首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Four cultivars (Bronowicka Ostra, Cyklon, Tornado, and Tajfun) of pepper fruit Capsicum annuum L. were studied for phenolics contents and antioxidant activity. Two fractions of phenolics, flavonoids (with phenolic acids) and capsaicinoids, were isolated from the pericarp of pepper fruit at two growth stages (green and red) and were studied for their antioxidant capacity. Both fractions from red fruits had higher activities than those from green fruits. A comparison of the capsaicinoid fraction with the flavonoid and phenolic acid fraction from red fruit with respect to their antioxidant activity gave similar results. Phenolic compounds were separated and quantified by LC and HPLC. Contents of nine compounds were determined in the flavonoid and phenolic acid fraction: trans-p-feruloyl-beta-d-glucopyranoside, trans-p-sinapoyl-beta-d-glucopyranoside, quercetin 3-O-alpha-l-rhamnopyranoside-7-O-beta-d-glucopyranoside, trans-p-ferulyl alcohol-4-O-[6-(2-methyl-3-hydroxypropionyl] glucopyranoside, luteolin 6-C-beta-d-glucopyranoside-8-C-alpha-l-arabinopyranoside, apigenin 6-C-beta-d-glucopyranoside-8-C-alpha-l-arabinopyranoside, lutoeolin 7-O-[2-(beta-d-apiofuranosyl)-beta-d-glucopyranoside], quercetin 3-O-alpha-l-rhamnopyranoside, and luteolin 7-O-[2-(beta-d-apiofuranosyl)-4-(beta-d-glucopyranosyl)-6-malonyl]-beta-d-glucopyranoside. The main compounds of this fraction isolated from red pepper were sinapoyl and feruloyl glycosides, and the main compound from green pepper was quercetin-3-O-l-rhamnoside. Capsaicin and dihydrocapsaicin were the main components of the capsaicinoid fraction. A high correlation was found between the content of these compounds and the antioxidant activity of both fractions. Their antioxidant activities were elucidated by heat-induced oxidation in the beta-carotene-linoleic acid system and the antiradical activity by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) decoloration test. The highest antioxidant activity in the beta-carotene-linoleic acid system was found for trans-p-sinapoyl-beta-d-glucopyranoside, which was lower than the activity of free sinapic acid. Quercetin 3-O-alpha-l-rhamnopyranoside had the highest antiradical activity in the DPPH system, which was comparable to the activity of quercetin. The activities of capsaicin and dihydrocapsaicin were similar to that of trans-p-feruloyl-beta-d-glucopyranoside in the DPPH model system.  相似文献   

3.
HPLC-UV, (1)H NMR, (13)C NMR, and (1)H-(1)H COSY analyses revealed that exogenous capsaicin was specifically converted into 5,5'-dicapsaicin by both cell suspension cultures of Capsicum annuum var. annuum (chili Jalape?o chigol) and their soluble and NaCl-extracted cell wall protein fractions under oxidative conditions. In cell suspension cultures 5,5'-dicapsaicin was found only in biomass of capsaicin-fed cultures. This compound has not been detected before either in fresh fruits or in in vitro cultures of Capsicum. The transformation of capsaicin by different protein fractions revealed that most of the enzymatic activity was located in the NaCl-extracted, or ionic cell wall bound, protein, and that it was strictly dependent on H(2)O(2). These results might in part explain some previously described features of capsaicin production by in vitro cultures of Capsicum. The implications of the results regarding the catabolism of capsaicinoids are discussed.  相似文献   

4.
Spice paprika (red pepper; Capsicum annuum) is the most cultivated spice worldwide and is used mainly for its color and pungency. However, current research is also focusing on the flavor as an important parameter. This paper deals with the kinetics of the formation of those volatiles that indicate a decrease in spice paprika quality due to Maillard reaction, hydrolytic reactions, and oxidative degradation reactions of lipids such as fatty acids and carotenoids. Spice paprika volatiles were quantitatively analyzed by means of headspace gas chromatography (HS-GC) and solid-phase microextraction (SPME) followed by gas chromatography-mass spectrometry (GC-MS). The kinetics of their formation were investigated, and the respective activation energies determined. Strecker aldehyde, acetone, and methanol formation followed a pseudo-zero-order reaction kinetic, and formation of dimethyl sulfide (DMS) was characterized by a first-order kinetic. The activation energies determined were between 86.3 and 101.8 for the Strecker aldehydes acetaldehyde (AA), 2-methylpropanal (2-MP), 3-methylbutanal (3-MB), and 2-methylbutanal (2-MB), 130.7 for acetone, 114.2 for methanol, and 109.7 kJ/mol for DMS. The amounts of Strecker aldehydes formed were correlated to the concentrations of the corresponding free amino acids present in the samples. The formation of hexanal and 6-methyl-5-hepten-2-one in Capsicum annuum during processing was confirmed, and the formation of beta-ionone was probably described for the first time. During heating, the concentration of hexanal increased rapidly. The formation of 6-methyl-5-hepten-2-one confirms that Capsicum annuum fruits contain lycopene.  相似文献   

5.
Capsinoids are a group of nonpungent capsaicinoid analogues produced in Capsicum fruits. They have similar bioactivities to capsaicinoids such as suppression of fat accumulation and antioxidant activity. They are more palatable ingredients in dietary supplements than capsaicinoids because of their low pungency. Previous studies on nonpungent Capsicum annuum cultivars showed that capsinoid biosynthesis is caused by loss-of-function putative aminotransferase (p-amt) alleles. This study showed that three mildly pungent cultivars of Capsicum chinense (Zavory Hot, Aji Dulce strain 2, and Belize Sweet) contain high levels of capsinoid. It was shown that these cultivars have novel p-amt alleles, which contain mutations that differ from those of C. annuum. Sequence analysis of p-amt in Belize Sweet revealed that a 5 bp insertion (TGGGC) results in a frameshift mutation. A transposable element (Tcc) was found in the p-amt of Zavory Hot and Aji Dulce strain 2. Tcc has features similar to those of the hAT transposon family. This was inserted in the fifth intron of Zavory Hot and in third intron of Aji Dulce strain 2. The p-amt alleles harboring Tcc cannot produce an active p-AMT. These mildly pungent cultivars will provide a new natural source of capsinoids.  相似文献   

6.
Pepper fruits, of Capsicum annuum cv. Padron, undergo changes in content of capsaicinoids, lignin, and free phenolics during the maturation process. Although capsaicinoids increase with development, the maximal levels of free phenolics and lignin are observed during the early stages of development. A decrease of peroxidase activity was observed during maturation, and this was related with a decrease in other physiological parameters studied, namely chlorophylls and pH. Subcellular fractionation studies reveal that most peroxidase activity is localized in the soluble fraction throughout development. The changes in the peroxidase activity were accompanied by changes in the different isoenzymes. Acidic isoenzymes increased whereas the basic isoenzymes decreased over the same period, and the changes in these isoenzymes were related with capsaicin metabolism.  相似文献   

7.
The fruits of Capsicum annuum L. are used worldwide as chili peppers and in folk medicines. The pungent components of C. annuum, which are irritants, are called capsaicinoids (CAPS), and the most abundant components are capsaicin, dihydrocapsaicin, and nordihydrocapsaicin. To analyze CAPS in the placentas of Capsicum fruits rapidly and safely, we used a directly connected system of supercritical fluid extraction and supercritical fluid chromatography (SFE/SFC). As a column for SFE/SFC, only a silica-type column was found to be suitable. The CAPS contents in placentas of C. annuum cv. Jalapeno (hot type) and C. annuum cv. Shishitoh (less-hot type) determined by the SFE/SFC method agreed well with those in the range of 0-13.81 mg g(-1) fr. wt determined by the usual extraction-HPLC method. The SFE/SFC method has the advantages of no need for pretreatment and no (or minimal) need for organic solvents. We conclude that this method is useful as a rapid (20 min) and safe screening test for the pungency of various Capsicum fruits.  相似文献   

8.
A novel spectrophotometric method for the determination of capsaicinoids in habanero pepper extracts is described that does not require prior analyte separation. The method uses partial-least-squares (PLS-1) multivariate regression modeling techniques in conjunction with ordinary UV absorption spectral data obtained on alcoholic extracts of habanero peppers (Capsicum chinese). The PLS-1 regression models were developed by correlating the known total concentration of the two major capsaicinoids (capsaicin and dihydrocapsaicin) in the extracts as determined by high-performance liquid chromatography with the spectral data. The regression models were subsequently validated with laboratory-prepared test sets. The validation studies revealed that the root-mean-square error of prediction varied from 4 to 8 ppm, based on the results obtained from models prepared from nine test sets. Once a regression model has been developed and validated, analyses of the extracts can be accomplished rapidly by ordinary spectrophotometric procedures without any prior separation steps.  相似文献   

9.
Pepper (cv. Padrón) shows a spatial gradient in the content of phenolic compounds, and particularly of capsaicinoids, along the stem. These compounds were consistently more abundant in apical fruits than in fruits belonging to middle and basal segments. Analysis of the two principal capsaicinoids in fruits showed that the proportion of capsaicin was always higher than that of dihydrocapsaicin. Capsaicinoids were also found to be present in vegetative organs, such as stem and leaves. In this case, the proportion of individual capsaicinoids was different than that in fruits, and dihydrocapsaicin was found to be more abundant. To find out whether the capsaicinoids in vegetative organs came from the fruits, the floral buds were removed and fruit formation was prevented. Capsaicinoids were not detected in the stem and leaves of floral bud-deprived plants, suggesting that they did originate from the fruit.  相似文献   

10.
The quantitative inheritance of capsaicin and dihydrocapsaicin contents in fruits has been studied in an intraspecific cross of Capsicum annuum L. across two different environments, namely, fruits developed in spring and summer. A liquid chromatography-electrospray ionization/time-of-flight mass spectrometry [HPLC-ESI/MS(TOF)] method was used to identify and quantify capsaicin and dihydrocapsaicin in extracts of pepper fruits. The analytical method used was able to determine the pungency of genotypes that, using other methods, would have been classified as non-pungent. Capsaicin and dihydrocapsaicin contents varied largely among families, and families did not respond similarly in producing these capsaicinoids when their fruits were grown in spring and summer, with some families showing no increase, whereas in others, the increase was more than 2-fold. Heterosis for the pungency trait, assessed by the capsaicin and dihydrocapsaicin contents in fruits, was found, indicating the existence of epistasis, over-dominance, or dominance complementation. Non-pungent parent alleles contributed to the capsaicin and dihydrocapsaicin contents since transgressive segregation did occur. Furthermore, the type of gene action varied between capsaicin and dihydrocapsaicin, and a seasonal effect during fruit development could affect gene action.  相似文献   

11.
The capsaicinoid content of individual fruits from a single plant harvested at the same time after flowering exhibits a wide range of values with a rather uniform pattern for the ratio of capsaicin, dihydrocapsaicin, and nordihydrocapsaicin. This observation is confirmed by the analysis of fruits from a second and third plant and for several harvest times at different stages of maturity. Competition with lignin-like material, environmental influences, and subcellular distribution may play a role in the synthesis and transformation of capsaicinoids.  相似文献   

12.
The changes in the carotenoid pigments of the Capsicum annuum var. lycopersiciforme rubrum during maturation have been investigated quantitatively by means of a HPLC technique. In all of the chromatograms, 40 peaks were detected; 34 carotenoids were identified. The total carotenoid content of the ripe fruits was about 1.3 g/100 g of dry weight, of which capsanthin constituted 37%, zeaxanthin was 8%, cucurbitaxanthin A was 7%, capsorubin constituted 3.2%, and beta-carotene accounted for 9%. The remainder was composed of capsanthin 5,6-epoxide, capsanthin 3,6-epoxide, 5,6-diepikarpoxanthin, violaxanthin, antheraxanthin, beta-cryptoxanthin, and several cis isomers and furanoid oxides. The possible biosynthetic routes for the formation of minor carotenoids containing 3,5,6-trihydroxy-beta-, 3,6-epoxy-beta-, and 6-hydroxy-gamma-end groups are described.  相似文献   

13.
Chloroform is commonly used as an organic solvent to extract phospholipid fatty acids from soil samples. However, the extraction efficiency of the fatty acids depends on the particular chloroform stabilizers used. The effect of chloroform stabilizers 2-methyl-2-butene and ethanol was investigated at different steps of the extraction procedure. Only the ethanol stabilized chloroform prevented the loss of certain phospholipid fatty acids. In particular, the unsaturated fatty acids 16:1ω7c, 16:1ω6c, 16:1ω5, 17:1ω8, 18:1ω7c, 18:1ω5, the fungal biomarker 18:2ω6,9 and the saturated fatty acid 17:0 were absent when chloroform stabilized with 2-methyl-2-butene was used. In addition, the total phospholipid fatty acid concentrations were also significantly reduced when chloroform stabilized with 2-methyl-2-butene was used. Thus, the proper choice of chloroform stabilizer for the analysis of phospholipid fatty acids is very important.  相似文献   

14.
15.
Enzymatic treatments using noncommercial enzymes as a means to the improve the extraction of carotenoids and capsaicinoids from chili fruits are explored in this study. The results show that it is possible to obtain chili fruit powder with a higher concentration of both capsaicinoids and carotenoids than previously reported for similar processes. Furthermore, extraction yields above 96% for carotenoids and 85% for capsaicinoids as separate fractions can be achieved using a sequential and selective two-stage extraction. Evidence is presented demonstrating that the content and extraction yield depend directly on the extent of the enzymatic hydrolysis of chili cell walls, and higher yields are obtained when the sample is completely hydrolyzed. The enzymatic treatment described here is a promising alternative to current industrial practices, and it improves the extraction of carotenoids and capsaicinoids from chili fruits.  相似文献   

16.
Diverse procedures have been reported for the isolation and analysis of secondary metabolites called capsaicinoids, pungent compounds in the fruit of the Capsicum (Solanaceae) plant. To further improve the usefulness of high-performance liquid chromatography (HPLC), studies were carried out on the analysis of extracts containing up to eight of the following capsaicinoids: capsaicin, dihydrocapsaicin, homocapsaicin-I, homocapsaicin-II, homodihydrocapsaicin-I, homodihydrocapsaicin-II, nonivamide, and nordihydrocapsaicin. HPLC was optimized by defining effects on retention times of (a) the composition of the mobile phase (acetonitrile/0.5% formic acid in H2O), (b) the length of the Inertsil column, and (c) the capacity values (k) of the column packing. Identification was based on retention times and mass spectra of individual peaks. Quantification was based on the UV response at 280 nm in HPLC and recoveries from spiked samples. The method (limit of detection of approximately 15-30 ng) was successfully used to quantify capsaicinoid levels of parts of the pepper fruit (pericarp, placenta, seeds, and in the top, middle, and base parts of whole peppers) in 17 species of peppers and in 23 pepper-containing foods. The results demonstrate the usefulness of the method for the analysis of capsaicinoids ranging from approximately 0.5 to 3600 microg of capsaicin equiv/g of product. The water content of 12 fresh peppers ranged from 80.8 to 92.7%. The described freeze-drying, extraction, and analysis methods should be useful for assessing the distribution of capsaicinoids in the foods and in defining the roles of these biologically active compounds in the plant, the diet, and medicine.  相似文献   

17.
The enzymatic activity, subcellular localization, and immunolocalization of plant lipoxygenase (LOX) in strawberry fruits (Fragaria x ananassa, Duch) were investigated. Chemical and enzymatic properties of LOX have been characterized, and the LOX capability of oxygenating free and esterified unsaturated fatty acids into C6 volatile aldehydes has been confirmed. Fruits at unripe, turning, and ripe stages were analyzed for LOX activity and protein localization by Western blots, two-dimensional electrophoresis, and immunolocalization analyses. The ability of strawberry tissues to in vivo metabolize linolenic acid or linoleic acid into C6 volatile aldehydes and the LOX products was also analyzed. Analysis of strawberry proteins showed that a number of LOX forms, corresponding to at least two mobility groups of approximately 100 and 98 kDa and pI values ranging between 4.4 and 6.5, were present. Confocal and electron microscopy analyses support the idea that LOX proteins are associated to lipid-protein aggregates. Both exogenously supplied linoleate and linolenate were converted into hexanal and trans-2-hexenal at the three fruit-ripening stages. Our experiments suggest the presence of different LOX isoforms in strawberry fruits and that the lipoxygenase-hydroperoxide lyase pathway plays a role in converting lipids to C6 volatiles during ripening.  相似文献   

18.
In the present study the metabolic response to various fatty acids was investigated in HepG2 cells by using a (1)H NMR-based approach. To elucidate the effect of cis/trans configuration, the cells were exposed to either oleic acid (C18:1 cis-9), elaidic acid (C18:1 trans-9), vaccenic acid (C18:1 trans-11), linoleic acid (C18:2), or palmitic acid (C16:0), and multivariate data analysis revealed a strong effect of fatty acid on the lipophilic metabolite fraction. Inspection of the spectra revealed that the difference between the observed responses could be ascribed to the appearance of resonances from conjugated double bonds (5.65, 5.94, and 6.28 ppm) in cells exposed to vaccenic acid, revealing that vaccenic acid upon uptake by the HepG2 cells is converted into a conjugated fatty acid. Upon exposure of the HepG2 cells to either butyric acid (C4:0), caproic acid (C6:0), lauric acid (C12:0), myristic acid (C14:0), or palmitic acid (C16:0), an effect of fatty acid length was also evident, and data indicated that short-chain fatty acids (C4-C6) are immediately converted, whereas medium-long-chain fatty acids (C12-16) are incorporated into triglycerides and deposited in the cells. In conclusion, the present study demonstrates that (1)H NMR spectroscopy is a useful method for studying the uptake of fatty acids in in vitro cells.  相似文献   

19.
Two new glucosides, capsaicin-beta-D-glucopyranoside (1) and dihydrocapsaicin-beta-D-glucopyranoside (2), were discovered in the fruit of the Capsicum annuum cultivar 'High Heat'. They were sequentially purified by acetone extraction, n-hexane extraction, and acetonitrile extraction, followed by medium-pressure liquid chromatography and high-performance liquid chromatography performed on an octadecylsilane column. Their chemical structures were elucidated by proton nuclear magnetic resonance, carbon nuclear magnetic resonance, and hydrolysis with alpha- and beta-glucosidases. The glucosides were also detected in various pungent cultivars of C. annuum, Capsicum frutescens, and Capsicum chinense by liquid chromatography-mass spectrometry. However, they were not detected in nonpungent cultivars of C. annuum. Furthermore, a positive correlation was observed between the quantity of the capsaicinoids, capsaicin, and dihydrocapsaicin and their glucosides.  相似文献   

20.
Ground paprika (Capsicum annuum L.) was extracted with supercritical carbon dioxide (SC-CO(2)) and subcritical propane at different conditions of pressure and temperature to estimate the yield and variation in carotenoid, tocopherol, and capsaicinoid contents and composition. The yield of paprika extract was found to be affected by the extraction conditions with SC-CO(2) but fairly constant at different conditions with subcritical propane. The maximum yields of oleoresin were 7.9 and 8.1% of ground paprika by SC-CO(2) and subcritical propane, respectively. The quantitative distribution of carotenoids, tocopherols, and capsaicinoids between paprika extract and powder was influenced by extraction conditions. SC-CO(2) was inefficient in the extraction of diesters of xanthophylls even at 400 bar and 55 degrees C, whereas tocopherols and capsaicinoids were easy to extract at these conditions. Under mild conditions subcritical propane was superior to SC-CO(2) in the extraction of carotenoids and tocopherols but less efficient in the extraction of capsaicinoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号