首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
N. Inomata 《Plant Breeding》2002,121(2):174-176
In this cytogenetic study the progeny of all crosses were investigated in F1, F2 and backcross (BC1) hybrids. Brassica napus and F1 hybrids between B. napus and B. oleracea, and between B. napus and three wild relatives of B. oleracea (B. bourgeaui, B. cretica and B. montana). Each of the wild relatives has 18 somatic chromosomes. Interspecific F1 hybrids were obtained through ovary culture mean. These had 28 and 37 chromosomes and their mean pollen fertility was 10.7% and 93.0%, respectively. Many F2 and BC1 seeds were harvested from the F1 hybrids with 37 chromosomes after self‐pollination and open pollination of the F1 hybrids, and backcrossing with B. napus. Many aneuploids were obtained in the F2 and BC1 plants. It is evident from these investigations that the F1 hybrids may serve as bridge plants to improve B. napus and other Brassica crops.  相似文献   

2.
Intergeneric hybridizations between cultivated Brassica species and Orychophragmus violaceus have been shown to be an efficient approach to produce Brassica aneuploids. Herein B. juncea–O. violaceus additions, substitutions and introgressions were obtained among progenies of partial hybrids after B. juncea (2n = 36) was pollinated by O. violaceus (2n = 24) and they expressed some traits from O. violaceus or novel for two parents. The single O. violaceus chromosome which was added to or substituted into the B. juncea chromosome complement was distinguishable most easily in pollen mother cells at anaphase I (AI) from its darker staining and more condensed form. The one pair of the O. violaceus chromosome in the substitutions paired and segregated regularly with others from B. juncea, and the single one formed one bivalent with one B. juncea chromosome and showed normal segregation and was more darkly stained in some AI group. Stable introgressions with 2n = 36 gave amplified fragment-length polymorphism (AFLP) profiles mainly similar to those of the female B. juncea parent, but fragments specific for O. violaceus could be found in every plants together with those deleted in B. juncea and novel bands for two parents. The mechanisms behind these unusual results are discussed.  相似文献   

3.
N. Inomata 《Euphytica》2005,145(1-2):87-93
Brassica napus (2n = 38) and Diplotaxis harra (2n = 26) were used to investigate gene transfer from D. harra to B. napus. Intergeneric F1 hybrids (dihaploid 2n = 32 chromosomes) were obtained through ovary culture. The chromosome associations in the first meiotic division was (0–2)III + (2–10)II + (12–28)I. Many seeds were harvested in the F1 hybrid after backcrossing with B. napus, and from open pollination of the F1 hybrid. Somatic chromosome numbers of BC1 and hybrid plants varied from 2n = 26 to 52. In the first meiotic division, high frequencies of bivalent association and relatively low pollen fertility were observed. BC2 plants generated from the BC1 plants with 2n = 38 chromosomes, 69.6% showed 2n = 38 chromosomes. Many aneuploids with addition and deletion of chromosomes were also obtained. A bridge plant between B. napus and D. harra with 2n = 32 chromosomes should be valuable material for the breeding of brassica crops.  相似文献   

4.
Summary Crossability and cytology were examined in F1, F2, B1 and hybridsplants of F1 hybrids of Brassica campestris and three wild relatives of B. oleracea, B. bourgeaui, B. cretica and B. montana, respectively. The F2 plants were obtained after self-and open pollination of the F1 hybrids. The B1 and hybrid plants were produced after the F1 hybrids backcrosses with B. campestris and crossed with B. napus, respectively. After crossing the F1 hybrids, many seeds of the F2, B1 and hybrid plants were harvested. Multivalent formation was high in the chromsome configuration for the PMCs of F2, B1 and hybrid plants, suggesting that crossing over might occur between them. Many different types of aneuploids were obtained in the progenies of the F2, B1 and hybrid plants. It is suggested that different types of normal egg cells may be produced by one-by-one or little-by-little chromosome addition. The possibility is discussed of gene transfer from B. bourgeaui, B. cretica and B. montana, to cultivated plants, B. campestris and B. napus.  相似文献   

5.
Orychophragmus violaceus, a Potential Edible-oil Crop   总被引:3,自引:0,他引:3  
Peng  Luo  Z. Q. Lan  Z. Y. Li 《Plant Breeding》1994,113(1):83-85
Orychophragmus violaceus, a member of the Cruciferae family, has been found to have a high oil quality with high contents of palmitic (14.3 %) and oleic (20.3 %) acids, and lower contents of linolenic (4.8 %) and erucic (0.9 %) acids. Plants of O. violaceus exhibit a high number of branches, pods per plant, and seeds per pod, which contributes to the high yield potential of this plant. Individual selection was made in the original population of O. violaceus, and a few early, disease-tolerant and high-yielding lines were obtained. Intergeneric hybridization was performed between B. napus and O. violaceus and several hybrid plants (F1) were obtained. After treatment with colchicine, amphidiploid plants developed. O. violaceus shows great potential for becoming an edible oil crop or being used as genetic material in a rapeseed breeding programme.  相似文献   

6.
J. G. Wu    Z. Li    Y. Liu    H. L. Liu  T. D. Fu 《Plant Breeding》1997,116(3):251-257
A pentaploid hybrid plant (2n= 50, AACCO) between Brassica napus (AACC) and Orychophragmus violaceus (OO) showed matroclinous morphology and some patroclinous characters. Cloned progenies were mixoploid, consisting of various cells with 38–53 chromosomes, half of the cells with 50 chromosomes. The 50 chromosomes were mainly paired as 25 bivalents and segregated as 25:25 or 22:28; many other segregations were observed in some cells. Progenies produced by selfing had 38–47 chromosomes. Plants with 38 chromosomes were cytologically stable; in all other plants the chromosome number of individual cells varied between the genotype-specific maximum number and 38, indicating loss of chromosomes during mitosis. The mixoploid plants with 44 chromosomes mainly produced two kinds of mixoploid progenies with 44 and 41 chromosomes, respectively. All plants with 2n= 38 had the same morphology as the parental B. napus and were normal in fertility. These chromosome pairings and segregations in the pentaploid and its progeny support the hypothesis that O. violaceus is a natural polyploid species with a basic chromosome number of 3.  相似文献   

7.
Kwan Ho Lee  Hyoji Namai 《Euphytica》1993,72(1-2):15-22
Summary New types of diploids in Brassica crops were synthesized after three consecutive selfing of aneuploids derived from backcrossing of sesquidiploids (2n=29, AAC) with B. campestris (2n=20, AA). The cytogenetic and morphological characteristics of plants with 2n=22, 24 and 40 in the S3 generation were analyzed in order to establish the extent in which these addition and polyploid lines were stabilized. A high frequency of 11II (79.7%), 12II (84.6%) and 20II (100%), were observed at metaphase I of pollen mother cells in 2n=22, 24 and 40 plants, respectively. The chromosome configuration at methaphase II also indicates that a certain level of stability has been attained cytogenetically. Although pollen stainability was relatively high, the seed set percentage was still low. Variation in morphological characteristics indicate the incorporation of one or more chromosome pairs from the C genome of B. oleracea. Other diagnostic characters such as the formation of determinate inflorescence, branching from the base of the stem, and the shift from self-incompatibility to self-compatibility must have resulted from the interaction between A and C genomes. Thus plants with 2n=22, 24 and 40 have been stabilized to some extent and can be developed into new breeding lines of Brassica. It is suggested that limited pollination could be effective in increasing the seed fertility of these plants.  相似文献   

8.
Summary Interspecific hybridization between Brassica napus L. (2n=38, a1a1c1c1) and B. oleracea var. capitata L. (2x- and 4x-cabbage; 2n=2x=18, cc and 2n=4x=36, cccc) was carried out for the purpose of transferring clubroot disease resistance from the amphidiploid species to cabbage. Nineteen hybrids with three different chromosome levels (2n=28, a1c1c; 2n=37, a1c1cc and 2n=55, a1c1cccc) were obtained. The F1 plants were mostly intermediate between the two parents but as the number of c genomes in the hybrids increased, the more closely the hybrids resembled the cabbage parent. All F1 hybrids were resistant when tested against race 2 of Plasmodiophora brassicae wor. The complete dominance of resistance over susceptibility suggested that the gene(s) controlling resistance to this particular race of the clubroot pathogen is probably located on a chromosome of the a genome in Brassica.Contribution No. J654.  相似文献   

9.
M. H. Rahman 《Plant Breeding》2002,121(4):357-359
The fatty acid composition of seed oil of four interspecific hybrids, resulting from crosses between zero erucic acid Brassica rapa (AA), and high erucic acid Brassica alboglabra/Brassica oleracea (CC) and Brassica carinata (BBCC), void of erucic acid genes in their A‐genomes was examined. The erucic acid content in resynthesized Brassica napus (AACC) lines derived from these crosses was only about half that of the high erucic acid CC genome parents, indicating equal contributions of the two genomes to oil (fatty acid) synthesis and accumulation. The differences in C18 fatty acid synthesis between the parents were also evident in the resulting resynthesized B. napus plants. Hexaploid Brassica plants of the genomic constitution AABBCC, in which the AA genome was incapable of erucic acid synthesis, had lower erucic acid contents than the B. carinata (BBCC) parent. This is plausible considering the fact that the zero erucic acid AA genome contributes to oil synthesis in AABBCC plants, thus reducing erucic acid content.  相似文献   

10.
Summary Atrazine resistant Brassica napus × B. oleracea F1 hybrids were backcrossed to both parental species. The backcrosses to B. napus produced seeds in both directions but results were much better when the F1 hybrid was the pollen parent. Backcrosses to B. oleracea failed completely but BC1s were rescued by embryo culture both from a tetraploid hybrid (2n = 4x = 37; A1C1CC) and sesquidiploid hybrids (2n = 3x = 8; A1C1C). Progeny of crosses between the tetraploid hybrid and B. oleracea had between 25 and 28 chromosomes. That of crosses between the sesquidiploid hybrid and B. oleracea had between 21 and 27. A few plants that had chromosome counts outside the expected range may have originated from either diploid parthenogenesis, unreduced gametes or spontaneous chromosome doubling during in vitro culture. Pollen stainability of the BC1s ranged from 0% to 91.5%. All the BC1s to B. oleracea were resistant to atrazine.  相似文献   

11.
Ethiopian mustard (Brassica carinata Braun) is a potential oil crop in which genes for low erucic acid content of the seed oil have not yet been found. In order to solve this problem the potential of rapeseed (B. napus L.) varieties as a source of these genes has been tested. Reciprocal F1 hybrids between B. carinata and a low erucic acid variety of B. napus, F2, and backcrosses with B. carinata were obtained. The fatty acid composition was determined in half seeds of F1 and segregating generations from reciprocal interspecific crosses. The genetic analysis indicated that the erucic acid content of the seed oil of B. carinata is controlled by two genes with no dominance and additive in action.  相似文献   

12.
Meiotic nondisjunction during microsporegenesis can lead to aneuploid gametes formation and reduced pollen fertility in plants. This paper reports the prevalence of meiosis I nondisjunction in a resynthesized Brassica napus (AACC, 2n = 38) and its use for aneuploid production. Meiosis in the amphidiploids was characterized by high frequencies of univalents and multivalents per PMC at diakinesis/metaphase I and notably unbalanced chromosome segregations at anaphase I (AI). In all the plants observed, 18.95–44.3% of PMCs exhibited a segregation of 18:20 (n − 1:n + 1) at AI which was caused by nondisjunction of one bivalent or the distribution of two homologous univalents to the same pole. Meiosis proceeded normally after AI then, thus led to the formation of viable n − 1 and n + 1 gametes and high pollen fertility of these plants. Microspore culture was subsequently carried out using these plants in an attempt to isolate Brassica nullisomics. Four nullisomics (2n = 36), two nullihaploids (2n = 18) and one tetrasomic haploid (2n = 20) were identified cytologically and characterized morphologicaly and physiologically. Amplified fragment length polymorphism (AFLP) survey suggested that of the six nullisomics/nullihaploids, one nullihaploids lost one A-genome chromosome and the other five lost C genome chromosome(s). Altogether, different C-genome chromosomes were thought to have been lost in the nullisomics/nullihaploids. The mechanisms underlying the meiotic abnormalities and the implications of these B. napus nullisomics are discussed.  相似文献   

13.
Broadening the genetic base of the C genome of Brassica napus canola by use of B. oleracea is important. In this study, the prospect of developing B. napus canola lines from B. napus?×?B. oleracea var. alboglabra, botrytis, italica and capitata crosses and the effect of backcrossing the F1’s to B. napus were investigated. The efficiency of the production of the F1’s varied depending on the B. oleracea variant used in the cross. Fertility of the F1 plants was low—produced, on average, about 0.7 F2 seeds per self-pollination and similar number of BC1 seeds on backcrossing to B. napus. The F3 population showed greater fertility than the BC1F2; however, this difference diminished with the advancement of generation. The advanced generation populations, whether derived from F2 or BC1, showed similar fertility and produced similar size silique with similar number of seeds per silique. Progeny of all F1’s and BC1’s stabilized into B. napus, although B. oleracea plant was expected, especially in the progeny of F1 (ACC) owing to elimination of the A chromosomes during meiosis. Segregation distortion for erucic acid alleles occurred in both F2 and BC1 resulting significantly fewer zero-erucic plants than expected; however, plants with?≤?15% erucic acid frequently yielded zero-erucic progeny. No consistent correlation between parent and progeny generation was found for seed glucosinolate content; however, selection for this trait was effective and B. napus canola lines were obtained from all crosses. Silique length showed positive correlation with seed set; the advanced generation populations, whether derived from F2 or BC1, were similar for these traits. SSR marker analysis showed that genetically diverse canola lines can be developed by using different variants of B. oleracea in B. napus?×?B. oleracea interspecific crosses.  相似文献   

14.
Summary Meiosis in 14 interspecific F1 hybrids with three chromosomal levels (triploid, tetraploid, hexaploid; 2n=28, 37 and 55) between Brassica napus L. and 2x and 4x cabbage (B. oleracea var. capitata L.) was studied. The oleracea genome from B. napus maintained close homology with the c genome of cabbage while the campestris genome of B. napus showed partial homology with the c genome contained in the hybrids. Genotypic influence on chromosome pairing was indicated. Structural chromosome differences and spontaneous chromosome breakage and reunion were suggested as causes for the abnormalities which related to the unbalance of the genotypes. The divergence of the genomes of B. napus and B. oleracea and the need for the qualification of the term secondary association were discussed.Contribution No. J. 673, Research Station, Agriculture Canada, St. Jean, Québec.  相似文献   

15.
K. H. Lee  H. Namai 《Euphytica》1992,60(1):1-13
Summary Aneuploids with 2n=21 and 2n=22 derived from crossing of sesquidiploids (2n=29, AAC) and Brassica campestris (2n=20, AA) were selfed successively in order to follow the changes in chromosome number of the progenies for three consecutive generations. Progenies with 2n=22, 23 and 24 obtained after selfing of S0 generation and the succeeding S1, S2 and S3 generations were analyzed in terms of pollen stainability, % seed set as well as cytogenetically based on meiotic behaviour with the aim of determining the possibility of addition of one or more alien chromosomes into n=10 species which may lead to differentiation of single or plural disomic addition lines. The generation of aneuploids with 2n=21 progressed in such a way that most plants seem to revert to the 2n=20 chromosome number of B. campestris after selfing. From 2n=22 aneuploids, however, the succeeding progenies showed high frequency of plants with two additional chromosomes which accounted for 50.6% and 52.9% of total S3 progenies via 2n=22 and 2n=24 S2 generations, respectively. The meiotic behaviour of these progenies indicated evidence for a rule governing the frequency distribution of chromosome number among these addition lines and high possibility to breed such disomic plants with 2n=22. A method of selecting stable aneuploids was suggested in addition to the possible role of pollination biology at various processes of such breeding program.  相似文献   

16.
The synthetic Brassica napus L. line No7076 was obtained from a cross between yellow-flowered and zero-erucic turnip rape (B. campestris) Sv85-38301 and white-flowered and high-erucic (41.4%) B. oleracea ssp. alboglabra No6510. This synthetic B. napus is pale-flowered and has an average erucic acid content of 25.8 %. It was crossed with the yellow-flowered and zero-erucic B. napus line SvS4-2S053 and segregation of the erucic acid content and flower colour was studied in F1 and F2 generations. The high erucic acid content was controlled by a single gene in the C-genome and was additively inherited. Strong evidence was obtained in support of independent segregation of the erucic-arid content and the flower colour characters controlled by the C-genome of B. napus.  相似文献   

17.
R. Delourme  F. Eber  A. M. Chevre 《Euphytica》1989,41(1-2):123-128
Summary Intergeneric hybrids (F1) Diplotaxis erucoides (DeDe) x Brassica napus (AACC) and the first backcross to B. napus (BC1) have been obtained through in vitro culture of excised ovaries. The chromosome numbers of F1 and BC1 plants proved the occurrence of unreduced gametes. The study of metaphase I chromosome pairing showed that autosyndesis in De genome and allosyndesis between De and A/C genomes might exist. The male fertility of the F1 plants was low. Some male-sterile plants were found in F1 and BC1 progeny. The possibilities of creating addition lines B. napus-D. erucoides and of obtaining a new cytoplasmic male sterility in B. napus are discussed.  相似文献   

18.
N. Inomata 《Euphytica》2003,133(1):57-64
The cytogenetic study was investigated in the intergeneric F1 hybrid, F2and backcross progenies (BC1). The plants used were Brassica juncea(2n=36) and Diplotaxis virgata(2n=18). Three intergeneric F1 hybrids between two species were produced through ovary culture. They showed 36 chromosomes. It might consist one genome of B. juncea and two genomes of D. virgata. The morphology of the leaves resembled that of B. juncea. The color of the petals was yellow that was like in D. virgata. The size of the petal was similar to that of B. juncea. The mean pollen fertility was15.3% and the chromosome associations in the first meiotic division were(0–1)IV+(0–2)III+(8–12)II+(12–20)I. Many F2 and BC1seeds were harvested after open pollination and backcross of the F1 hybrids withB. juncea, respectively. The F2seedlings showed different chromosome constitutions and the range was from 28 to54 chromosomes. Most seedlings had 38chromosomes followed by 36, 40 and 54. The BC1 seedlings also showed different chromosome constitutions and the range was from 29 to 62. Most seedlings had both 40and 54 chromosomes followed by 36, 46 and52. In the first meiotic division of F2 and BC1 plants, a high frequency of bivalent associations was observed in all the various kinds of somatic chromosomes. Many F3 and BC2 seeds were obtained by self-pollination and open pollination of both F2 and BC1 plants, and by backcrossing both F2 and BC1plants with B. juncea, respectively,especially, three type progeny with 36, 40or 54 chromosomes. The somatic chromosomes of the F3 and BC2 plants were further investigated. The bridge plants between B. juncea and D. virgata with 36 chromosomes may be utilized for breeding of other Brassica crops as well as B. juncea. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Nicotiana glauca is of potential interest to breeders as it carries resistance to black root rot of tobacco. Cytological investigations of sexual interspecific hybrids of N. tabacum T′T′TT (2n = 4x = 48) cv. ‘Wiślica’ × N. glauca GG (2n = 2x = 24) were carried out. The analyses of chromosome association at diakinesis and metaphase I in the PMCs of amphihaploid F1 T′TG (2n = 3x = 36) revealed low variable pairing with 0–5 bivalents. The sterile amphihaploids F1 were converted into partial female fertile amphidiploids T′T′TTGG by chromosome doubling. Among 36 mature plants obtained, 15 were found to have chromosome numbers (2n = 6x = 72) and were verified as amphidiploids, 9 had (2n = 6x = 70 or 71) chromosomes while the remaining 12 were haploid. True amphidiploids, in spite of quite high chromosome pairing during meiosis, were very different in pollen fertility, ranging from 0% to 85%. Male fertility disturbances did not correlate with the degree of female fertility upon pollination with N. tabacum. Sesquidiploids T′TG (2n = 5x = 60) obtained from backcrossing the amphidiploids to parental tobacco showed more than 22 bivalents, 10–12 univalents and occasional multivalents that indicated the possibility of interchange events between N. tabacum and N. glauca genomes.  相似文献   

20.
Interspecific hybrids were produced from reciprocal crosses between Brassica napus (2n = 38, AACC) and B. oleracea var. alboglabra (2n = 18, CC) to introgress the zero-erucic acid alleles from B. napus into B. oleracea. The ovule culture embryo rescue technique was applied for production of F1 plants. The effects of silique age, as measured by days after pollination (DAP), and growth condition (temperature) on the efficiency of this technique was investigated. The greatest numbers of hybrids per pollination were produced under 20°/15°C (day/night) at 16 DAP for B. oleracea (♀) × B. napus crosses, while under 15°/10°C at 14 DAP for B. napus (♀) × B. oleracea crosses. Application of the ovule culture technique also increased the efficiency of BC1 (F1 × B. oleracea) hybrid production by 10-fold over in vivo seed set. The segregation of erucic acid alleles in the self-pollinated backcross generation, i.e. in BC1S1 seeds, revealed that the gametes of the F1 and BC1 plants carrying a greater number of A-genome chromosomes were more viable. This resulted in a significantly greater number of intermediate and a smaller number of high-erucic acid BC1S1 seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号