首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a factorial laboratory experiment, specimens of Dendrobaena octaedra (Lumbricidae) and Cognettia sphagnetorum (Enchytraeidae) were added to microcosms with unlimed (pH 4.5) and limed (pH 5.5) coniferous mor humus containing bacteria, fungi, protozoans, and nematodes. Effects on the nematodes were assessed after an incubation period of 207 days at 15°C and a soil moisture content of 60% water-holding capacity. When D. octaedra was absent, nematodes were significantly more abundant in the limed humus than in the unlimed humus. The presence of D. octaedra markedly reduced the number of nematodes in the limed humus but not in the unlimed one, where D. octaedra lost weight and probably did not feed. Most nematodes (92–97%) were bacterial-feeders. The presence of D. octaedra did not decrease the number or biomass of bacteria, indicating that the reduction in nematode numbers was not the result of competition for bacteria between D. octaedra and the nematodes. The presence of C. sphagnetorum had no effect on the nematodes in either of the treatments. We suggest that the reason why D. octaedra, but not C. sphagnetorum, reduced nematode numbers is that the former was more likely to inadvertently ingest the nematodes because of its much greater size. The results provide a possible explanation for the observation that liming sometimes enhances nematode populations, when lumbricids do not respond to the treatment, and sometimes causes decreases, when lumbricids increase in number.  相似文献   

2.
Influence of sewage sludge and heavy metals on nematodes in an arable soil   总被引:4,自引:0,他引:4  
Summary The abundance of nematodes was investigated in agricultural plots treated in three different ways, the first with no treatment, the second with 300 m3 ha-1 a-1 raw sewage sludge and the third with 300 m3 ha-1 a-1 sewage sludge with the addition of heavy metals. The nematodes were determined down to the genus and were assigned to five feeding groups. Total nematode numbers were highest in the site treated with sewage sludge and heavy metals. The smallest total numbers were found in the control site. The plant-feeding nematode genera showed different patterns of abundance depending on the sludge treatment and heavy metal content. For the mycophagic and bacteriophagic nematodes, numbers increased with the amount of sludge, especially in the sites with a higher heavy metal content. The family Rhabditidae was the most numerous group in the sludge plus heavy metals treatment. In contrast to these findings, the omnivorous nematodes were very rare in the sludgetreated plots and were completely absent in plots treated with sludge plus heavy metals, whereas predatory nematodes were numerous only after the application of sludge alone.  相似文献   

3.
Summary The effect of liming on in-situ N transformations was studied in two stands of different ages of each of Scots pine (Pinus sylvestris L.), Douglas fir [Pseudotsuga menziesii (Mirb.) Franco], and common oak (Quercus robur L.). The stands were located on acid sandy soils in an area with high atmospheric N input. The organic matter of the upper 10-cm layer of the soil, including the forest floor, had a relatively high N content (C: N ratio <25) in all stands. Using a sequential core technique, N transformations were measured in both control plots and plots that had been limed 3 years previously with 3 t ha-1 of dolomitic lime. Limed plots had a higher net NO inf3 sup- production and a higher potential for NO inf3 sup- leaching than the controls in all stands except that of the younger oak. Net N mineralization did not differ significantly between limed and control plots in oak stands and younger coniferous stands but was significantly lower in the limed plots of the older coniferous stands. It is concluded that long-term measurements of net N mineralization in limed forest soils are needed to evaluate the effect of liming with respect to the risk of groundwater pollution.  相似文献   

4.
In northern boreal forests the occurrence of endogeic and anecic earthworms is determined by soil pH. Increasing evidence suggests that large detritivorous soil animals such as earthworms can influence the other components of the decomposer community. To study the effects of earthworms and pH on soil nematode and enchytraeid communities, a factorially designed experiment was conducted with Lumbricus rubellus and/or Aporrectodea caliginosa. Earthworms were added to "mesocosms" containing unlimed (pH 4.8) or limed (pH 6.1) coniferous mor humus with their natural biota of micro-organisms. In the absence of earthworms, nematodes were significantly more abundant in limed than in unlimed humus. Earthworms markedly decreased the numbers of nematodes both in unlimed and limed soils. Earthworm activities eliminated enchytraeids in unlimed soil, but liming improved the survival of some species. It was concluded that liming of soil, either alone or mediated by the earthworm populations, is likely to affect soil nematode and enchytraeid community and mineralisation.  相似文献   

5.
The effects of clear-cutting on the ammonia-oxidising bacterial community were studied in the soil of limed and non-limed spruce forest plots located in the central part of southern Sweden. The communities were studied using denaturing gradient gel electrophoresis (DGGE) profiling after polymerase chain reaction (PCR) amplification from total DNA with primers reported to be specific for -subgroup ammonia-oxidising bacteria. The bands on the DGGE were sequenced and each unique sequence was interpreted as representing one ammonia-oxidising population. The relative abundance of each population was determined by measuring the fluorescence of the respective DGGE bands. In both limed and non-limed soil, the same two Nitrosospira populations were found, one belonging to cluster 2 (NScl2) and one to cluster 4 (NScl4). However, while NScl4 first appeared a year after the clear-cutting in the non-limed plot, it was present both before and after the cutting in the limed plot. Irrespective of previous liming, clear-cutting caused a shift in the ammonia-oxidiser community, from dominance by the NScl2 population to a community with approximately equal relative abundance of NScl2 and NScl4. In both plots the total size of the community increased after clear-cutting (based on increased DGGE band intensity), most likely due to increased NH4+ availability, but the growth response was faster in the limed plot. Hence, the prior liming increased the responsiveness of the ammonia-oxidisers to the changes caused by cutting. This is the first study to report the effects of clear-cutting on the ammonia-oxidising community, and the results show a clear correlation between increased potential nitrification and a shift in the ammonia-oxidiser community.  相似文献   

6.
Effects of watershed liming on the biomass and tissue chemistry of planted Picea rubens Sarg. (red spruce) seedlings were investigated for two growing seasons after two subcatchments in a forested Adirondack, New York (U.S.A.) watershed were limed aerially with 6.89 t ha-1 of calcitic limestone (CaCO3). Picea rubens has been the focus of numerous atmospheric deposition research studies, but less well investigated for responses to amelioration. Picea rubens seedlings were planted in limed and reference subcatchments and harvested the first and second growing season after liming to measure total, foliar, and stem (i.e., branch) biomass, and concentrations of Ca, Mg, K, Al, Na, and P in the annual growth increment of foliage and branches. In the second year after liming, both foliage and stem biomass of seedlings from reference plots were at least 50% greater than seedling biomass from limed plots. Seedlings in limed areas had significantly greater foliar concentrations of Mg and P in the first year after liming, but not in the second year. Foliar Ca was not significantly different in limed than reference seedlings. Foliar Al concentrations were greater in reference than limed seedlings, but still below documented toxicity levels. Stem concentrations of Mg, K, and P in seedlings from limed areas decreased significantly between the first and second growing season after liming, while reference seedling stem concentrations either increased or declined only slightly. Correlations among foliar nutrients and foliar biomass from limed plots were negative and suggest an inverse dilution effect. Foliar Al concentrations were negatively correlated with Ca, Mg, K, and P in seedlings from reference plots, but positively correlated in limed plots. The adverse response of P. rubens seedlings to lime may reflect changes in nutrient availability associated with changes in soil pH.  相似文献   

7.
After liming of twelve acidified rivulets in central Sweden, the fauna increased its mean similarity to the fauna in unlimed non-acidified references. All species which were found after liming were also found in other waters north and south of the limed area. The species composition after liming should thus be considered as typical of the limed geographical area. Before liming, the fauna was characterized by the acid tolerant mayfly Leptophlebia spp. After liming the fauna was characterized by the acid sensitive mayfly genus Baetis, an important food organism for young brown trout. The restoration of the water quality by liming resulted in an apparently “pristine” benthic invertebrate community, enhancing the conditions for salmonid fish.  相似文献   

8.
Soil samples were collected from litter, humus and mineral soil layers to a depth of 50 cm in 37–42 year-old limed and unlimed plots in one beech and three spruce stands in S Sweden for determination of carbon (C) and nitrogen (N) pools, C and N mineralization rates and nitrification rates. The samples were sifted while still fresh and incubated at a constant temperature (15°C) and soil moisture (50 % WHC) for 110–180 days with periodic subsamplings. The C and N pools in the uppermost soil layers were significantly lower in plots limed with 9–10 t CaCO3 ha?1 than in unlimed plots, whereas the pools in the deeper mineral soil did not differ markedly between the treatments. In the whole soil profile, the C and N pools had, on average, decreased by 16% (P<0.05) and 11% (P>0.05), respectively, after 40 yrs. The smaller reduction in N pools resulted in significantly lower C:N ratios and increased N immobilization in the limed spruce plots but not in the limed beech plot. C and net N mineralization rates were increased in some of the limed plots and decreased in others. This indicates that liming can still have a stimulatory effect after 40 yrs in some soils. The nitrification potential was increased in the limed plots. Liming did not increase tree growth in the stands investigated. We conclude that liming with high doses of CaCO3 is likely to reduce pools of soil C and possibly even soil N in relation to unlimed areas in spruce and beech forests in S Sweden. If trees in limed stands do not respond with better growth, the treatment will thus result in a net ecosystem loss of C and N in relation to unlimed areas. It was not possible to conclude whether the effects of low doses of lime would be similar to those of high doses.  相似文献   

9.
Rapid expansion of Juncus bulbosus L. and the concomitant suppression of isoetid plant species has often been observed in acidifying soft water lakes in Western Europe. Experimental studies have shown that this mass development of J.bulbosus was caused by changes in the carbon and nitrogen budgets in these ecosystems. Acidification leads to temporarily strongly increased carbon dioxide (CO2) levels in the slightly calcareous sediment and to accumulation of ammonium as a result of a reduced nitrification rate in acidifying waters. Many acidifying Scandinavian soft water lakes, however, have a well developed macrophyte vegetation. It is suggested that this is related with the non-calcareous sediments of these lakes. After liming, however, mass development of J. bulbosus and/or Sphagnum spec. has been observed in Swedish and S.W. Norwegian lakes. From field experiments it has become clear that part of the lime is deposited on the sediments leading to an increase of mineralisation rates, CO2 production, sediment pore water levels of phosphate and ammonium and to a decrease of the nitrate concentrations in the sediment. These changes have been earlier observed in acidifying West European waters. Rooted species like J.bulbosus can only benefit from the higher nutrient levels in the sediment when the CO2 level of the water layer is relatively high as this species is adapted to leaf carbon uptake. It is demonstrated that gradual reacidification by the acid water from the catchments and the increased flux of carbonic acid from the limed sediments to the overlying water leads to increased CO2 levels in the water layer of the limed lakes already a few months after liming.  相似文献   

10.
Studies of benthic animal communities in three limed Norwegian rivers showed different progress in the recovery response of sensitive animals. In River Vikedal highly sensitive species established populations in the limed part of the river after a few months. The response was slower in River Audna. Longer distances to parental populations was probably the main reason for this. The benthic community of the main River Ogna was unstable, while continuous liming of a highly acidified tributary did not result in improvement of the fauna. In River Vikedal, the bivoltine mayfly Baetis rhodani was more numerous in the autumn samples indicating critical water quality during spring. An adjustment of the pH of the limed water resulted in an increase of this species. The relative abundance of sensitive animals increased downstreams from the point of liming. This may partly be explained by clogging of powdered limestone in the areas closest to the lime doser. A better and more stable water chemistry in the downstream reaches is probably also important. Contrary, the suspended lime did not influence the abundance of filter-feeders.  相似文献   

11.
The aim was to determine if changes in C and N mineralization after acidification and liming could be explained by changes in the soil organism biomass. Intact soil cores from F/H layers in a Norway spruce (C:N=31) and a Scots pine (C:N=44) stand in central Sweden were treated in the laboratory for 55 days with deionized water (control), weak H2SO4 (successively applied as 72 mm of acid rain of pH 3.1), strong H2SO4 (applied as a single high dose of pH 1), and lime CaCO3. Strong acidification reduced C mineralization and increased net N mineralization in both soils. Weak acidification resulted in similar but less pronounced effects. Liming initially stimulated C mineralization rate, but the rates declined, indicating that an easily available C source was successively used up by the microorganisms. Liming also increased net N mineralization in the C:N=31 humus, but not significantly in the C:N--44 humus. Strong acidification generally affected the amounts of FDA-active fungal hyphae, nematodes and enchytraeids more than the other treatments did. The increases in net N mineralization after acidification and liming could only partly be explained by the decreases in biomass N in soil organisms. Mineralization of biomass N from killed soil organisms could at the most explain up to about 30% of the increase in net N mineralization after strong acidification. Most of the effects on N mineralization seemed to depend on the fact that acidification reduced and liming increased the availability of C and N to the microorganisms. Furthermore, acidification seemed to reduce the incorporation of N from dead organisms into the soil organic matter and, thereby, make the N compounds more readily available to microbial decomposition and mineralization.  相似文献   

12.
Abstract

Surface liming will prevent the formation of an ‘acid roof’ on the surface of soil cropped in no‐till corn (Zea mays L.). A study was begun in 1985 to determine the effectiveness of unincorporated liming in raising pH in no‐till soil which had developed significant acidity throughout the upper 15 cm. Lime was applied at 0, 3.36, 6.72 and 10.08 Mg ha‐1. All lime was applied on 26 April 1985 and was not incorporated. The pre‐liming pH at 0‐5 cm below the surface was 4.5; after two months the pH was raised to 5.6, 5.8, and 6.0 by 3.36, 6.72 and 10.08 Mg ha‐1 of lime, respectively. After 19 months soil‐pH was raised to 6.0, 6.4 and 6.6 by liming at 3.36, 6.72 and 10.08 Mg ha‐1 respectively. Soil‐pH below 5 cm was not affected by any rate of lime during the first 19 months after liming. Tissue analysis of corn ear leaves indicated that calcium uptake was increased significantly by lime in 1985, while manganese uptake was significantly reduced. In 1986, increases in calcium were greater than in 1985 and addtional significant reduction in manganese uptake was accompanied by significantly reduced zinc and copper uptake. In both 1985 and 1986, a trend toward lower average corn grain yield in unlimed plots than in limed plots was noted, but the yield increases due to lime were not statistically significant in either year. This study will be continued as a long term investigation of lime penetration into no‐till soil and response of corn to soil‐pH changes.  相似文献   

13.
Effects of acidic minesoil on sericea lespedeza [Lespedeza juncea (L.F.) var. sericea (Mig.)] and its nitrogen (N2)‐fixing symbiotic relationship with Bradyrhizobium spp. were examined. Sericea lespedeza was grown in pots with N fertilization, without N fertilization, or with commercial Bradyrhizobium as a seed inoculant. Minesoil (pH 5.2) was fertilized with calcium (Ca), phosphorus (P), molybdenum (Mo), and potassium (K), and the pH level was adjusted to 4.8 or 4.5 with aluminum or iron sulfate [Al2(SO4)3; Fe2(SO4)3]. Minesoil was also limed to pH 6.1. Shoot dry weights, shoot N concentrations, nodule dry weights, and nodule numbers were significantly lower (P < 0.05) when inoculated plants were grown in soil at pH 4.5 and 4.8 compared to limed soil. Thus, the N2 fixation process was adversely affected below pH 5.0. Nitrogen‐fertilized plants grew well in acidified soil, and there were no significant differences in shoot dry weights of such plants among the soil acidification treatments including limed soil. Thus, the N2‐fixing symbiosis appeared to be more sensitive to acidified soil than the plant host. The effects of Al toxicity versus other factors could not be determined because Al2(SO4)3‐ and Fe2(SO4)3‐amended soils contained similar levels of toxic Al at the highest pH (4.8) that prevented N2 fixation.

Time periods required for cells of Bradyrhizobium strains to multiply by a factor of 104 were significantly longer (P ≤ 0.05) in extracts of Al2(SO4)3‐amended soil (pH 4.8 and 4.5) than in extracts of calcium carbonate [CaCO3]‐amended soil (pH 6.1). These increases suggested that reduced multiplication of Bradyrhizobium in acidified minesoils may have been at least partially responsible for the large decreases in nodulation and N2 fixation observed in these soils. It was also reasoned that the inability of existing bacteria to infect and nodulate plant roots may also have been a factor, based on the high inoculation rates used and the abilities of Bradyrhizobium cells to survive and multiply (albeit at a reduced rate) in extracts of acidified soil. Sericea lespedeza is known to tolerate soils of pH 4.5. However, results of this study suggested sericea lespedeza may not fix appreciable N2 in acidic soil below pH 5 when inoculated with commercial Bradyrhizobium, even after the establishment of lespedeza plants tolerant of such conditions.  相似文献   

14.
A two year study of planktonic and littoral microcrustaceans (Cladocera and Copepoda) from 15 lakes in the southeastern part of Norway, Østfold county, document the recovery of acidified lakes due to liming. Six lakes that where limed about 10 years ago, seven acid and two neutral reference lakes, were sampled twice a year (1998 and 1999). One acid lake was limed in autumn 1998. Qualitative nethaul samples from the deepest part of the lake and from the most frequent habitat in the littoral zone were used. The limed lakes had a species composition which indicates that these lakes are about to recover. Species associated with neutral lakes dominates while acid-tolerant species were rare. The acid-sensitive species, Daphnia longispina and D. cristata, were found in the limed lakes. This study shows the usefulness of a low-cost sampling program where microcrustaceans are used as bioindicators of recovery.  相似文献   

15.
Long-term effects of liming and short-term effects of an experimentally induced drought on microbial biomass and activity were investigated in samples from the O-layer (Of/Oh) and uppermost mineral soil (0—10 cm) in a spruce forest near Schluchsee (Black Forest, South-West Germany). Seven years after lime application a marked increase of pH values was restricted to the O-layer. The contents of C and N in the O-layer of the limed plot appeared to be lower, whereas in the A-horizon from the limed plot the contents of C and N appeared to be higher than on the control. However, these differences were statistically not significant due to a distinct spatial variability of topsoil conditions. On the limed plots Cmic, Nmic, and Pmic in the O-layer were lower in comparison to the control whereas differences in the A-horizon were negligible. In both sampling depths of the limed plot protease activity was higher while N-mineralization was lower. The other microbial activities studied (basal respiration, catalase activity) followed no consistent pattern after liming. Drought and drought in combination with liming, respectively, had no clear effects on microbial biomass and activity. Only in the A-horizon of the control, there is some evidence for drought stress for microorganisms. The high variability of results from the drought experiment (roof installation) is likely due to the marked spatial variability of top soil properties as well as imperfect and uneven achievement of experimental drought. Nevertheless, our study indicates that long-term effects of liming on microorganisms highly depend on site conditions. Thus, liming operations which currently affect vast areas of forest land should be accompanied by monitoring of soil organisms and their activities to reduce the possibility of a loss in functional diversity of soil organisms.  相似文献   

16.
The effect of liming on microbial biomass C and respiration activity was studied in four liming experiments on young pine plantations. One of the experimental sites had been limed and planted 12 years before, two 5 years before, and one a year before soil sampling. The youngest experimental site was also treated with ash fertilizer. Liming raised the pHKCl of the humus layer by 1.5 units or less. Microbial biomass was measured using the fumigation-extraction and substrate-induced respiration methods. Liming did not significantly affect microbial biomass C, except in the experiment which had been limed 11 years ago, where there was a slight biomass increase. Basal respiration, which was measured by the evolution of CO2, increased in the limed soils, except for the youngest experiment, where there was no effect. Ash fertilization raised the soil pHKCl by about 0.5 unit, but did not influence microbial biomass C or basal respiration. Fumigation-extraction and substrate-induced respiration derived microbial biomass C values were correlated positively with each other (r=0.65), but substrate-induced respiration gave approximately 1.3 times higher results. In addition, the effect of storing the soil samples at +6 and -18°C was evaluated. The effects were variable but, generally, the substrate-induced respiration derived microbial biomass C decreased, and the fumigation-extraction derived microbial biomass C and basal respiration decreased or were not affected by storage.  相似文献   

17.
The effects of five consecutive applications, every 4 months, of Counter, Furadan, Mocap, Nemacur, Rugby, and Vydate on functional root percentage, production parameters, and on enhanced biodegradation were compared in a commercial banana plantation in Costa Rica. To quantify nematode numbers and estimate functional root percentage, root samples were taken monthly from the field experiment. The enhanced biodegradation test was carried out in the laboratory. Samples taken from the field after five consecutive applications of each nematicide were treated in the following way: (1) not sterilized and no nematicide applied; (2) not sterilized but nematicide applied; and (3) nematicide applied after sterilization. The number of Radopholus similis which had penetrated the maize plantlets was used as a parameter to determine the degradation of the applied nematicide. Degradation was measured 0, 2, 4, 6 and 8 weeks after inoculation of pregerminated maize plantlets with 500 nematodes in soil under laboratory conditions. At harvest, 20 months after starting the field experiment, the lowest percentage of functional roots ( P =0.024) and bunch weight ( P =0.0001) were found in the non-treated control, followed by the Furadan treatment. On average, nematicides increased the bunch weight by 38%. In general, higher bunch weights coincided with higher percentages of functional roots. Furadan showed a high level of enhanced biodegradation while for Counter and Rugby this phenomenon was not detected. In the case of Mocap and Nemacur, a relatively high level of enhanced biodegradation in the soil biotest coincided with a high number of nematodes per 100 g roots in the field experiment. A high correlation between mean nematode numbers per 100 g roots and mean percentage of functional roots was observed ( R 2=0.81, P =0.006) for all treatments together. Data show that a rotation of different nematicidal molecules is the best option for long-term nematode management in commercial banana plantations.  相似文献   

18.
The effects of simulated acid rain and acidification, combined with liming, on amylolytic, laminarinolytic and xylanolytic activity in whole body homogenates of enchytraeids Cognettia sphagnetorum were studied under field conditions. Simulated acid rain (pH 2.5) and simulated acid rain with subsequent liming (CaCO3) were applied to experimental plots in a mixed forest soil. The pH of the soil was lowered by acid treatment (4.3), while the pH increased after liming (6.3) in comparison with the control (4.5). Acidification of soil caused a decrease in enchytraeid body mass and amylolytic activity. In acidified plots after liming, amylolytic activity and laminarinolytic activity increased, while live body mass decreased. The enzymatic activity of enchytraeids depended on season and also indirectly on individual mean mass. Received: 12 February 1996  相似文献   

19.
Atmospheric S and N compounds accumulate in the surface layers of the forest soil environment, where they affect soil biota and nutrient availability for tree growth. In addition to measures to reduce the input of atmospheric deposition, removal of the ectorganic layers by sod-cutting may contribute to the recovery of the soil ecosystem. In this study, we examined the effects of sod-cutting on the nematode fauna of a Scots pine forest, 1 and 3 years after treatment. Sod-cutting reduced the total numbers of nematodes, nematode taxa, and Maturity Index. The first taxa that colonized the newly developing organic layers after sod-cutting had low colonizer-persister (c-p) values, and appeared to have originated from the tree canopy and mineral soil. Colonization, presumably from nearby untreated plots, was observed 3 years after the sod-cutting. The initial (after 1 year) nematode community of the new organic layer comprised hyphal-, bacterial-, and algal-feeding nematodes, whereas plant-feeders, predators, and omnivores were not detected. The composition of the nematode fauna in the ectorganic layers 15 and 39 months after sod-cutting was highly similar to that of the nematode fauna of the early stages of a primary succession of Scots pine forest in a reference area in the Netherlands. In the mineral soil only insect parasites were negatively affected by sod-cutting.  相似文献   

20.
Summary The effects of irrigation, acid precipitation and liming on the bioactivity in a spruce forest soil were measured with different tests. Except for the iron reduction test and the FDA hydrolysis, the highest activities were measured in the upper horizons and mostly decreased gradually in the deeper ones. The determination of heat output and respiration without additional energy supply and ATP measurement gave similar results: acid precipitation inhibits the bioactivity in O1 and Of1, layers; lime stimulated it mostly in Of2 horizons. Except for the results of ATP measurement, in Of2 horizons the influence of lime exceeded that of acid irrigation. The results obtained from respiration and microcalorimetric measurements after the introduction of an energy supply were similar: Humidity, derived either from acid precipitation or from irrigation, stimulated the activity as well as lime, clearly in Of2, to a smaller extent also in deeper horizons. The bioactivity in Oft increased significantly in the plots in the order: control, plot with acid irrigation, plot with normal irrigation, limed plot, limed plot with acid irrigation, and limed plot with normal irrigation. The difference between irrigated and acid-irrigated plots is due to the inhibitive effects of protons and SO 4 2– . The FDA hydrolysis test showed a clear stimulative effect of humidity in Of horizons of non-limed plots. With the iron reduction test, stimulation in acid-irrigated and inhibition in limed samples was demonstrated. The maximum bioactivity measured with this method was localized in deeper horizons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号