首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Red brome (Bromus rubens), an exotic annual grass, can dominate soil seed banks and poses serious threats to mature native plant communities in the Mojave Desert by competing with native species and providing fine fuels that facilitate widespread wildfire. By exploring how seed bank density and composition in burned areas change over time since fire (TSF), we can improve our understanding of how the seed banks are affected by fire. Samples of the 5-cm-deep soil seed bank were collected from two microsites (under shrubs, in open interspaces) within paired burned and unburned areas on 12 fires ranging from 5–31 yr TSF. Seed bank samples were assayed using the emergence method and seed densities were compared among TSFs, burn status (burned, unburned), and microsites for the species that emerged. Red brome soil seed bank density was spatially variable and TSF rarely predicted abundance. Overall, undershrub seed densities did not differ between burned and unburned areas. However, at some fire sites, seed densities in interspaces were greater in burned than unburned areas. Although native seed densities were low overall, they did not appear to differ according to burn status. Studies have shown that red brome plant and seed bank densities can be greatly reduced immediately after fire. Management efforts that focus on this initial colonization window may be able to take advantage of diminished red brome seed densities to limit its reestablishment while facilitating the establishment of native species. However, this window is brief, as our findings indicate that once reestablished, red brome soil seed densities in burned areas can be similar to those in unburned areas within 5 yr.  相似文献   

2.
Western juniper (Juniperus occidentalis Hook.) encroachment and exotic annual grass (medusahead [Taeniatherum caput-medusae L. Nevski] and cheatgrass [Bromus tectorum L.]) invasion of sagebrush (Artemisia L.) communities decrease ecosystem services and degrade ecosystem function. Traditionally, these compositional changes were largely confined to separate areas, but more sagebrush communities are now simultaneously being altered by juniper and exotic annual grasses. Few efforts have evaluated attempts to restore these sagebrush communities. The Crooked River National Grassland initiated a project to restore juniper-encroached and annual grass-invaded sagebrush steppe using summer (mid-July) applied prescribed fires and postfire seeding. Treatments were unburned, burned, burned and seeded with a native seed mix, and burned and seeded with an introduced seed mix. Prescribed burning removed all juniper and initially reduced medusahead cover but did not influence cheatgrass cover. Neither the native nor introduced seed mix were successful at increasing large bunchgrass cover, and 6 yr post fire, medusahead cover was greater in burned treatments compared with the unburned treatment. Large bunchgrass cover and biological soil crusts were less in treatments that included burning. Exotic forbs and bulbous bluegrass (Poa bulbosa L.), an exotic grass, were greater in burned treatments compared with the unburned treatment. Sagebrush communities that are both juniper encroached and exotic annual grass invaded will need specific management of both juniper and annual grasses. We suggest that additional treatments, such as pre-emergent herbicide control of annuals and possibly multiple seeding events, are necessary to restore these communities. We recommend an adaptive management approach in which additional treatments are applied on the basis of monitoring data.  相似文献   

3.
Knowledge of how tallgrass prairie vegetation responds to fire in the late growing season is relatively sparse and is based upon studies that are either spatially or temporally limited. To gain a more robust perspective of vegetation response to summer burning and to determine if repeated summer fire can drive vegetational changes in native tallgrass prairie, we evaluated species cover and richness over a 14-yr period on different topographic positions from ungrazed watersheds that were burned biennially in the growing season. We found that annual forbs were the primary beneficiaries of summer burning, but their fluctuations varied inconsistently among years. Concomitantly, species richness and diversity increased significantly with summer burning but remained stable through time with annual spring burning. After 14 yr, species richness was 28% higher in prairie that was burned in the summer than in prairie burned in the spring. Canopy cover of big bluestem (Andropogon gerardii Vitman) and Indiangrass (Sorghastrum nutans [L.] Nash) increased significantly over time with both summer and spring burning, whereas heath aster (Symphyotrichum ericoides [L.] Nesom), aromatic aster (Symphyotrichum oblongifolium [Nutt.] Nesom), and sedges (Carex spp.) increased in response to only summer burning. Kentucky bluegrass (Poa pratensis L.) cover declined in both spring-burned and summer-burned watersheds. Repeated burning in either spring or summer did not reduce the cover or frequency of any woody species. Most perennial species were neutral in their reaction to summer fire, but a few species responded with large and inconsistent temporal fluctuations that overwhelmed any clear patterns of change. Although summer burning did not preferentially encourage spring-flowering forbs or suppress dominance of the warm-season grasses, it is a potentially useful tool to increase community heterogeneity in ungrazed prairie.  相似文献   

4.
As wildland fire frequency increases around the globe, a better understanding of the patterns of plant community recovery in burned landscapes is needed to improve rehabilitation efforts. We measured establishment of seeded species, colonization of Bromus tectorum and other nonnative annual plants, and recovery of nonseeded native species in topographically distinct areas within five fires that burned Great Basin shrub-steppe communities in Elko County, Nevada. Plant density, frequency, and cover data were collected annually for 4 yr postfire. Vegetation composition varied among flat areas and north- and south-facing aspects, and changed over the course of the sampling period; recovery varied among sites. In general, B. tectorum densities were higher on south aspects, particularly 3 and 4 yr after fire, when densities increased dramatically relative to prefire conditions. Nonseeded native perennial grasses, forbs, and shrubs were abundant in three of the five fire sites, and were more likely to be present on north aspects and flat areas. Over time, nonseeded perennial grass densities remained relatively constant, and nonseeded forbs and shrubs increased. Seeded species were most likely to establish in flat areas, and the density of seeded perennial grasses, forbs, and shrubs decreased over time. Frequency and density measurements were highly correlated, especially for perennial species. Our results emphasize the value of considering site aspect and the potential for native regrowth when planning and monitoring restorations. For example, effective rehabilitation of south aspects may require the development of new restoration methods, whereas north aspects and flat areas in sites with a strong native component were not improved by the addition of seeded species, and may require weed control treatments, rather than reseeding, to improve recovery. Tailoring revegetation objectives, seed mixes, seeding rates, and monitoring efforts to conditions that vary within sites may lead to more cost effective and successful restoration.  相似文献   

5.
6.
Western juniper (Juniperus occidentalis Hook.) has expanded into sagebrush steppe plant communities the past 130 ? 150 yr in the northern Great Basin. The increase in juniper reduces herbage and browse for livestock and big game. Information on herbaceous yield response to juniper control with fire is limited. We measured herbaceous standing crop and yield by life form in two mountain big sagebrush communities (MTN1, MTN2) and a Wyoming/basin big sagebrush (WYOBAS) community for 6 yrs following prescribed fire treatments to control western juniper. MTN1 and WYOBAS communities were early-successional (phase 1) and MTN2 communities were midsuccessional (phase 2) woodlands before treatment. Prescribed fires killed all juniper and sagebrush in the burn units. Total herbaceous and perennial bunchgrass yields increased 2 to 2.5-fold in burn treatments compared with unburned controls. Total perennial forb yield did not differ between burns and controls in all three plant communities. However, tall perennial forb yield was 1.6- and 2.5-fold greater in the WYOBAS and MTN2 burned sites than controls. Mat-forming perennial forb yields declined by 80 ? 90% after burning compared with controls. Cheatgrass yield increased in burned WYOBAS and MTN2 communities and at the end of the study represented 10% and 22% of total yield, respectively. Annual forbs increased with burning and were mainly composed of native species in MTN1 and MTN2 communities and non-natives in WYOBAS communities. Forage availability for livestock and wild ungulates more than doubled after burning. The additional forage provided on burned areas affords managers greater flexibility to rest and treat additional sagebrush steppe where juniper is expanding, as well as rest or defer critical seasonal habitat for wildlife.  相似文献   

7.
Most wildfires occur during summer in the northern hemisphere, the area burned annually is increasing, and fire effects during this season are least understood. Understanding plant response to grazing following summer fire is required to reduce ecological and financial risks associated with wildfire. Forty 0.75-ha plots were assigned to summer fire then 0, 17, 34 or 50% biomass removal by grazing the following growing season, or no fire and no grazing. Root, litter, and aboveground biomass were measured before fire, immediately after grazing, and 1 yr after grazing with the experiment repeated during 2 yr to evaluate weather effects. Fire years were followed by the second driest and fifth wettest springs in 70 yr. Biomass was more responsive to weather than fire and grazing, with a 452% increase from a dry to wet year and 31% reduction from a wet to average spring. Fire reduced litter 53% and had no first-year effect on productivity for any biomass component. Grazing after fire reduced postgrazing grass biomass along the prescribed utilization gradient. Fire and grazing had no effect on total aboveground productivity the year after grazing compared to nonburned, nongrazed sites (1 327 vs. 1 249 ± 65 kg · ha-1). Fire and grazing increased grass productivity 16%, particularly for Pascopyrum smithii. The combined disturbances reduced forbs (51%), annual grasses (49%), and litter (46%). Results indicate grazing with up to 50% biomass removal the first growing season after summer fire was not detrimental to productivity of semiarid rangeland plant communities. Livestock exclusion the year after summer fire did not increase productivity or shift species composition compared to grazed sites. Reduction of previous years' standing dead material was the only indication that fire may temporarily reduce forage availability. The consistent responses among dry, wet, and near-average years suggest plant response is species-specific rather than climatically controlled.  相似文献   

8.
Fire suppression has led to large fuel accumulations in many regions of the United States. In response to concerns about associated wildfire hazards, land managers in the western United States are carrying out extensive fuel-reduction thinning programs. Although reductions in cover by woody vegetation seem likely to cause changes in herbaceous communities, few published studies have reported on consequences of such treatments for native or exotic plant species. We compared vegetation and abiotic characteristics between paired thinned and unthinned chaparral and oak woodland communities of southwestern Oregon 4–7 yr posttreatment and contrasted impacts of manual vs. mechanical treatments. Herbaceous cover increased on thinned sites, but species richness did not change. Herbaceous communities at thinned sites had an early postdisturbance type of composition dominated by native annual forbs and exotic annual grasses; cover by annuals was nearly twice as high on treated as on untreated sites. Absolute and proportional cover of native annual forbs increased more than any other trait group, whereas exotic annual forbs and native perennial forbs declined. Exotic annual grass cover (absolute and proportional) increased, whereas cover by native perennial grasses did not. Shrub reestablishment was sparse after thinning, probably because of a lack of fire-stimulated germination. Manual and mechanical treatment impacts on abiotic site conditions differed, but differences in vegetation impacts were not statistically significant. Fuel-reduction thinning may have some unintended negative impacts, including expansion of exotic grasses, reductions in native perennial species cover, persistent domination by annuals, and increased surface fuels. Coupled with sparse tree or shrub regeneration, these alterations suggest that ecological-state changes may occur in treated communities. Such changes might be mitigated by retaining more woody cover than is currently retained, seeding with native perennials after treatment, or other practices; further research is needed to inform management in these ecosystems.  相似文献   

9.
本研究采用野外样方调查和室内分析相结合的方法,分析了黄土高原典型草原冬季火烧区和未火烧区植物群落的物种组成、功能群组成、物种多样性、地上生物量,以及土壤有机碳和全氮。结果表明:冬季火烧显著降低了多年生禾草的重要值,而提高了多年生杂类草的重要值,而对一、二年生草本和灌木、半灌木功能群的重要值影响不显著。冬季火烧显著提高了灌木、半灌木在群落中的比例,并且降低了一、二年生草本的比例,但对多年生禾草和多年生杂类草的比例影响不显著。灌木、半灌木功能群的丰富度指数在火烧地显著大于未火烧地,而一、二年生草本的丰富度指数显著小于未火烧地。冬季火烧显著降低多年生禾草功能群的生物量和显著提高多年生杂类草功能群的生物量。火烧草地的土壤有机碳和全氮含量在0~10 cm土层中均显著高于未火烧草地。  相似文献   

10.
Treatments in big sagebrush (Artemisia tridentata Nutt.) are often implemented to improve habitat conditions for species such as greater sage-grouse (Centrocercus urophasianus). These treatments aim to increase the availability of forbs and invertebrates critical to juvenile and adult sage-grouse during the breeding season. However, information regarding the response of forbs in treated sagebrush are often conflicting, dependent on the type of sagebrush community treated and time after treatment. In addition, there is little information on the response of invertebrates to treatments, particularly herbicide treatments in Wyoming big sagebrush (A.t. ssp. wyomingensis Beetle & Young) communities. We evaluated the response of forbs and invertebrates in Wyoming big sagebrush that had been mowed or aerially treated with tebuthiuron compared with untreated reference areas. We also compared forb and invertebrate dry matter (DM) between treated plots and locations used by brood-rearing females. Forb and invertebrate DM in mowed and tebuthiuron treatments did not differ from untreated plots up to 4 yr after treatment and were equal to or less than locations used by brood-rearing grouse up to 2 yr after treatment. Our findings corroborate best available science that suggest treating Wyoming big sagebrush may not increase food availability for sage-grouse.  相似文献   

11.
Yellow bluestem (Bothriochloa ischaemum [L.] Keng var. songarica [Rupr. ex Fisch & C.A. Mey] Celarier & Harlan) is a non-native, invasive C4 grass common in southern Great Plains rangelands. We measured the effects of a single late-summer (September 2006) fire on yellow bluestem at two sites in central Texas (Fort Hood and Onion Creek). At Fort Hood, relative frequency of yellow bluestem in burned plots decreased from 74 ± 4% (preburn; mean ± standard error) to 9 ± 2% (2007) and remained significantly lower compared with unburned plots through 2009 (burned: 14 ± 2%; unburned: 70 ± 14%). At Onion Creek, yellow bluestem initially decreased from 74 ± 5% (2006) to 32 ± 7% (2007). Yellow bluestem recovered substantially by 2009 (67 ± 10%) but was still significantly lower than in unburned transects (96 ± 1%). Relative frequency of other graminoids increased significantly in burned plots (compared with preburn values) at Fort Hood (preburn: 11 ± 4%; 2009: 29 ± 7%) but not at Onion Creek (preburn: 24 ± 6%; 2009: 22 ± 7%). Frequency of forbs increased dramatically in the first growing season after fire (Fort Hood: 15 ± 2% to 76 ± 3%; Onion Creek: 2 ± 2% to 45 ± 5%), then decreased through the third growing season (Fort Hood: 57 ± 6%; Onion Creek: 11 ± 4%). Key differences between the sites include much higher biomass at Fort Hood than at Onion Creek (8 130 kg ? ha-1 vs. 2 873 kg ? ha-1), more recent grazing at Onion Creek (ending in 2000 vs. before 1996 at Fort Hood), and higher rainfall after the Onion Creek burn (214 mm in 20 days vs. 14 mm). Late-summer fire can temporarily decrease yellow bluestem frequency, but effects vary with site conditions and precipitation. Restoring dominance by native grasses may require additional management.  相似文献   

12.
Factors influencing the distribution and abundance of black-tailed prairie dog (Cynomys ludovicianus) colonies are of interest to rangeland managers because of the significant influence prairie dogs can exert on both livestock and biodiversity. We examined the influence of 4 prescribed burns and one wildfire on the rate and direction of prairie dog colony expansion in shortgrass steppe of southeastern Colorado. Our study was conducted during 2 years with below-average precipitation, when prairie dog colonies were expanding throughout the study area. Under these dry conditions, the rate of black-tailed prairie dog colony expansion into burned grassland (X ¯ = 2.6 ha · 100-m perimeter-1 · y-1; range = 0.8–5.9 ha · 100-m perimeter-1 · y-1; N = 5 colonies) was marginally greater than the expansion rate into unburned grassland (X ¯ = 1.3 ha · 100-m perimeter-1 · y-1; range = 0.2–4.9 ha · 100-m perimeter-1 · y-1; N = 23 colonies; P = 0.066). For 3 colonies that were burned on only a portion of their perimeter, we documented consistently high rates of expansion into the adjacent burned grassland (38%–42% of available burned habitat colonized) but variable expansion rates into the adjacent unburned grassland (2%–39% of available unburned habitat colonized). While our results provide evidence that burning can increase colony expansion rate even under conditions of low vegetative structure, this effect was minor at the scale of the overall colony complex because some unburned colonies were also able to expand at high rates. This result highlights the need to evaluate effects of fire on colony expansion during above-average rainfall years, when expansion into unburned grassland may be considerably lower.  相似文献   

13.
Woody plants can cause localized increases in resources (i.e., resource islands) that can persist after fire and create a heterogeneous environment for restoration. Others have found that subcanopies have increased soil organic matter, nitrogen, and carbon and elevated post-fire soil temperature. We tested the hypothesis that burned sagebrush subcanopies would have increased seedling establishment and performance of post-fire seeded perennial bunchgrasses compared to burned interspaces. We used a randomized complete block design with five study sites located in southeast Oregon. The area was burned in a wildfire (2007) and reseeded in the same year with a seed mix that included non-native and native perennial bunchgrasses. Seedling density, height, and reproductive status were measured in October 2008 in burned subcanopy and interspace microsites. Non-native perennial grasses had greater densities than native species (P < 0.001) and were six times more abundant in burned subcanopies compared to burned interspaces (P < 0.001). Density of natives in burned subcanopies was 24-fold higher than burned interspaces (P = 0.043). Seedlings were taller in burned subcanopies compared to burned interspaces (P = 0.001). Subcanopy microsites had more reproductive seedlings than interspace microsites (P < 0.001). Our results suggest that under the fire conditions examined in this study, pre-burn shrub cover may be important to post-fire restoration of perennial grasses. Determining the mechanisms responsible for increased seeding success in subcanopy microsites may suggest tactics that could be used to improve existing restoration technologies.  相似文献   

14.
North American sagebrush steppe communities have been transformed by the introduction of invasive annual grasses and subsequent increase in fire size and frequency. We examined the effects of wildfires and environmental conditions on the ability of rush skeletonweed (Chondrilla juncea L.), a perennial Eurasian composite, to invade degraded sagebrush steppe communities, largely dominated by cheatgrass (Bromus tectorum L.). Recruitment of rush skeletonweed from seed and root buds was investigated on 11 burned and unburned plot pairs on Idaho's Snake River Plain following summer 2003 wildfires. Emergence from soil seedbanks was similar on burned and unburned plots in 2003 and 2004 (P = 0.37). Soils from recently burned plots (P = 0.05) and sterilized field soil (P &spilt; 0.01) supported greater emergence than did unburned field soils when rush skeletonweed seeds were mixed into the soils in the laboratory. These decreases may indicate susceptibility of this exotic invasive to soil pathogens present in field soils. Seeds in bags placed on field soil in late October 2003 reached peak germination by mid-January 2004 during a wet period; 1% remained viable by August 2004. Seedling emergence from sown plots or the native seedbank and establishment of new rosettes from root sprouts in 2003–2005 indicate that seed germination of rush skeletonweed on the Snake River Plain may be facultative, occurring in fall or spring if soil moisture is adequate, although many germinants may not survive. Stand development results primarily from root sprouting. Establishment from seed is episodic but provides for dispersal, with increasing fire frequency and size expanding the areas of disturbance available for new invasions.  相似文献   

15.
In March 2006 the East Amarillo Complex (EAC) wildfires burned over 367 000 ha of short and mixed grass prairie of the southern High Plains, USA. We studied EAC wildfire effects on perennial grass mortality and peak standing crop on Deep Hardland and Mixedland Slopes ecological sites. Deep Hardlands were dominated by blue grama (Bouteloua gracilis H.B.K. [Griffiths]) and buffalograss (Buchloe dactyloides [Nutt.] Engelm.); common species on Mixedland Slopes were little bluestem (Schizachyrium scoparium [Michx.] Nash.) and sideoats grama (Bouteloua curtipendula [Michx.] Torr.) with scattered sand sagebrush (Artemisia filifolia Torr.) sometimes present. We hypothesized that perennial grass mortality would increase and standing crop would decrease following severe wildfire, and that these responses would be greater than documented prescribed fire effects. Frequency of perennial grass mortality was higher on both sites in burned areas than nonburned areas through three growing seasons following wildfire; however, standing crop was minimally affected. Results suggest that post-wildfire management to ameliorate wildfire effects is not necessary, and that wildfire effects in this area of the southern High Plains are similar to prescribed fire effects.  相似文献   

16.
17.
18.
Land managers frequently use prescribed burning to help maintain grassland communities. Semiarid grassland dynamics following fire are linked to precipitation, with increasing soil moisture accelerating the rate of recovery. Prescribed fires are typically scheduled to follow natural fire regimes, but burning outside the natural fire season could be equally effective and more convenient for managers, depending on their management objectives. We conducted a field experiment in desert grassland to determine if fire seasonality influenced plant community recovery. Experimental burn treatments occurred in fall, spring, and summer in replicate 0.24-ha plots to determine if fire seasonality affected the rate of recovery of an ungrazed Chihuahuan Desert grassland in central New Mexico. Plant communities were surveyed seasonally for 5 yr after the burns. Grassland community structure responded to fire but not fire seasonality. Grass cover in all burned treatments remained lower than unburned controls for 3 yr after the burns. Community change through time was largely influenced by low rainfall, as grass cover in burned and unburned communities converged during a year with severe drought. In conclusion, fire seasonality did not influence rate of community recovery, but extended drought was possibly more influential than fire on grassland dynamics.  相似文献   

19.
Downy brome or cheatgrass (Bromus tectorum) and medusahead (Taeniatherum caput-medusae) are the most problematic invasive annual grasses in rangelands of the western United States, including sagebrush communities that provide habitat to sage grouse. Rehabilitation of infested sites requires effective weed control strategies combined with seeding of native plants or desirable competitive species. In this study, we evaluated the effect of three fall-applied pre-emergence herbicides (imazapic, rimsulfuron, and chlorsulfuron + sulfometuron), and one spring-applied postemergence herbicide (glyphosate) on the control of downy brome and medusahead and the response of seeded perennial species and resident vegetation in two sagebrush communities in northeastern California. All pre-emergence treatments gave > 93% control of both invasive species at both sites in the first year. Glyphosate was less consistent, giving > 94% control at one site and only 61% control of both species at the other site. Imazapic was the only herbicide to maintain good control (78–88%) of both species 2 yr after treatment. No herbicide caused detectible long-term damage to either perennial grasses or annual forbs, and imazapic treatment resulted in an increase in resident native forb cover 3 yr after treatment. Broadcast seeding with or without soil incorporation did not result in successful establishment of perennial species, probably due to below-average precipitation in the year of seeding. These results indicate that several chemical options can give short-term control of downy brome and medusahead. Over the course of the study, imazapic provided the best management of both invasive annual grasses while increasing native forb cover.  相似文献   

20.
Prescribed fire in rangeland ecosystems is applied for a variety of management objectives, including enhancing productivity of forage species for domestic livestock. In the big sagebrush (Artemisia tridentata Nutt.) steppe of the western United States, fire has been a natural and prescribed disturbance, temporarily shifting vegetation from shrub–grass codominance to grass dominance. There is limited information on the impacts of grazing to community dynamics following fire in big sagebrush steppe. This study evaluated cattle grazing impacts over four growing seasons after prescribed fire on Wyoming big sagebrush (Artemisia tridentata subsp. Wyomingensis [Beetle & Young] Welsh) steppe in eastern Oregon. Treatments included no grazing on burned and unburned sagebrush steppe, two summer-grazing applications after fire, and two spring-grazing applications after fire. Treatment plots were burned in fall 2002. Grazing trials were applied from 2003 to 2005. Vegetation dynamics in the treatments were evaluated by quantifying herbaceous canopy cover, density, annual yield, and perennial grass seed yield. Seed production was greater in the ungrazed burn treatments than in all burn–grazed treatments; however, these differences did not affect community recovery after fire. Other herbaceous response variables (cover, density, composition, and annual yield), bare ground, and soil surface litter did not differ among grazed and ungrazed burn treatments. All burn treatments (grazed and ungrazed) had greater herbaceous cover, herbaceous standing crop, herbaceous annual yield, and grass seed production than the unburned treatment by the second or third year after fire. The results demonstrated that properly applied livestock grazing after low-severity, prescribed fire will not hinder the recovery of herbaceous plant communities in Wyoming big sagebrush steppe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号