首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
为了探讨豆科牧草对不同形态氮素的吸收,以紫花苜蓿(Medicago sativa L.)为试验材料,通过盆栽试验探究不同形态氮肥对紫花苜蓿生长、硝酸盐转运蛋白基因MtNRT1.3表达和氮吸收的影响。试验设有4个处理,分别为不施氮处理(对照组,Con)、施铵态氮(NH4Cl—T1)、硝态氮(NaNO3—T2)和混合氮(铵态氮、硝态氮1:1混合—T3),各形态氮肥施加总量为按纯氮250 mg(每1 kg土)。试验结果表明,施氮处理提高了紫花苜蓿中的氮含量,施加各种氮肥均提高了紫花苜蓿根中MtNRT1.3基因的表达量,且该基因的表达量与土壤铵态氮和硝态氮呈正相关性(P<0.01)。相比于铵态氮肥,施加硝态氮肥不但可增加植株中硝态氮含量,而且能提高植株铵态氮含量;相比于单施硝态氮和铵态氮肥,混合氮肥对提高植株氮含量效果最好;施加硝态氮肥更有利于紫花苜蓿地上部分生物量的累积。因此,对紫花苜蓿施加氮肥应重视铵态氮和硝态氮的比例,增加硝态氮的比例更有利于紫花苜蓿的生长和对氮素的吸收。  相似文献   

2.
为揭示野牛草雌雄株对氮素形态的偏好及生理响应差异,以野牛草克隆分株为材料,采用温室砂培盆栽方法,分析了硝态氮(N1)、铵态氮(N2)、铵硝混合态氮(N3)和对照(CK)处理对野牛草雌、雄株生长性状、生物量、叶绿素含量、叶片氮含量及氮代谢相关酶活性的影响。结果表明,雌株在N2处理时其生长性状、各部位生物量及地上生物量和总生物量均显著小于N1和CK,且还小于N3处理,表明铵态氮处理可能抑制野牛草雌株生长。N1处理下的雄株间隔子长度、间隔子直径与CK无显著差异但显著大于N2和N3,同时其匍匐茎节数、匍匐茎长度、根生物量、地上生物量及总生物量显著大于其他处理。野牛草雌、雄株的叶绿素a含量和叶绿素总含量均在N1处理时显著高于对照,但雌株在3种N形态处理之间没有显著差异、而雄株在N1时与N2或N3处理差异显著。野牛草...  相似文献   

3.
2019和2020年在河西灌区进行玉米/秣食豆间作田间试验,设置7.5(D1)、9.0(D2)、10.5万株·hm-2(D3)3个青贮玉米种植密度,每个种植密度下设置0(N1)、120(N2)、240(N3)、360 kg·hm-2(N4)4个施氮水平,探究种植密度与施氮对饲草产量、品质和氮肥利用的影响。结果表明,两年D2和D3处理的青贮玉米、秣食豆及总体的干草产量、粗蛋白产量显著高于D1,N3和N4处理的青贮玉米及总体的干草产量、粗蛋白产量显著高于N2和N1。所有处理中,D2N3获得了最高的总干草产量,2019和2020年分别为36.16和30.31 t·hm-2。两年随着密度的增加,青贮玉米、秣食豆及总体的粗蛋白、粗脂肪含量呈下降趋势,而粗灰分、中性洗涤纤维、酸性洗涤纤维含量呈增加趋势。随着施氮量的增加,总体粗蛋白、粗脂肪含量增加,而粗灰分、中性洗涤纤维、酸性洗涤纤维含量呈下降趋势。两年D2处理下总体氮含量、氮吸收量和氮肥利用效率显著高于D3,且D2获得较高的氮肥农学效率。N2、N3、N4处理的总体氮含量和氮吸收量显著高于N1,N3处理的氮肥农学效率和氮肥利用效率显著高于N4。所有处理中D2N3获得最高的氮肥利用效率,2019和2020年分别为1.41和0.86 kg·kg-1。因此,该处理是一种河西灌区青贮玉米/秣食豆间作系统适宜的田间管理措施,具有一定推广价值。  相似文献   

4.
为了研究高寒草甸草地植被对模拟增温和不同氮素添加的响应机制,试验在野外条件下对三江源区高寒草甸进行模拟增温和铵态氮、硝态氮的氮素添加,进行植物群落结构调查,检测物种丰富度、多样性指数、植物种群重要值。结果表明:增温施铵态氮、增温施硝态氮处理的植被高度显著高于对照(P0.05),盖度无显著差异(P0.05);生物量增温施铵态氮、增温施硝态氮处理显著高于增温不施氮处理和对照(P0.05),并且从高度和优良牧草生物量来看增温施铵态氮、增温施硝态氮处理均高于其他处理,但高度增温施硝态氮增温施铵态氮,生物量增温施铵态氮增温施硝态氮,增温施铵态氮处理优势种重要值比较高,增温不施氮处理能增加群落丰富度指数、均匀度指数和多样性指数,且阻碍了土壤水分含量的增加,增温施铵态氮处理的土壤水分含量相对较高。说明增温和施铵态氮互作更有利于植物的生长。  相似文献   

5.
为了探讨不同形态氮素配比对高寒草甸生物量及养分的影响,试验采用随机区组设计在高寒草甸上开展铵态氮肥、硝态氮肥不同配比比较试验,测定了植物生物量及土壤养分等指标。结果表明:当只施用铵态氮时,高寒草甸地上生物量、植物全氮含量均为最大值;在铵态氮、硝态氮之比为30∶70(4组)时,植物全磷为最大值;在只施用硝态氮时,土壤铵态氮为最大值;当铵态氮、硝态氮之比为50∶50(3组)时,土壤硝态氮为最大值,且显著高于1组和对照组(P0.05)。同时,高寒草甸施铵态氮与植物全氮、地上生物量呈极显著正相关(P0.01),硝态氮肥则与植物全钾、土壤全磷和土壤铵态氮呈显著相关(P0.05)。  相似文献   

6.
为研究青藏高原湿草甸土壤氮组分对氮添加程度的响应规律,分析氮素大量输入生态系统后可能产生的环境和生态问题,本研究以青藏高原东北边缘碌曲县尕海-则岔国家自然保护区境内的湿草甸土壤为研究对象,设置空白对照(CK,0 g·m-2)、低浓度(N5,5 g·m-2)、中浓度(N10,10 g·m-2)和高浓度(N15,15 g·m-2)4种处理,分析不同氮添加下的土壤氮组分含量(铵态氮、硝态氮、可溶性有机氮)的垂直和季节变化。结果表明:不同氮添加处理均能增加土壤氮组分含量,其增加程度依次为N5>N10>N15>CK;在土壤垂直剖面上,土壤氮组分含量随土层深度增加而降低;在植物生长季内,氮添加处理后的土壤氮组分含量较高值出现在植物生长末期。本研究表明氮添加对青藏高原湿草甸土壤有效氮的增加具有显著促进作用。  相似文献   

7.
三江源区高寒草甸草场植被和土壤对外源氮素输入的响应   总被引:1,自引:0,他引:1  
为了探究不同形态氮素在高寒草甸中的分配及利用情况,本研究以玉树州称多县的高寒草甸为研究对象,利用15N标记技术,设置对照(N0)、铵态氮(N1,(15NH42SO4)、硝态氮(N2,Ca (15NO32)、酰胺态氮(N3,CO (15NH22)四种处理,测定不同形态氮素添加下植物和土壤中的全氮及氮素回收率的指标。结果表明:不同形态氮素添加对植物地上部分生物量及全氮含量影响显著(P<0.05),但对土壤全氮含量无显著影响;氮素的当季利用率在6.28%~26.82%之间,土壤残留率在16.06%~58.13%之间,损失率在15.05%~77.66%之间。试验表明高寒草甸中酰胺态是提高植物地上生物量、全氮含量及氮素利用率的最佳氮素形态。  相似文献   

8.
为研究氮素形态对不同茬次紫花苜蓿(Medicago sativa)氮素积累及利用的影响,本研究采用完全随机设计,设置不施氮(对照)、单施硝态氮、单施铵态氮以及硝态氮和铵态氮1?1混施4个处理,通过分析添加不同形态氮素对不同茬次紫花苜蓿氮素积累和利用的影响,探索不同形态氮肥在紫花苜蓿生产中的应用方式.结果表明:各处理组的土壤硝态氮含量显著高于对照组(P<0.05),随刈割茬次增加,混合施氮处理组的土壤硝态氮含量最高;土壤铵态氮含量在不同茬次及不同处理下都没有显著的变化(P>0.05).生长第1年的紫花苜蓿在混合施氮和单施硝态氮处理组的氮素积累量、氮素吸收效率和氮肥利用率要显著高于单施铵态氮处理组(P<0.05),且在刈割第2茬时达到高峰.研究认为在pH 7.3~8.6的中性偏碱性土壤中,单施硝态氮和混合施氮更有利于提高紫花苜蓿的产量,增强其对氮素的吸收、利用和积累.随着刈割茬次的增加,紫花苜蓿对氮素的依赖增强,建议在第2次刈割后追施硝态氮或混合施氮,以保证其产量和质量,从而提升饲用品质.  相似文献   

9.
氮素形态对不同茬次紫花苜蓿氮素积累及利用的影响   总被引:1,自引:0,他引:1  
为研究氮素形态对不同茬次紫花苜蓿(Medicago sativa)氮素积累及利用的影响,本研究采用完全随机设计,设置不施氮(对照)、单施硝态氮、单施铵态氮以及硝态氮和铵态氮1:1混施4个处理,通过分析添加不同形态氮素对不同茬次紫花苜蓿氮素积累和利用的影响,探索不同形态氮肥在紫花苜蓿生产中的应用方式。结果表明:各处理组的土壤硝态氮含量显著高于对照组(P 0.05),随刈割茬次增加,混合施氮处理组的土壤硝态氮含量最高;土壤铵态氮含量在不同茬次及不同处理下都没有显著的变化(P 0.05)。生长第1年的紫花苜蓿在混合施氮和单施硝态氮处理组的氮素积累量、氮素吸收效率和氮肥利用率要显著高于单施铵态氮处理组(P 0.05),且在刈割第2茬时达到高峰。研究认为在pH 7.3~8.6的中性偏碱性土壤中,单施硝态氮和混合施氮更有利于提高紫花苜蓿的产量,增强其对氮素的吸收、利用和积累。随着刈割茬次的增加,紫花苜蓿对氮素的依赖增强,建议在第2次刈割后追施硝态氮或混合施氮,以保证其产量和质量,从而提升饲用品质。  相似文献   

10.
高丽敏  苏晶  田倩  沈益新 《草业学报》2020,29(3):130-136
氮肥施用可以调控不同水分条件下紫花苜蓿的生长,而其内在机制尚不明确。采用盆栽试验,通过设置3个水分梯度(田间最大持水量的30%、50%以及70%,分别用W1、W2、W3表示)及4个氮素水平(0、0.02、0.04、0.06 g·kg-1,分别用N1、N2、N3、N4表示),研究了不同水分条件下紫花苜蓿对氮素的需求规律及其与氮素吸收及根系固氮酶活性的关系。研究结果表明:1)W1水分条件下,氮肥施用可以显著提高紫花苜蓿生物量,而在W2及W3水分条件下,均以N3处理紫花苜蓿生物量最大;2)W1及W2水分条件下,N4处理植株氮素积累量最高,而在W3水分条件下,以N3处理氮素吸收量最高,植株氮素积累量与生物量间存在显著正相关关系;3)根系固氮酶活性随土壤水分有效性的增加而增加,随氮素供应量的增加而降低,在N4条件下,W4处理固氮酶活性与W3处理无显著性差异。因此,在低土壤水分条件下,氮素供应可以保证植株对氮素的需求并提高其生物量;在高土壤水分条件下,适宜供氮量可以促进紫花苜蓿的生长,但过高氮肥供应会显著抑制根系固氮酶活性并最终导致氮素吸收及生物量不再进一步增加。本研究结果可为紫花苜蓿生产系统中的水氮管理提供理论依据。  相似文献   

11.
为了探究氮素添加下植物及土壤养分随月际变化的关系。本研究以玉树州称多县高寒草甸为研究对象,设置0(N0),15 g·Nm-2(N1),30 g·Nm-2(N2),45 g·N m-2(N3),60 g·Nm-2(N4)5个氮素添加水平,测定土壤及植物中铵态氮、硝态氮、速效氮、有机碳、全氮、全钾、全磷等指标。结果表明:在氮素添加下随月际变化植物地上部分全钾含量、根系全磷、土壤有机碳含量呈增加的趋势;根系硝态氮、速效氮含量,土壤速效氮含量呈先增加后降低的趋势;根系全氮含量,土壤铵态氮、全氮含量呈先降低后增加的趋势;植物地上部分速效氮和全氮含量、根系铵态氮和有机碳含量呈降低的趋势。植物与土壤养分间存在显著正相关及负相关性(P<0.05),但随月际变化规律并不一致。以上结果说明氮素添加下植物养分利用策略及土壤养分供给能力会受到月际变化的影响,且在不同月份变化下植物及土壤养分间的关联性是不同的。  相似文献   

12.
氮素形态对饲料桑树幼苗生长和光合特性的影响   总被引:1,自引:0,他引:1  
以饲料桑树品种“青龙桑”(Morus alba cv Qinglong)为试验材料,通过水培方式研究了等氮条件下铵态氮和硝态氮两种形态氮源及其配比对桑树幼苗生长和光合特性的影响。结果表明,桑树幼苗在单一硝态氮或单一铵态氮条件下,植株高度、叶片数、叶片面积和根系长度均低于铵态氮和硝态氮配合施用,桑树叶片和根系生物量的变化也呈现类似趋势。铵态氮和硝态氮摩尔浓度比为50∶50和25∶75时桑树幼苗生长和生物量最高,而当铵态氮和硝态氮摩尔浓度比例为25∶75时桑树净光合速率(Pn)、气孔导度(Gs)和水分利用效率(WUE)高于其他处理,单一硝态氮或单一铵态氮处理降低了桑树叶片表观量子效率(AQE),提高了桑树叶片的光补偿点(LCP)。以上结果说明饲料桑树是一种偏硝性的植物,以铵态氮和硝态氮摩尔浓度比为(50∶50)~(25∶75)最适合。  相似文献   

13.
摘要:梨是我国重要果树,但不合理的施肥常会导致梨树营养失衡以及果品品质下降。因此,了解果树的营养需求对于梨产业的可持续发展具有重要意义。本研究以杜梨幼苗为试材,在水培条件下研究了不同硝铵配比(1:0, N1; 3:1, N2; 1:1, N3; 1:3, N4; 0:1, N5)对杜梨幼苗生长和生理特性的影响。结果表明,在N2处理条件下,植株长势最好,其株高、茎粗、地上部鲜重、叶面积显著高于其他处理,叶片的叶绿素含量、硝酸还原酶(NR)活性亦显著高于其他处理。此外,N2处理植株叶片的可溶性糖、脯氨酸(Pro)等渗透调节物质产生较少,丙二醛(MDA)含量较低,而超氧化物歧化酶(SOD)活性相对较高。综上所述,营养液中硝铵配比为3:1时,杜梨幼苗受胁迫程度最低,生长和生理状况最佳。该研究可为梨园氮肥的合理施用提供基础数据。  相似文献   

14.
韩朝  刘洋  董慧  常智慧 《草业学报》2014,23(3):127-135
污泥中含有腐殖质和生长素等生物活性类物质,会对植物的生长产生影响。本试验在相同氮肥条件下,研究了污泥对高羊茅抗旱性的影响。采用裂区实验设计,主处理包括充分浇水和干旱2个水平;副处理为不同的氮源:对照(75.0 mg/kg的氮素由硝酸铵提供)、半污泥(硝酸铵和污泥各提供37.5 mg/kg的氮素)、全污泥(75.0 mg/kg的氮素由污泥提供)。结果表明,干旱条件下全污泥和半污泥处理能够显著提高高羊茅的坪观质量、叶片相对含水量和叶绿素含量,并降低叶片萎蔫度(P<0.05),表明污泥的施用能够改善高羊茅在干旱下地上部分的生长状况;全污泥处理还能提高叶片的水分利用效率,使高羊茅在50%田间持水量时保持较好的水分代谢(P<0.05);全污泥和半污泥处理能够增加2种水分状况下的根重,提高高羊茅在重度干旱下的根系活力,同时促进干旱条件下高羊茅叶片中脯氨酸的积累(P<0.05),表明污泥中的活性物质能够增强高羊茅的抗旱性。  相似文献   

15.
土壤无机氮是可以直接被植物根系吸收的氮素形态,也是表征土壤肥力的重要参数。基于内蒙古贝加尔针茅草原长期氮素添加(NH4NO3)试验平台,本研究选取4个氮素添加水平,分别是0(CK)、30(N30)、50(N50)和100 kg N·hm-2·a-1(N100),探究氮素添加对土壤无机氮的影响。于2015年生长季(6—10月)每月中旬分别采集0~10、10~20、20~30、30~40 cm四个土层深度的土壤样品,测定土壤铵态氮(NH+4-N)和硝态氮(NO-3-N)含量。结果表明:贝加尔针茅草原0~40 cm土壤中,CK、N30和N50处理的土壤铵态氮含量较土壤硝态氮含量高,N100处理中,二者几乎各占一半,生长季内无机氮含量的变化趋势与硝态氮一致;各处理土壤铵态氮、硝态氮和无机氮含量在土层间的关系均表现为:0~1010~2020~3030~40 cm,且都随氮素添加水平增加而增加。经方差分析表明,氮素添加、取样时间、土层深度及三者交互作用对土壤铵态氮、硝态氮和无机氮含量均有极显著影响;本试验中,在自然水热条件下,N100处理有明显的硝态氮累积,达"氮饱和点"。  相似文献   

16.
摘要:以半干旱区5龄和9龄紫花苜蓿(Medicago sativa cv.Longdong)土壤为供试对象,采用3种提取剂(0.01 mol/L CaCl2,热水和1 mol/L KCl)结合黑麦草(Lolium perenne)盆栽的生物测试对2个年龄苜蓿地土壤有效氮供应能力进行测定。结果表明,0.01 mol/L CaCl2提取剂对硝态氮的提取能力显著高于热水和1 mol/L KCl,1 mol/L KCl提取土壤铵态氮的提取能力最小;黑麦草在5龄和9龄苜蓿土壤中的吸氮量分别为2 100和3 100 mg/m2,由0.01 mol/L CaCl2、热水和1 mol/L KCl提取剂提取的土壤硝态氮含量与黑麦草吸氮量呈显著正相关关系,均可反映土壤供氮能力,0.01 mol/L CaCl2、热水和1 mol/L KCl提取剂提取的土壤铵态氮含量与植物吸氮量关系不确定,不能作为反映土壤供氮能力的指标。  相似文献   

17.
为研究氮素添加对植物多样性与土壤养分含量的影响,本研究以青海省称多县高寒草甸为对象,在添加不同水平氮素(N0(0 gN·m-2)、N1(15 gN·m-2)、N2(30 gN·m-2)、N3(45 gN·m-2)、N4(60 gN·m-2))后测定植物表型性状(盖度、高度及生物量)和土壤养分(全氮、硝态氮、铵态氮、有机碳、全磷)含量等相关指标。结果表明:当添加量为60 gN·m-2时,植物群落多样性指数显著下降(P<0.05);随着氮素添加水平升高,土壤养分含量变化不同。其中氮素添加下植物群落多样性与土壤因子间存在相关性。土壤有机碳和铵态氮含量是影响植物多样性最大的土壤因子。综上所述,短期氮素添加通过影响高寒草甸土壤碳、氮、磷含量及其计量比,进而影响植物群落多样性。  相似文献   

18.
本研究采用砂培、浇灌营养液方法种植颠茄(Atropa belladonna),研究不同铵硝配比(0∶100、25∶75、50∶50、75∶25、100∶0)在不同处理时间(7、14、21、28d)对颠茄干重、叶绿素和主要含氮化合物含量以及氮代谢关键酶活性的影响,为颠茄的合理施肥、科学种植提供理论依据。结果表明,颠茄叶片叶绿素、游离氨基酸(FAA)及可溶性蛋白(SP)含量随铵态氮比例增加而升高,其中叶绿素、FAA含量在铵硝比75∶25时最高,SP含量在铵硝比50∶50时最高,但这种影响在不同处理时间表现并不相同;整个处理期内,全硝营养下颠茄地上部和地下部干重明显高于铵硝混合处理及全铵处理,且叶片硝酸还原酶(NR)、谷氨酰胺合成酶(GS)活性较高,硝态氮含量也最高。综上,增加硝态氮含量能够促进颠茄干物质的积累以及NR和GS活性,合理补充铵态氮则能提高叶片叶绿素、FAA及SP含量,因此铵硝结合供氮且铵硝配比为25∶75更有利于颠茄的生长和氮素代谢。  相似文献   

19.
果草系统土壤理化特征   总被引:2,自引:0,他引:2  
本研究比较了樱桃(Cerasus pseudocerasus)园生三叶草(Trifolium repens)、间种苹果(Malus domestica)苗及清耕3种管理模式对土壤理化性质的影响,结果表明,生三叶草能显著提高0~20 cm土层硝态氮、铵态氮含量,分别为清耕的1.73、1.93倍;速效钾、有机质含量比清耕分别提高了35.08%、52.38%。而间种苹果苗对表层土壤硝态氮、铵态氮、有机质含量无显著影响,仅速效钾含量比清耕提高了48.61%。但生三叶草处理使20~40 cm土层土壤含水量降低25.27%,出现与果树争水的矛盾,因此在天水地区樱桃园的管理中建议生草时间最长为3年,之后便实行清耕覆盖保墒。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号