首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
This experimental study assesses the effects of event rainfall on soil erosion characteristics in terraced rice paddy fields. A 0.75-ha terraced paddy field located in Northern Taiwan was used to investigate the soil erosion under the regular cultivation of rice during two crop seasons. The environmental changes were investigated in the neighboring areas in which terraced paddy fields have been converted to other land usages. The annual rate of soil erosion calculated from the observed rainfall runoff and suspended solid contained was 0.77 ton/ha, which is significantly less than the erosion rate associated with upland crop cultivation reported by other research conducted in Taiwan. Experimental results also showed that the terraced paddy field retained the highest percentages of clay, silt, and organic matter's content, as compared to those of other upland crops, indicating that the topsoil was less susceptible to rainfall erosion under flooded conditions of rice-cultivation. The results of this study show that the rice-planted terraced paddy offers the highest level of soil conservation. The function of soil and water conservation in terraced paddy fields could be further increased by effective maintenance of embankment and to raise the height of the bund. Poor management, abandoned cultivation, and converse to other upland crops of terraced paddy fields are regarded as major contributors to increased soil erosion in mountainous areas. The government in Taiwan should formulate effective measures and maintain sustainable rice cultivation in the terraced paddies.  相似文献   

2.
Aquatic ecosystems are threatened by increasing variability in the hydrologic responses. In particular, the health of river ecosystems in steeply sloping watersheds is aggravated due to soil erosion and stream depletion during dry periods. This study suggested and assessed a method to improve the adaptation ability of a river system in a steep watershed. For this, this study calibrated soil and water assessment tool (SWAT) for runoff and sediment, and quantified the changes in hydrologic responses such as groundwater recharge rate soil erosion and baseflow according to two scenarios for adjustment of the watershed slope (steep to mild). Here, one scenario was set by three measured slopes, and the other was set by fixing the entire watershed slopes with 5 %. Moreover, SWAT and web-based hydrograph analysis tool (WHAT) models were applied to estimate groundwater recharge, soil erosion, and baseflow in the Haean-myeon watershed in South Korea. The results show that the reduction of watershed slope increased groundwater recharge and baseflow, and decreased sediment. Specifically, groundwater recharge rate was increased from 257.10 to 364.60 mm, baseflow was increased from 0.86 to 1.19 m3/s, and sediment was decreased from 194.6 to 58.1 kg/km2. Based on these results, the suggested method will positively contribute to aquatic ecosystems and farming environments in a steeply sloping watershed due to improvements in the quantity and quality of river water.  相似文献   

3.
The multi-functionality of agriculture was studied from June to December 2005 in an upland community in Central Luzon, Philippines, by looking across the entire basin of two small water impounding systems or SWIP (Maasin and Buted II). Several sub-studies were undertaken, namely (a) the role of dominant vegetative cover on the rate of surface runoff and erosion; (b) rainfall–runoff analysis in a sub-watershed (i.e., through runoff experimental plot) and within the main watershed (i.e., reservoir inflow analysis); and (c) the environmental functions of agriculture across the entire watershed. The results indicated that about 85% (i.e., throughfall) of rainfall could reach the ground as vegetations intercept the rest. The runoff experimental plot covering a sub-watershed revealed a good correlation between throughfall and runoff. On the other hand, monitoring of reservoir inflows through which surface runoff was measured indicated similar behavior. Integrating the result of runoff experimental plot studies and reservoir inflow analysis resulted to a rainfall–runoff relation which can be applied in the development of rainwater harvesting scheme. The result also showed the dominance of surface runoff as the main component of reservoir inflow, confirming the soil and water conservation, and flood prevention functions of the system. Flood analysis conducted in both SWIP confirmed their flood prevention function by reducing flood peak discharge. The difference between with and without the reservoir was also highlighted in the process. In the paddy field, a 5-cm water depth was consistently maintained, contributing in retaining about 0.543 and 0.272 MCM of rainwater in Maasin and Buted II, respectively. The value of fostering groundwater recharge throughout the entire system was almost equivalent to the value of flood prevention function. Moreover, SWIP also trapped sediments, thereby preventing offsite impact downstream and in surrounding areas.This paper is part of the progress report of the project “Multi-functionality of Agriculture in Selected Sites in the Philippines” presented in the 6th Meeting of the Working Group for the ASEAN-Japan Project on Multi-functionality of Agriculture in ASEAN Countries.  相似文献   

4.
Subsurface drainage is a prerequisite for year-round crop production in a large area of northern Iran, s paddy fields. Minimizing environmental and health issues related to nitrogen (N) losses through subsurface drainage systems provides suitable condition for sustainable agriculture in these fields. A field study was conducted to evaluate nitrogen loss and its health risk in the conventional and subsurface-drained paddy fields. Ammonium, nitrate, and total N concentrations of subsurface drainage effluents, surface runoff, and leachates were monitored during three successive rice-canola-rice growing seasons from July 2011 to August 2012. Different components of N balance and health risk of nitrate leaching to groundwater were also investigated. Ammonium in drainage effluents collected during the experimental period ranged from approximately zero to 1.72 mg L?1, while nitrate fluctuated from 0.5 to 28.6 mg L?1. Average nitrate concentration in leachates of subsurface-drained area was 7.7–81.4 % higher than that in subsurface drainage effluents, while it was 126.8 % higher than that in surface runoff for the conventional field. Subsurface drainage provided a better utilization of soil N through providing winter cropping and reduced the potential for non-carcinogenic risks of nitrate leaching to groundwater. The results are encouraging for producers engaged in rice-canola production in the study area with respect to the environment and human health quality.  相似文献   

5.
The agricultural fields were contaminated by the radionuclides 134Cs and 137Cs after the nuclear power plant accident in Fukushima. Prior to the accident, local farmers had successfully established sustainable agriculture in Iitate Village using natural farming practices and recycling. Since 2011, decontamination work such as stripping-off the top soil has been ongoing on agricultural land. Although decontamination is essential, it could cause an unfortunate decrease in soil fertility. Here, we examined the use of organic matter as a means to quickly recover the fertility of the agricultural top soil. We transplanted rice crops into three paddy plots: one received rice straw that had been harvested there last year, another received composted manure, and the third (control) received no additives after decontamination. We applied 40 kg/10a of basal fertilizer and 20 kg/10a of KCl each plot. The rates of Cs concentration in unhulled rice/rice straw were around 0.001. Tendency of plant heights increase and leaf chlorophyll content decrease were similar in the three treatment plots. However, the numbers of stems on 111 days after the transplant were 21, 15, and 19, unhulled rice yield were 513, 462, and 310 g/m2, in the rice straw, cattle manure compost, and control plots, respectively. Soil properties of three plots were similar. Radioactive Cs concentrations in the new rice from each treatment plots were lower than the maximum allowed level set by the Japanese government. These results revealed that treating soil with rice straw might have great potential to aid the recovery of a paddy field after stripping-off the top soil. Notably, this treatment significantly improved the yield of rice and supplied organic matter without additional labor.  相似文献   

6.
Duckweed (Lemna minor), a floating macrophyte belonging to the Lemnaceae family, is commonly found in subtropical paddy fields. This plant rapidly takes up nutrients from water and forms dense floating mats over the water surface that may impact the biogeochemical processes and greenhouse gas production in paddy fields. In this study, we measured CH4 and N2O emissions from duckweed and non-duckweed plots in a subtropical paddy field in China during the period of rice growth using static chamber and gas chromatography methods. Our results showed that CH4 emission rate ranged from 0.19 to 26.50 mg m?2 h?1 in the duckweed plots, and from 1.02 to 28.02 mg m?2 h?1 in the non-duckweed plots. The CH4 emission peak occurred about 1 week earlier in the duckweed plots compared to the non-duckweed counterparts. The mean CH4 emission rate in the duckweed plots (9.28 mg m?2 h?1) was significantly lower than that in non-duckweed plots (11.66 mg m?2 h?1) (p < 0.05), which might be attributed to the higher water and soil Eh in the former. N2O emission rates varied between ?50.11 and 201.82 µg m?2 h?1, and between ?28.93 and 54.42 µg m?2 h?1 in the duckweed and non-duckweed plots, respectively. The average N2O emission rate was significantly higher in the duckweed plots than in the non-duckweed plots (40.29 vs. 11.93 µg m?2 h?1) (p < 0.05). Our results suggest that the presence of duckweed will reduce CH4 emission, but increase N2O flux simultaneously. Taking into account the combined global warming potentials of CH4 and N2O, we found that growing duckweed could reduce the overall greenhouse effect of subtropical paddy fields by about 17 %.  相似文献   

7.
Suitable and practicable best management practices (BMPs) need to be developed due to steadily increasing agricultural land development, intensified fertilization practices, and increased soil erosion and pollutant loads from cultivated areas. The soil and water assessment tool model was used to evaluate the present and future proper BMP scenarios for Chungju dam watershed (6,642 km2) of South Korea, which includes rice paddy and upland crop areas. The present (1981–2010) and future (2040s and 2080s) BMPs of streambank stabilization, building recharge structures, conservation tillage, and terrace and contour farming were examined individually in terms of reducing nonpoint source pollution loads by applying MIROC3.2 HiRes A1B and B1 scenarios. Streambank stabilization achieved the highest reductions in sediment and T-N, and slope terracing was a highly effective BMP for sediment and T-P removal in both present and future climate conditions.  相似文献   

8.
The chemical properties of soil samples collected in August and November from an abandoned terraced paddy field dominated by reeds were examined by in vitro incubation under normal moisture and flooded conditions. Soil pH extracted with water [pH(H2O)] was higher in soil samples collected from a depth of 0–10 cm in November than in samples collected in August; a high pH(H2O) was maintained even during nitrification under normal moisture conditions. When soil samples collected in August from a depth of 0–10 cm were incubated under flooded conditions, a significant decrease in reduction potentials (Eh) and an increase in total Fe2+ concentrations were observed. Reductive conditions during sampling were strong in soil samples collected in August from a depth of 40–50 cm. Moreover, under normal moisture conditions, soil samples collected in August showed significant decreases in pH(H2O) and significant production of water-soluble SO4 2? than those collected in November. Glucose addition to soil samples collected from a depth of 0–10 cm caused nitrogen immobilization under normal moisture conditions, increases in exchangeable Fe2+ and Mn2+, and decreases in exchangeable bases (Ca2+, Mg2+, K+, and Na+) under flooded conditions. Seasonal changes in soil properties were probably due to microbial activity and vegetation phenology; thus, the timing of soil sampling influenced incubation experiment results. When abandoned terraced paddy fields are created as biotopes, seasonal changes in reductive soil conditions and slope position must be considered to prevent soil acidification and base cation elution.  相似文献   

9.
Water management is an important factor in regulating soil respiration and the net ecosystem exchange of CO2 (NEE) between croplands and atmosphere. However, how water management affects soil respiration and the NEE of paddy fields remains unexplored. Thus, a 2-year field experiment was carried out to study the effects of controlled irrigation (CI) during the rice season on the variation of soil respiration and NEE, with flooding irrigation (FI) as the control. A decrease of irrigation water input by 46.39% did not significantly affect rice yield but significantly increased irrigation water use efficiency by 0.99 kg m?3. The soil respiration rate of CI paddy fields was larger than that of FI paddy fields except during the ripening stage. Natural drying management during the ripening stage resulted in a significant increase of the soil respiration rate of the FI paddy fields. Variations of NEE with different water managements were opposite to soil respiration rates during the whole rice growth stages. Total CO2 emission of CI paddy fields through soil respiration (total R soil) increased by 11.66% compared with FI paddy fields. The increase of total R soil resulted in the significant decrease of total net CO2 absorption of CI paddy fields by 11.57% compared with FI paddy fields (p < 0.05). There were inter-annual differences of soil respiration and the NEE of paddy fields. Frequent alternate wetting and drying processes in the CI paddy fields were the main factors influencing soil respiration and NEE. CI management slightly enhanced the rice dry matter amount but accelerated the consumption and decomposition of soil organic carbon and significantly increased soil respiration, which led to the decrease of net CO2 absorption. CI management and organic carbon input technologies should be combined in applications to achieve sustainable use of water and soil resources in paddy fields.  相似文献   

10.
An experimental study on the System of Rice Intensification (SRI) methods was conducted to investigate the feasibility of using them to conserve irrigation water and reduce non-point source (NPS) pollution in Korea. Eight experimental runoff plots were prepared at an existing paddy field. Runoff and water quality were measured during the 2010 growing season in which a Japonica rice variety was cultivated. The irrigation water requirements of SRI methods and conventional (CT) plots were 243.2 and 547.3 mm, respectively, meaning that SRI methods could save 55.6% of irrigation water. Runoff from SRI methods plots decreased 5–15% compared with that from CT plots. Average NPS pollutant concentrations in runoff from SRI methods plots during rainfall-runoff events were SS 89.4 mg/L, CODCr 26.1 mg/L, CODMn 7.5 mg/L, BOD 2.0 mg/L, TN 4.2 mg/L, and TP 0.4 mg/L. Except for CODCr and TN, these concentrations were significantly lower than those from CT plots. Measured pollution loads from SRI methods plots were SS 874 kg/ha, CODCr 199.5 kg/ha, CODMn 47 kg/ha, BOD 13 kg/ha, TN 36.9 kg/ha, and TP 2.92 kg/ha. These were 15.8–44.1% lower than those from CT plots. Rice plants grew better and healthier in SRI methods plots than in CT plots. However, rice production from SRI methods plots ranged between 76 and 92% of that of CT plots because the planting density in SRI methods plots was too low. It was concluded that SRI methods could be successfully adopted in Korea and could help save a significant amount of irrigation requirement in paddies and reduce NPS pollution discharge.  相似文献   

11.
Soil erosion in agricultural fields affects not only land productivity but also water environment down stream. Many investigations have been made for the prediction of soil erosion processes. The Universal Soil Loss Equation (USLE) has been applied broadly for the prediction of average annual soil loss from upland fields. However, there are few reports concerning the prediction of nutrient (N, P) losses based on the USLE. Thus, the objective of this study is to propose the prediction equation of nitrogen and phosphorus losses during soil erosion processes on the basis of the USLE. In order to predict total nitrogen and phosphorus losses, the coefficients for total nitrogen or phosphorus transfer are derived on the basis of results from experimental field plots. Three bare-cover USLE plots with different amounts of granular chemical fertilizer were installed in an experimental upland field. There was a tendency for the coefficient of total nitrogen or phosphorus transfer to increase with the average concentration of total nitrogen or phosphorus in the soils. It follows that the more granular chemical fertilizer applied caused a higher coefficient of total nitrogen or phosphorus transfer in the calculations. Moreover, the coefficients in heavily fertilized plots were higher than 1.0. Through this investigation, it became clear that the nutrient losses during soil erosion could be predicted on the basis of the coefficient of total nitrogen or phosphorus transfer along with other soil erosion parameters.  相似文献   

12.
Alternate wetting and drying (AWD) irrigation is widely adopted to save water in rice production. AWD practice shifts lowland paddy fields from being continuously anaerobic to being alternately anaerobic and aerobic, thus affecting nitrogen (N) transformations in paddy field soils. Using the barometric process separation technique, a large number of soil cores sampled from lowland paddy field soil profiles were measured for gross nitrification and denitrification rates under different temperature and soil moisture conditions. The gross nitrification and denitrification rates vary with rice growth stages and range between 1.18–30.8 and 0.65–13.54 mg N m?3 h?1, respectively. Results indicate that both gross nitrification and denitrification rates increased with the increase in temperature in all three studied soil layers. Gross nitrification rates significantly decrease with increasing soil moisture while denitrification rates increase, and different soil layers demonstrated different rates of variation to the increase in soil moisture. Gross nitrification rates in the cultivated horizon layer decreased more sharply with the increase in soil moisture. High soil water content is favorable to denitrification of all soil layers.  相似文献   

13.
Industrial and urban developments in Indonesia focus on the economic merits, but neglect agricultural services that, when disappear, will destabilize the environmental and livelihood systems. A series of 5-year study has evaluated various aspects of multifunctionality and implications of paddy field conversion on the disappearance of multifunctionality. Soil loss from a series of 18 terraced paddy fields in central Java is negligible. Only a few terraces located along the streams directly caused sedimentation. The functions of flood mitigation, water-resource conservation, erosion reduction, organic waste disposal, heat mitigation, and rural amenity of paddy fields in Citarum watershed in West Java were significant. The ‘replacement costs’ of such functions was about 51% ($92.67 million yr−1) of the total price of rice of $181.34 million yr−1 produced in the 156,000 ha paddy field. This amount could be considered as free services by the farmers to the society. However, because of society's negligence and unawareness, conversion has been accelerating while development of new paddy fields has been decelerating in the last few years. Low and fluctuating price of agricultural products, unavailability or non-affordability of agricultural supplies and inaccessibility to market are among the major disincentives faced by farmers. Because of appreciable multifunctionality they produce, farmers deserve various incentives for the sake of environmental sustainability and other services.  相似文献   

14.
The present study aims to evaluate performance of different infiltration models, namely initial and constant rate, soil conservation service (SCS) curve number and Green–Ampt in simulation of flood hydrographs for the small-sized Amameh Watershed, Iran. To achieve the study purpose, the infiltration rates were measured using rainfall simulator in work units acquired through overlaying topography, land use, drainage network and soil hydrologic group maps. All parameters of the study infiltration models were determined with the help of the Infilt. software package. The performances of the models in simulation of the observed output hydrographs from the entire watershed were ultimately evaluated for 28 rainfall–runoff events in the HEC-HMS environment. The different components of the observed and estimated hydrographs including time to peak, runoff volume, peak discharge, discharge values and peak time deviation were compared using relative error (RE), coefficient of determination (R2), peak-weighted root mean square error (PWRMSE) and Nash–Sutcliffe (NS) criteria. The general performance of estimations was also qualitatively assessed using scatter plot and distribution of study variables around standard lines of 1:1 slope. The results revealed that the SCS infiltration model with PWRMSE = 0.61 m3 s?1 and NS = 0.53 performed better than initial and constant rate model with PWRMSE = 1.1 m3 s?1 and NS = 0.54, and Green Ampt model with PWRMSE = 1.35 m3 s?1 and NS = 0.29 in estimation of flood hydrograph for the Amameh Watershed.  相似文献   

15.
This study examined the capability of remotely sensed information gained using the terra moderate resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) and land surface temperature (LST) to explain forest soil moisture. The soil and water assessment tool (SWAT) was used for the analysis. Nine years (2000–2008) of monthly MODIS NDVI and LST data from a 2,694.4 km2 watershed consisting of forest-dominant areas in South Korea were compared with SWAT simulated soil moisture. Before the analysis, the SWAT model was calibrated and verified using 9 years of daily streamflow at three gauging stations and 6 years (2003–2008) of daily measured soil moisture at three locations within the watershed. The average Nash–Sutcliffe model efficiency during the streamflow calibration and validation was 0.72 and 0.70, respectively. The SWAT soil moisture showed a higher correlation with MODIS LST during the forest leaf growing period (March–June) and with MODIS NDVI during the leaf falling period (September–December). Low correlation was observed in the year of frequent rains, regardless of the leaf periods.  相似文献   

16.
Application of sand can ameliorate rice paddy fields converted from saline–sodic land. However, the requirement of huge amount of sand has been limiting its practical application. In this study, flushing during saline sodic-sensitive stages of rice plant growth was incorporated into the ameliorating system to reduce the sand usage. A split-plot design was adopted with sand application (SA) with two levels as main plots and flushing during the sensitive stages (FL) with two levels as subplots in a hard saline–sodic soil, Northeast China. Four treatments included CK (no-sand, no-flush flooding), NF (non-sand, flush flooding), SN (sand, no-flush flooding), and SF (sand, flush flooding). The results showed that both SA and FL significantly affected all the investigated yield parameters. The combined effect of SA and FL on the grain yield was additive in the first year in respect of the effect on panicle density and seed weight per panicle; while it showed synergistic effect on the seed weight per panicle and grain yield in the second year. The rice yield in different treatments was in the order of SF > SN > NF > CK in both years, with the highest yield (4.37 t ha?1) obtained by SF treatment in the second year. Our results demonstrate that half the traditional amount of sand in combination with water-flushing during the saline–sodic-sensitive growth stages of rice is sufficiently effective in ameliorating saline–sodic soil and thereby enhancing rice grain yield in saline–sodic paddy fields.  相似文献   

17.
Vietnam is one of the world’s top two rice exporting countries. However, rice cultivation is the primary source of agriculture’s greenhouse gas (GHG) emissions in Vietnam. In particular, strategies are required to reduce GHG emissions associated with the application of organic and inorganic fertilisers. The objective of this study was to assess the effects of various combinations of biochar (BIOC), compost (COMP) and slow-release urea (SRU) on methane (CH4) and nitrous oxide (N2O) emissions. In total, 1170 gas samples were collected from closed gas chambers in rice paddies at Thinh Long commune and Rang Dong farm in northern Vietnam between June and October 2014. The gas samples were analysed for CH4-C and N2O-N fluxes using gas chromatography. The application of BIOC alone resulted in the lowest CH4 emissions (4.8–59 mg C m?2 h?1) and lowest N2O emissions (0.15–0.26 µg N m?2 h?1). The combined application of nitrogen–phosphorus–potassium (NPK) + COMP emitted the highest CH4 (14–72 mg C m?2 h?1), while ½NPK + BIOC emitted the highest N2O (1.03 µg N m?2 h?1 in the TL commune), but it was the second lowest (0.495 µg N m?2 h?1) in the RD farm. Green urea and orange urea reduced N2O emissions significantly (p < 0.05) compared to white urea, but no significant differences were observed with respect to CH4 emissions. SRU fertilisers and BIOC alone measured the lowest greenhouse gas intensity, i.e. <2.5 and 3 kg CO2 eq. kg?1 rice grain, respectively. Based on these results, application of fertilisers in the form of BIOC and/or orange or green urea could be a viable option to reduce both CH4 and N2O emissions from rice paddy soils.  相似文献   

18.
This study evaluated the impact on watershed hydrology by predicting future forest community change under a climate change scenario. The Soil and Water Assessment Tool (SWAT) was selected and applied to Chungju dam watershed (6,642 km2) of South Korea. The SWAT was calibrated and validated for 6 years (1998–2003) using the daily streamflow data from three locations. For the future evaluation of forest community and hydrology, the MIROC3.2 HiRes monthly climate data were adopted. The future data were corrected using 30 years (1977–2006, baseline period) of measured weather data, and they were daily downscaled by the Long Ashton Research Station-Weather Generator statistical method. To predict the future forest vegetation cover, the baseline forest community was modeled by a multinomial LOGIT model using variables of baseline precipitation, temperature, elevation, degree of base saturation, and soil organic matter, and the future forest community was predicted using the future precipitation and temperature scenario. The future temperature increase of 4.8 °C by 2080s (2070–2099) led to prediction of 30.8 % decrease of mixed forest and 75.8 % increase of coniferous forest compared to the baseline forest community. For the baseline evapotranspiration (ET) of 491.5 mm/year, the 2080s ET under the forest community change was 591.1 mm/year, whereas it was 551.8 mm/year with the remaining forest community stationary. The different ET results considering the future forest community clearly affected the groundwater recharge and streamflow in sequence.  相似文献   

19.
Paddy fields are subjected to fluctuating water regimes as a result of the alternate drying and wetting water management, which often incurs a sensitive change in N2O emissions from paddy soils. However, how the soil moisture regulates the emission of N2O from paddy soil remains uncertain. In this study, three incubation experiments were designed to study the effects of constant and fluctuating soil moisture on N2O emission and the sources of N2O emission from paddy soil. Results showed that the N2O emission from paddy soil at 100 % WHC (water-holding capacity) was higher than that at 40, 65, 80, 120, and 160 % WHC, indicating that 100 % WHC was the optimum soil moisture content for N2O emission under the incubation experiment. Small peak of N2O flux appeared when the soil moisture content from 250 % WHC decreased near to 100 % WHC, lower than that triggered by nitrogen (N) fertilization, which was mainly owing to the low NH4 + concentration at this period. Nitrification dominated the emissions of N2O from paddy soil at 250 % WHC (54.96 %), higher than that of nitrification-coupled denitrification (6.74 %) and denitrification (38.3 %). The contribution of denitrification to N2O emissions (44.10 %) was equivalent to that of nitrification (44.45 %) in soil at 100 % WHC, which was higher than that of 250 % WHC treatment. In conclusion, the finding suggested that the peak of N2O in paddy soils during midseason aeration could be attributed to the occurrence of optimum soil moisture under sufficient N availability, favorable for the production and accumulation of N2O.  相似文献   

20.
本实验旨在探讨橡胶幼龄林下间作菠萝对水土流失的影响。采用单因素随机区组设计的方法,测定了顺坡种植菠萝,横坡种植菠萝和不间作(对照)条件下的径流量及土壤侵蚀量。结果表明:西双版纳雨季时,5~10月间,横坡和顺坡种植菠萝径流量均低于不间作菠萝,顺坡种植在6~9月间的径流量都高于横坡种植;6~10月间,顺坡种植和横坡种植菠萝能显著降低林间侵蚀量,横坡种植在6~9月间侵蚀量均低于顺坡种植;径流量、侵蚀量和降雨量的变化趋势基本相同;顺坡和横坡种植的总径流和总侵蚀量均显著减少。说明橡胶幼龄林下横坡种植菠萝可以有效减轻林地水土流失。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号