waterer, and a space allowance of 1.5 m2 per pen. Forty-eight gilts were allocated to 12 groups of four and penned together with four feeders, four waterers, and a space allowance of 6 m2 per pen. In Exp. 1 there were 60 growing gilts (initial and final BW of 17.9 and 50.8 kg, respectively), and in Exp. 2 there were 60 finishing gilts (initial and final BW of 46.0 and 118.3 kg, respectively). In Exp. 1 there was a trend (P < .10) toward greater final BW, ADG, and average backfat thickness of gilts penned individually. Apparent digestibilities of DM, CP, and energy tended (P < .10) to be greater and plasma NEFA concentrations were lower (P < .05) for gilts penned individually. Plasma concentrations of urea and glucose were similar between treatments. In Exp. 2, ADG was greater (P < .05) and there was a trend (P < .10) for greater final weight, ADFI, loin weight, and primal cut weight of gilts penned individually. Apparent digestibilities of DM, CP, and energy and the plasma concentrations of urea, glucose, and NEFA were similar in both treatments. In summary, growing gilts penned four per group had reductions in daily gain, backfat thickness, and apparent digestibilities of DM, CP, and energy and increases in plasma NEFA concentrations. Finishing gilts penned four per group had reductions in daily gain and feed intake with no changes in apparent nutrient digestibilities or plasma metabolite concentrations compared to individually penned gilts.  相似文献   

18.
An ovine-specific RIA, shown to be reliable for bovine leptin determination, was used to study the effects of breed, body fatness, feeding level, and meal intake on plasma leptin level in adult cattle. Eighteen fat Charolais, fat Holstein, and lean Holstein adult cows were either well-fed (130% of maintenance energy requirements [MER]) or underfed (60% of MER) for 3 wk. The breed tended to have a small effect on plasma leptin level, which was decreased by 70% (P < 0.05) in lean compared to fat Holstein cows. A strong curvilinear relationship was found between mean adipocyte volume and plasma leptin concentrations in well-fed (r = +0.95) and underfed (r = +0.91) cows. Underfeeding caused a significant decrease in plasma leptin levels from 8.0+/-3.1 to 6.1+/-2.3 ng/mL (P < 0.01). Nine adult Holstein cows initially fed at 130% of MER (control) were underfed to 21% of MER for 7 d, and five of them were refed to 237% of MER for 21 d. Plasma leptin measured 1 h before meal distribution was decreased from 5.9+/-0.4 to 3.8+/-0.2 ng/mL (P < 0.01) by underfeeding and increased to reach 8.8+/-1.0 ng/mL (P < 0.01) after refeeding. It was positively related to plasma glucose (r = +0.52, P < 0.01) and negatively related to plasma NEFA (r = -0.67, P < 0.001). Plasma leptin measured 4 h after meal distribution was positively related to feeding level and to plasma 3-OH-butyrate (r = +0.61, P < 0.005) and negatively related to plasma NEFA (r = -0.56, P < 0.01). Differences between pre- and postprandial leptin concentrations showed a decrease after meal intake in control and well-fed cows (-7 and -19%, P < 0.01, respectively) and an increase in underfed cows (+12%, P < 0.01). Leptin response to meal intake was positively related to glucose response (r = +0.66, P < 0.001) and negatively related to 3-OH-butyrate response (r = -0.78, P < 0.001). By using the "multispecies" commercial RIA, leptin concentrations were lower and we observed similar physiological responses, although less related to other hormones or metabolites. These data provide evidence, first, that a specific RIA for ruminant leptin determination is necessary to better understand leptin regulation, and second, that plasma leptin is strongly related to adipose cell size and positively related to feeding level in adult cattle, and that an effect of meal intake could be mediated by glucose and(or) ketone bodies.  相似文献   

19.
In this study, we investigated the physiological changes in cattle during feeding and rumination. We collected blood samples every 5 min by using an automated blood sampling system and simultaneously recorded feeding, ruminating, and other behaviors using a video camera. Plasma non‐esterified fatty acid (NEFA) concentrations continuously decreased during feeding and decreased temporarily during rumination. Plasma glucose concentration continuously decreased during feeding and remained stable during rumination. During feeding and rumination, there were no characteristic increases and subsequent decreases in plasma insulin and growth hormone (GH) concentrations, although insulin concentrations were positively correlated with glucose concentration. NEFA concentrations were not correlated with GH and insulin concentrations. In terms of chewing behavior, feeding and rumination are similar; therefore, the changes in metabolites such as NEFA might have been the same. Combination of behavioral observations and application of an automated blood sampling system could contribute to new findings on behavioral and physiological changes regarding the temporary decrease in plasma NEFA concentration during rumination in ruminants.  相似文献   

20.
Effects of long-term growth hormone-releasing factor (GRF) on growth performance, feed conversion efficiency (FCE) and dry matter intake (DMI) were studied in growing buffaloes. Twelve female Murrah buffaloes of 6-8 months of age were divided into two groups of six each on the basis of their body weights so that the average body weights of the groups did not differ (p > 0.05). Animals of each group were administered intravenously with either sterile distilled water (control group) or equal volume of GRF solution containing 10 mug GRF (1-44)-NH2/100 kg body weight (treatment group) at fortnight interval from week 6 (5-week pre-treatment period) for 36 weeks (weeks 6-42 treatment period). Thereafter a 10-week post-treatment period was added. All the animals were weighed consecutively 2 days in a week and the average body weight of the two observations in the week was thus considered for further calculation. Dry matter intake was recorded daily. Average daily gain, FCE and DMI/100 kg body weight were also calculated. Plasma progesterone was estimated in the samples collected twice a week at 3-4-day intervals to assess whether either group had begun ovarian cycles. It was found that ADG and FCE were higher (p < 0.01) in GRF-treated animals during treatment and even 10-week post-treatment period. Interestingly, total DMI was not different (p > 0.05) between the groups during treatment period but found to be lower in GRF treated animals during post-treatment period. The DMI/100 kg body weight was lower (p < 0.01) in GRF-treated animals during treatment and even after cessation of treatment for 10 weeks. The GRF administration for long-term increased (p < 0.05) plasma progesterone. Plasma progesterone concentrations suggest that no animal from either group reached puberty till the end of the experiment. In conclusion, repeated GRF administration for longer term decreased (p < 0.01) DMI/100 kg body weight and increased (p < 0.01) FCE and enabled the animals to grow faster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号