首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A stable isotope dilution assay (SIDA) for the quantitation of N(2)-[1-(carboxy)ethyl]folic acid (CEF) has been developed by using [(2)H(4)]CEF as the internal standard. After sample cleanup by anion exchange chromatography, the three-dimensional specifity of liquid chromatography-tandem mass spectrometry enabled unequivocal determination of the nonenzymatic glycation product of folic acid (FA). When CEF was added to cornstarch, the detection limit for CEF was found to be 0.4 microg/100 g, and a recovery of 98.5% was determined. In analyses of cookies, the intra-assay coefficient of variation was 8.0% (n = 5). Application of the SIDA to commercial cookies produced from wheat flour fortified with FA revealed CEF contents of up to 7.1 microg/100 g, which accounted for approximately 10-20% of the cookies' FA content. In baby foods, multivitamin juices, and multivitamin sweets, however, CEF was not detectable. Further studies on CEF formation during baking of cookies made from fortified flour and different carbohydrates revealed that fructose was most effective in generating CEF followed by glucose, lactose, and sucrose with 12.5, 3.9, 2.5, and 2.5 microg/100 g of dry mass, respectively. During baking, approximately 50% of FA was retained for both monosaccharides fructose and glucose, and 77% as well as 85% of its initial content was retained for the disaccharides lactose and sucrose, respectively. Of the degraded amount of FA, CEF comprised 28% for fructose as well as 18, 12, and 8% for sucrose, lactose, and glucose, respectively. Therefore, CEF can be considered an important degradation product of FA in baked foods made from fructose. To retain a maximum amount of FA, products should rather be baked with sucrose than with reducing carbohydrates.  相似文献   

2.
A method for the simultaneous quantitation of total glutathione and total cysteine in wheat flour by a stable isotope dilution assay using high-performance liquid chromatography/tandem mass spectrometry (HPLC-MS/MS) was developed. As internal standards, L-[(13)C3, (15)N]cysteine and L-gamma-glutamyl-L-[(13)C3, (15)N]cysteinyl-glycine were used. The method consisted of the extraction and reduction of flour with tris(2-carboxyethyl) phosphine after the addition of internal standards, protection of free thiol groups with iodoacetic acid, derivatization of free amino groups with dansyl chloride, and HPLC-MS/MS. The limits of detection and quantitation for glutathione were 0.75 nmol/g and 2.23 nmol/g flour, respectively. For cysteine, the limits of detection and quantitation were 0.72 nmol/g and 2.12 nmol/g flour, respectively. The developed method was found to be sensitive enough for quantitation of total glutathione and cysteine levels in wheat flour. This method was then utilized to investigate the effect of sulfur (S) deficiency on the amount of total glutathione and cysteine in flour. In S-deficient wheat, the concentrations of total glutathione and cysteine were proportional to the amount of S supplied during growth. The calculation of correlations revealed that GSH and Cys concentrations influenced the rheological dough properties and the baking performance at least as much as protein parameters. Thus, the low concentration of GSH and Cys in flour from S-deficient wheat had a similar effect on the technological properties as the altered composition of gluten proteins.  相似文献   

3.
A new analytical method based on the use of pressurized liquid extraction (PLE) followed by solid-phase extraction with LiChrolut RP C18 cartridges was evaluated for the sample preparation, extraction, and cleanup of eight naturally occurring benzoxazinone derivatives, 2-beta-D-glucopyranosyloxy-4-hydroxy-1,4-benzoxazin-3-one, 2-beta-D-glucopyranosyloxy-4-hydroxy-7-methoxy-1,4-benzoxazin-3-one, 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA), 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one, 2-hydroxy-1,4-benzoxazin-3-one, 2-hydroxy-7-methoxy-1,4-benzoxazin-3-one, benzoxazolin-2-one, and 6-methoxybenzoxazolin-2-one in plant samples. Afterward, liquid chromatography-electrospray mass spectrometry, using the selected ion monitoring mode and internal standard (2-MeO-DIBOA, indoxyl-beta-D-glucoside, and quercetin-3-O-rutinoside) quantification method was performed. This paper demonstrates the effectiveness of the PLE method, in conjunction with sensitive and specific mass spectrometric detection, for the quantitative recovery of compounds of the benzoxazinone class from plants. The recoveries of the analytes ranged from 66 to 110% with coefficients of variation ranging from 1 to 14%. This method gave detection limits between 1 and 27 microg/g. The method was applied to foliage and roots of three different wheat cultivars, and the analytes were detected in the range of 11-3261 microg/g of dry weight.  相似文献   

4.
The technique of microwave-assisted acid hydrolysis was applied to wholegrain wheat (Triticum durum Desf. cv. Balcali 2000) flour in order to speed the preparation of samples for analysis. The resultant hydrolysates were chromatographed and quantified in an automated amino acid analyzer. The effect of different hydrolysis temperatures, times and sample weights was examined using flour dispersed in 6 N HCl. Within the range of values tested, the highest amino acid recoveries were generally obtained by setting the hydrolysis parameters to 150 °C, 3 h and 200 mg sample weight. These conditions struck an optimal balance between liberating amino acid residues from the wheat matrix and limiting their subsequent degradation or transformation. Compared to the traditional 24 h reflux method, the hydrolysates were prepared in dramatically less time, yet afforded comparable ninhydrin color yields. Under optimal hydrolysis conditions, the total amino acid recovery corresponded to at least 85.1% of the total protein content, indicating the efficient extraction of amino acids from the flour matrix. The findings suggest that this microwave-assisted method can be used to rapidly profile the amino acids of numerous wheat grain samples, and can be extended to the grain analysis of other cereal crops.  相似文献   

5.
This article describes the development of a new procedure that combines the use of activated charcoal and pressurized liquid extraction (PLE) to obtain enriched fractions of di- and trisaccharides from honey. Honey was adsorbed onto activated charcoal and packed into a PLE extraction cell. Optimum results were obtained at 10 MPa and 40 degrees C using two consecutive PLE cycles: first, 1:99 (v/v) ethanol/water for 5 min and second, 50:50 (v/v) ethanol/water for 10 min. Di- and trisaccharide fractions were enriched after PLE treatment, accounting for 73% and 8% of total carbohydrates, respectively. This procedure was also compared with other methodologies reported in the literature for the fractionation of honey carbohydrates (yeast treatment and extraction from activated charcoal). While the removal of monosaccharides was more efficient with yeast treatment, recovery of di- and trisaccharides was higher when either the PLE or the activated charcoal treatment was used. PLE was found to be the faster technique; it also required less solvent volume and minimized handling of the sample.  相似文献   

6.
A simple and rapid procedure for the separation and determination of inorganic, methyl, and ethyl mercury compounds was described using liquid chromatography (LC) followed by vapor generation inductively coupled plasma-mass spectrometry (VG-ICP-MS). Well resolved chromatograms were obtained within 5 min by reversed-phase liquid chromatography with a C8 column as the stationary phase and a pH 4.7 solution containing 0.5% v/v 2-mercaptoethanol and 5% v/v methanol as the mobile phase. The separated mercury compounds were converted to mercury vapors by an in situ nebulizer/vapor generation system for their introduction into ICP. The concentrations of NaBH4 and HNO3 required for vapor generation were also optimized. The method was applied for the speciation of mercury in reference materials NIST SRM 1568a Rice Flour and NIST SRM 1567a Wheat Flour and also rice flour and wheat flour samples purchased locally. The accuracy of the procedure was verified by analyzing the certified reference material NRCC DOLT-3 Dogfish Liver for methyl mercury. Precision between sample replicates was better than 13% for all the determinations. The detection limits of the mercury compounds studied were in the range 0.003-0.006 ng Hg mL(-1) in the injected solutions, which correspond to 0.02-0.06 ng g(-1) in original flour samples. A microwave-assisted extraction procedure was adopted for the extraction of mercury compounds from rice flour, wheat flour, and fish samples using a mobile phase solution.  相似文献   

7.
Pressurized liquid extraction (PLE) was used to extract anthocyanins from the freeze-dried skin of a highly pigmented red wine grape with six solvents at 50 degrees C, 10.1 MPa, and 3 x 5 min extraction cycles. Temperature (from 20 to 140 degrees C in 20 degrees C increments) effects on anthocyanin recovery by acidified water and acidified 60% methanol were also studied. Acidified methanol extracted the highest levels of total monoglucosides and total anthocyanins, whereas the solvent mixture (40:40:20:0.1 methanol/acetone/water HCl) extracted the highest levels of total phenolics and total acylated anthocyanins. Acidified water extracts obtained by PLE at 80-100 degrees C had the highest levels of total monoglucosides, total acylated anthocyanins, total anthocyanins, total phenolics, and ORAC values. Acidified methanol extracts obtained by PLE at 60 degrees C had the highest levels of total monoglucosides and total anthocyanins, whereas extracts obtained at 120 degrees C had the highest levels of total phenolics. High-temperature PLE (80-100 degrees C) using acidified water, an environmentally friendly solvent, was as effective as acidified 60% methanol in extracting anthocyanins from grape skins.  相似文献   

8.
A method for the quantitation of dityrosine in wheat flour and dough by high-performance liquid chromatography/tandem mass spectrometry (HPLC-MS/MS) using an isotope dilution assay with the internal standard 3,3'-(13)C(2)-dityrosine in the single-reaction monitoring mode was developed. The method consisted of the release of protein-bound dityrosine by hydrolysis in 4 mol/L hydrochloric acid/8.9 mol/L propionic acid for 24 h at 110 degrees C after addition of the internal standard, cleanup by C(18) solid-phase extraction, and HPLC-MS/MS. The limit of detection of dityrosine was 80 ng/g of sample (0.22 nmol/g), and the limit of quantitation was 270 ng/g of sample (0.75 nmol/g). The method was sensitive enough to analyze wheat flour and dough and to study the effect of flour improvers on the dityrosine content. Furthermore, the effect of the mixing time was studied. The dityrosine concentration in the flour was 0.66 nmol/g. After we mixed a dough to peak consistency, the dityrosine concentration doubled and remained constant on further mixing. Overdoses of hydrogen peroxide and hexose oxidase (HOX, E.C. 1.1.3.5) resulted in a strongly increased dityrosine content, whereas no increase of the dityrosine concentration was found after the addition of ascorbic acid and potassium bromate. Calculation of the percentage of dimeric tyrosine showed that less than 0.1% of the tyrosine residues of wheat protein were cross-linked. Therefore, dityrosine residues seem to play only a very minor role in the structure of wheat gluten.  相似文献   

9.
Ferulic acid (FA) is a phenolic antioxidant present in plants, which is widely used in the food and cosmetic industry. In the present study, various agricultural wastes such as maize bran, rice bran, wheat bran, wheat straw, sugar cane baggasse, pineapple peels, orange peels, and pomegranate peels were screened for the presence of esterified FA (EFA). Among the sources screened, maize bran was found to contain the highest amount of EFA. Pineapple peels, orange peels, and pomegranate peels were also found to contain traces of EFA. Alkaline extraction of EFA from maize bran was carried out using 2 M NaOH. Response surface methodology (RSM) was used for optimization of EFA extraction, which resulted in a 1.3-fold increase as compared to the unoptimized conventional extraction technique. FA was analyzed by means of high-performance liquid chromatography (HPLC). Purification was carried out by adsorption chromatography using Amberlite XAD-16 followed by preparative high-performance thin-layer chromatography (HPTLC). The recovery of Amberlite XAD-16 purified FA was up to 57.97% with HPLC purity 50.89%. The fold purity achieved was 1.35. After preparative HPTLC, the maximum HPLC purity obtained was 95.35% along with an increase in fold purity up to 2.53.  相似文献   

10.
Nine laboratories analyzed samples of whole grain, intermediate, and ready-to-eat products for ethylene dibromide (EDB) residues. Supplied samples of wheat, rice, and flour contained both fortified and incurred EDB; corn bread mix, baby cereal, and bread contained only fortified EDB. The whole grains and intermediates were analyzed by the same basic procedural steps as in the official method for multifumigants: They were extracted by soaking in acetone-water (5 + 1). The baby cereal and bread were analyzed by a modification of the Rains and Holder hexane co-distillation procedure. EDB was determined by electron capture gas chromatography operated with an SP-1000 column. All products contained 3 different levels of EDB and were analyzed as blind duplicates. Overall mean recoveries ranged from 85.2% for 69.6 ppb to 105.0% for 4.35 ppb, both in baby cereal. Interlaboratory relative standard deviations ranged from 5.7% for 869 ppb in wheat to 20.2% for 69.6 ppb in baby cereal, both fortified. Mean levels of incurred EDB in wheat, rice, and flour were 926.7, 982.0, and 49.9 ppb, respectively; corresponding relative standard deviations were 9.9, 7.7, and 13.1%. The method was adopted official first action.  相似文献   

11.
An on-line solid-phase extraction (SPE) following a liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method was established for the simultaneous analysis of bisphenol A (BPA), nonylphenol (NP), and octylphenol (OP) in cereals (including rice, maize, and wheat). The target compounds were extracted by acetonitrile, purified by an automated on-line SPE cartridge, and analyzed by LC-MS/MS under the negative-ion mode. Mean recoveries fortified at three concentration levels ranged from 81.6 to 115.7%, and the coefficient of variation ranged from 4.6 to 19.9% (n = 6). The limits of quantification (LOQs) of the method were 0.5, 0.5, and 0.25 μg/kg for BPA, NP, and OP, respectively, in both rice and maize, while the LOQs in wheat were 0.5, 1.25, and 0.5 μg/kg for BPA, NP, and OP, respectively. This method was applied in the analysis of rice, maize, and wheat from a local market. As a result, NP occurred in all cereal samples at the concentration range of 9.4-1683.6 μg/kg and BPA was detected in a few samples.  相似文献   

12.
Bayluscide [the ethanolamine salt of niclosamide (NIC)] is a registered piscicide used in combination with 3-(trifluoromethyl)-4-nitrophenol (TFM) to control sea lamprey populations in streams tributary to the Great Lakes. A high-performance liquid chromatography (HPLC) method was developed for the determination of NIC residues in muscle fillet tissues of fish exposed to NIC and TFM during sea lamprey control treatments. NIC was extracted from fortified channel catfish and rainbow trout fillet tissue with a series of acetone extractions and cleaned up on C(18) solid-phase extraction cartridges. NIC concentrations were determined by HPLC with detection at 360 and 335 nm for rainbow trout and catfish, respectively. Recovery of NIC from rainbow trout (n = 7) fortified at 0.04 microg/g was 77 +/- 6.5% and from channel catfish (n = 7) fortified at 0.02 microg/g was 113 +/- 11%. NIC detection limit was 0.0107 microg/g for rainbow trout and 0.0063 microg/g for catfish. Percent recovery of incurred radioactive residues by this method from catfish exposed to [(14)C]NIC was 89.3 +/- 4.1%. Percent recoveries of NIC from fortified storage stability tissue samples for rainbow trout (n = 3) analyzed at 5 and 7.5 month periods were 78 +/- 5.1 and 68 +/- 2.4%, respectively. Percent recoveries of NIC from fortified storage stability tissue samples for channel catfish (n = 3) analyzed at 5 and 7.5 month periods were 88 +/- 13 and 76 +/- 21%, respectively.  相似文献   

13.
Cookies were produced from different sorghum flours to determine their potential as vectors of antioxidants. Different sorghum cultivars and their flour extraction rates were evaluated for their effects on phenolic content and antioxidant activity of the cookies. Consumer acceptance of the sorghum cookies was compared with that of wheat flour cookies. For each sorghum cultivar, cookies of 100% extraction rate flours had two to three times more total phenolics compared with those of 70% extraction rate flours, while antioxidant activity was 22–90% higher. Cookies of the condensed tannin sorghum had two to five times more phenolics compared with those of condensed tannin‐free sorghum. Antioxidant activity was 145–227 μMol Trolox equivalents (TE)/g in cookies of condensed tannin sorghum compared with 10–102 μMol TE/g in those of condensed tannin‐free sorghum. The sorghum flours had slightly higher phenolic content and antioxidant activity values than their corresponding cookies. Cookies of the red tannin‐free sorghum flours (PAN 8564/8446) were equally liked as wheat flour cookies, except for texture. However, cookies of condensed tannin sorghum were least accepted compared with wheat flour cookies despite their high antioxidant activity.  相似文献   

14.
Environmental concerns, the disposal cost of hazardous waste, and the time required for extraction in current methods encouraged us to develop an alternate method for analysis of wheat flour lipids. Supercritical fluid extraction (SFE) with carbon dioxide has provided that medium and the method is fully automatic. Crude fats or nonstarch free lipids (FL) were extracted from 4–5 g of wheat flour by an SFE system. To develop optimum conditions for SFE, various extraction pressures, temperatures, and modifier volumes were tried to provide a method that would produce an amount of lipids comparable to those extracted by the AACC Approved Soxhlet Method and the AOCS Official Butt Method using petroleum ether as solvent. Using several wheat flour samples, the best conditions were 12.0 vol% ethanol (10.8 mol%) at 7,500 psi and 80°C to extract the amount of FL similar to those by the AACC and AOCS methods. Using solid‐phase extraction, lipids were separated into nonpolar lipid (NL), glycolipid (GL), and phospholipid (PL) fractions. The mean value of five flours was 1.15% (flour weight, db) by the SFE method, 1.07% by the Butt method, and 1.01% by the Soxhlet methhod. The SFE‐extracted lipids contained less NL and more GL than either the Butt or Soxhlet methods. All three methods extracted lipids with qualitatively similar components. The overall benefit for SFE over the Soxhlet or Butt methods was to increase the number of samples analyzed in a given time, reduce the cost of analysis, and reduce exposure to toxic chemicals.  相似文献   

15.
Asian noodles were prepared by an objective laboratory method that included adding optimum water to the dry ingredients, mixing the ingredients to homogeneous salt distribution, and sheeting of the dough under low shear stress. The lightness (L*) values of alkaline‐ and salt‐noodle doughs made from 65% extraction hard white wheat flours (except KS96HW115 flour at ≈70% extraction) were higher than those from 60% extraction hard red wheat flours (except Karl 92 flour at ≈70% extraction). A hard white spring wheat, ID377s, and a Kansas line of hard white winter wheat, KS96HW115, to be released in 2000, gave the highest L* values for dough sheets stored for 2 and 24 hr at 25°C. Cooking losses were 5–9 percentage points higher for alkaline noodles than salt noodles, but the cooking yields of the two types of Asian noodles were almost the same. Cooked alkaline noodles made from a high‐swelling flour (SP93≈21 g/g) gave higher tensile strength than those made from several low‐swelling flours (SP93 ≈15 g/g) with the same protein contents (≈12.5%). However, the cooked salt noodles gave the same tensile strength.  相似文献   

16.
《Cereal Chemistry》2017,94(3):532-538
This research is the first analytical method to isolate and determine cholecalciferol (vitamin D3) in cereal samples. Ultrasonic‐assisted extraction followed by dispersive liquid‐liquid microextraction as a fast, reliable, and highly sensitive method was employed for the preconcentration step. High‐performance liquid chromatography allowed an efficient and considerably faster analysis. Alcoholic KOH solution was employed for accomplishing the fast and easy release of vitamin D3 from the wheat flour and bread matrix. Effective factors in the microextraction process were investigated and optimized with response surface methodology based on a central composite design. Under the best conditions, the calibration curves showed high levels of linearity (R 2 > 0.999) for vitamin D3 in the range of 2–500 ng/g. The relative standard deviation for the seven analyses was 6.2%. The relative recoveries of vitamin D3 in spiked wheat flour and bread samples were 87–98%. The limit of detection and limit of quantitation were 0.7 and 2.1 ng/g, respectively. The method compared favorably with other methods for vitamin D3 analysis of various foods.  相似文献   

17.
The total plant sterol contents (free sterols and covalently bound structures) of the main cereals cultivated in Finland were determined. Furthermore, sterol contents were determined for different flour and bran fractions in the milling process of wheat and rye, as well as plant sterol contents in various milling and retail bakery products. The sample preparation procedure included acid and alkaline hydrolysis to liberate sterols from their glycosides and esters, respectively. Free sterols were extracted and, after recovery using solid‐phase extraction, derivatized to trimethylsilyl ethers for gas chromatography (GC) analysis. We used GC with a mass spectrometer (MS) for identification. When two cultivars of rye, wheat, barley, and oats grown in the same year were compared, the highest plant sterol content was observed in rye (mean content 95.5 mg/100 g, wb), whereas the total sterol contents (mg/100 g, wb) of wheat, barley, and oats were 69.0, 76.1, and 44.7, respectively. In addition, the 10 rye cultivars and breeding lines compared had total sterol contents of 70.7–85.6 mg/100 g. In the milling process of rye and wheat, the plant sterols fractionated according to the ash content of the corresponding milling product. In all cereal grain and milling product samples, sitosterol was the main sterol. The level of stanols differed in the different milling process samples; it was lower in the most refined rye and wheat flours (≈15%) than in the bran fractions (≈30% in the bran with 4% ash content). Rye bread with whole meal rye flour as the main or only ingredient was a good source of sterols. Sterol content was higher than that of wheat bread, whereas plant sterol content of other bakery products was affected by the type and amount of fat used in baking.  相似文献   

18.
A reverse-phase liquid chromatographic (LC) method is described for simultaneously determining 5 coccidiostats--aklomide, dinsed, ethopabate, nitromide, and zoalene in chicken liver. The method entails blender extraction of 10 g liver with ethyl acetate, column chromatography through Sephadex LH-20 and neutral alumina, and LC analysis on a C18 column with UV detection at 260 nm. The drugs were eluted from Sephadex with methanol-benzene (10 + 90), from alumina with methanol-dichloromethane (10 + 90), and from C18 with acetonitrile-water (linear gradient: 25% acetonitrile for 10 min, increasing to 55% over 15 min; flow rate 1 mL/min). Liquid chromatography was completed in 40 min and calculations were based on peak height measurements. Average recoveries of the coccidiostats from fortified liver ranged from 72 to 97%, except for dinsed, which showed a relatively constant average recovery of 57%. The detection limit for the standards was 2.5 ng on column. Levels as low as 50 ng/g were detected in fortified liver samples.  相似文献   

19.
The total protein of gluten obtained by the cold‐ethanol displacement of starch from developed wheat flour dough matches that made by water displacement, but functional properties revealed by mixing are altered. This report characterizes mixing properties in a 10‐g mixograph for cold‐ethanol‐processed wheat gluten concentrates (CE‐gluten) and those for the water‐process concentrates (W‐gluten). Gluten concentrates were produced at a laboratory scale using batter‐like technology: development with water as a batter, dispersion with the displacement fluid, and screening. The displacing fluid was water for W‐gluten and cold ethanol (≥70% vol, ‐12°C) for CE‐gluten. Both gluten types were freeze‐dried at ‐10°C and then milled. Mixograms were obtained for 1) straight gluten concentrates hydrated to absorptions of 123–234%, or 2) gluten blended with a low protein (9.2% protein) soft wheat flour to obtain up to 16.2% total protein. The mixograms for gluten or gluten‐fortified flour were qualitatively and quantitatively distinguishable. We found differences in the mixogram parameters that would lead to the conclusion of greater stability and strength for CE‐gluten than for W‐Gluten. Differences between the mixograms for these gluten types could be markedly exaggerated by increasing the amount of water to the 167–234% range. Mixograms for evaluation of gluten have not been previously reported in this hydration range. Mixograms for fortification suggest that less CE‐gluten than W‐gluten would be required for the same effect.  相似文献   

20.
Accurate analytical procedures are needed to improve understanding of the fate and transport of trifluralin, a chemical widely used as a herbicide. Analytical determination of trifluralin is challenging due to its hydrophobic, yet volatile, character and its tendency to degrade into numerous metabolites. In this research, efficient analytical methods for fortified and field-incurred soils were developed for simultaneous quantitation of trifluralin, I [2,6-dinitro-N,N-dipropyl-4-(trifluoromethyl)benzenamine, CAS Registry No. 1582-09-8; CAS Registry No. have been provided by the author], a trifluralin metabolite, II [2,6-dinitro-N-propyl-4-(trifluoromethyl)benzenamine, CAS Registry No. 2077-99-8], and a related trifluoromethyldinitroaniline isomer of trifluralin, III [2,4-dinitro-N,N-dipropyl-6-(trifluoromethyl)benzenamine, CAS Registry No. 23106-20-9]. Extractions of trifluralin (0.5 and 2.5 microg/g) from silt loam, sandy loam, and silty clay soils were compared. A method was developed for the supercritical fluid extraction of trifluralin from soil using modified supercritical carbon dioxide, and the effects of cosolvent, pressure, and flow rate on recovery were evaluated. Supercritical fluid extraction was compared to liquid vortex extraction and automated Soxhlet (soxtec) extraction. Solid-phase extraction was examined for purifying soil extracts. Protocols were developed for analysis of extracts by gas and/or liquid chromatography. Immunoassay was investigated but proven to be impractical for this analysis. Soil properties and extraction methods were observed to affect the level of coextracted background interferences. Trifluralin exhibited concentration-dependent recovery regardless of soil series or extraction method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号