首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil contamination due to spills or leaks of crude oils andrefined hydrocarbons is a common problem. Estimation of spillvolume is a crucial issue in order to determine the expectedcontaminating life span of contaminated soils. The directprocedure to determine the amount of hydrocarbon in soil is to measure the concentration of total petroleum hydrocarbon (TPH) in soil samples. The primary objective of this study was toassess the potential effects of oil contaminated soils on thewater quality of Devegecidi dam reservoir. For this purpose,limited spill data available were evaluated and soil samplingstudies were conducted in the Beykan oil field to analyze forTPH on oil contaminated soils. Available spill and measured soilTPH data were used in a subsequent modeling study to assess thereservoir water quality impacts due to dissolved mass leachingfrom hydrocarbon contaminated soils. Evaluation of availablespill data between 1989 and 1995 revealed that a total of 252recorded spills resulted in a net spill of 395 tons. The majortypes of oil spills were identified as well heads (WH), returnlines/flow lines (RL/FL), and power oil lines (POL). A total of211 soil samples was collected at selected well heads andanalyzed for TPH in the laboratory. TPH results revealed aconcentration range between 600 and 115 500 mg kg-1 with a meanconcentration of 20 300 mg kg-1. Modeling studies focused onbehavior assessment and involved two major components. The firstcomponent is a soil-leaching submodel for estimating theleachate concentration and contaminant mass leaching out of thecontaminated soil body. The second component is a reservoirwater quality submodel assuming complete-mix conditions forestimating the changes of hydrocarbon concentration in thereservoir water as a function of time. These two components arecoupled via a mass inflow term present in the reservoir waterquality model, accounting for contaminant mass loadingcontributed by the leaching of contaminated soil. Simulation runs performed under conservative conditions assuming an annualaverage oil spill volume of 95 tons and the minimum reservoirvolume of 7.3 × 106 m3 revealed that there isno imminent threat to reservoir water quality from the dissolved phase contaminants soils. Limited amount of availablemeasurements of TPH concentrations in soil samples and benzeneconcentrations in reservoir water samples supported model results.  相似文献   

2.
Landfilling of municipal solid waste (MSW) is associated with the generation of leachate that is highly contaminated. Contaminant migration from disposal areas to groundwater poses a threat to the environment and the human health. This study examined the contaminant migration at a landfill site in Kuwait. The migration characteristics of contaminants were analyzed using advanced computing systems to predict the long-term plume concentration in underlying soils and aquifers located directly below the final waste layer. Mathematical models of contaminant migration were applied to existing landfill sites using MIGRATEv9 computer program to illustrate the scope and extent of soil and water contamination. Two main cases were modeled as follows: (1) water table is deep below landfill and (2) water table is rising into the landfill. The models included advective-dispersion, and buried landfills systems. The comparison between models results suggested that vertical Darcy velocity had a significant impact on migration behavior of contaminants. The concentration was increased by 24.5% by increasing the vertical Darcy velocity from 0.005 to 0.009 m/year. Advection–dispersion models and water rising models with fixed top boundary and aquifer bottom boundary at 2 and 3.5 m showed almost the same migration behavior. In addition, models of buried landfill system where water table was 5 m from ground surface produced a maximum contaminant concentration of 17 630 mg/L after 25 years at 5 m depth.  相似文献   

3.
The objective of this research was to identify chemical, physical, bacteriological, and viral contaminants, and their sources, which present the greatest health threat in public ground water supplies in the USA; and to classify (prioritize) such contaminants and relative to their health concerns. The developed contaminant prioritization methodology was based on frequency of occurrence and adverse health effects. Adverse health effects were based on carcinogenic potency, toxicity, hazardous chemical priorities and drinking water standards. Application of the methodology for wellhead protection areas, (WHPAs) revealed that approximately 200 different contaminants have been detected in the nation's public ground water supplies. The seven chemical constituents with the highest priority were arsenic, chromium, cadmium, carbon tetrachloride, chloroform, 1, 1-dichloroethylene, and ethylene dibromide. Other contaminants of concern were trichloroethylene, nitrates, barium, 1,1,1-trichloroethane, benzene, tetrachloroethylene, selenium, lead, toluene, mercury, gross alpha radiation, methylene chloride, coliform bacteria, metolachlor, metribuzin, 1, 1, 2, 2-tetrachloroethane, dibromochloroethane, simazine, radium-266, and toxaphene. The contaminant source prioritization methodology was also based on frequency of occurrence. Over 30 categories of sources were evaluated, with the eight with highest priority including agricultural activities, hazardous waste sites, landfills, industrial operations, septic tank systems, oil and gas field activities, urban land use, and underground storage tanks.  相似文献   

4.
苯、甲苯、乙苯和二甲苯统称为苯系物(BTEX),是化工污染场地检出率最高的芳香族有机污染物。为研究BTEX长期污染对土壤和地下水微生物群落结构和代谢潜能的影响,采集了江苏省某搬迁化工厂的浅层土、地下水和深层土样品,利用16S rRNA基因扩增子测序和宏基因组测序技术对BTEX长期污染场地展开分析。结果表明:相比较未受污染的土壤样品,长期BTEX污染显著改变了微生物群落结构和多样性,其中以变形菌门改变最为显著。共现性网络分析表明,污染场地中随着样品取样深度的增加,微生物网络复杂性和群落稳定性降低。BTEX代谢功能基因注释表明,地下水样品中污染物代谢基因丰度和多样性更高,并且在地下水和浅层土中同时存在完整的好氧降解途径,但在地下水中厌氧降解基因的丰度更高。BTEX降解途径中benABC和bcrCBAD基因簇在浅层土中更完整,但通过构建BTEX开环的关键基因bamA的系统发育树表明,地下水中可能存在新的BTEX开环基因。这些结果证明BTEX长期污染的不同生境中存在高度多样的微生物群落与降解途径,为相关污染场地的微生物修复提供了科学依据。  相似文献   

5.
Investigations on some soils of the Lut-e-Zangi Ahmed desert, Iran ”?Lut-e-Zangi Ahmed”? is a part of the Lut desert, which is located in south-eastern Iran. The Lut desert is one of the warmest and driest deserts of the world. It is very poor in vegetation and water, particularly in useful water. The evaporation is nearly hundred times more than the precipitation during the year (Evap. = 5000), precip. = 50 mm/year. In the research of “Lut-e-Zangi Ahmed”-SW part of the Lut desert-where its soils were entirely unknown, it is tried to get information about the most important properties of the desert-soils and possibility of agricultural use, through the profiles and analyses. The average elevation of the “Lut-e-Zangi Ahmed” is 500 m above the sea-level. The region is very poor in vegetation. There are many large areas on which no vegetation exists. The only useful water (underground water) is found in this part of the Lut desert. There are different zonal-intrazonal and azonal soils in the “Lut-e-Zangi Ahmed” (compare Ganssen 1968) for example: Hamada-desert soils, grey and light-brown saline desert soils, fine textured alluvial soils and sand desert soils. The soils are salty (EC from 11-5 12 mmhos/cm) and neutral to weak alkaline. They are poor in organic matter, phosphor and nitrogen too. The predominating part of the area investigated is not suitable for agricultural use. Only 150 ha are arable land, because it is possible to get here suitable groundwater for desalinization and irrigation.  相似文献   

6.
World Soil Day 2021 encouraged the prevention of soil salinization and improved land productivity. As research underpins this effort, we analysed trends in research on water and salt mobilization in saline soils and groundwater over the past 20 years. We found that the average studies have increased by 30%, from 110 in 2003–2015 to 143 in 2016–2022, with agriculture, water resources and environmental science being the main research fields. The most common research interests were anthropogenic impact (28.6%) and climate change (27.8%), followed by agricultural irrigation management (20%). A keyword clustering analysis revealed that the studies could be classified into four categories: “Agricultural production,” “Freshwater and groundwater salinization,” “Seawater intrusion,” and “Solute dynamic migration.” The most frequently used keyword was “transport” while the use of “freshwater,” “groundwater,” and “seawater intrusion” has increased sharply, suggesting that seawater intrusion and freshwater salinization are an area of increasing interest related to climate change. We identified comprehensive simulating systems for seawater intrusion as an important area for future research. We recommend that promoting a comprehensive and quantitative understanding of water and salt transport in saline soil is needed to ensure stakeholders are provided with science-based information required for policymaking aimed towards sustainable development.  相似文献   

7.
在对石家庄某蔬菜大棚种植区进行采样测试分析的基础上,针对其表层土壤及地下水有机污染特征,依托美国环保局(U.S.EPA)所提健康风险评价四步法,以菜农为敏感人群,尝试开展蔬菜大棚种植区的健康风险评价工作。在评价过程中,主要考虑经口摄入土壤和饮用地下水两种暴露途径,而鉴于蔬菜大棚内表层土壤与大棚周围表层土壤中污染物种类和含量存在明显差异这一事实,又将经口摄入土壤途径细分为经口摄入大棚内表层土壤和经口摄入大棚外表层土壤。评价结果显示,菜农的非致癌风险和致癌风险目前均处于可接受风险水平;邻苯二甲酸二正丁酯是最主要的非致癌污染物,其非致癌风险贡献率高达84.2%,狄氏剂是最主要的致癌污染物,其致癌风险贡献率为51.35%;饮用地下水途径是最主要的非致癌风险贡献途径,其非致癌风险贡献率高达94.42%;经口摄入棚外表层土壤途径是最主要的致癌风险贡献途径,其致癌风险贡献率为47.14%。  相似文献   

8.
The environmental impacts of 16 different contaminants originating from the E18 Highway (17,510 annual average daily traffic) were studied over the initial months of the highway??s operational life. Investigative methods used included electrical resistivity surveying, water chemistry analyses, soil analyses, distribution modeling, and transportation modeling of contaminants. The study conclusively showed a year-round infiltration due to melting of the snowpack from road salt, and a strong preferential, anthropogenic pathway due to increased hydraulic conductivities of road construction materials relative to in situ soils. The resistivity surveys produced values well below the expected values for the highway materials, indicating increased ionic content within the unsaturated zone. Time lapse resistivity modeling showed a clear downwards spreading of contamination from the roadway to subsurface distances greater than 5?m. Elevated concentrations of nearly every studied contaminant relative to baseline values were observed, with many metal concentrations within the snow pack averaging values in excess of the Swedish Environmental Protection Agency??s groundwater limitations. Distribution modeling demonstrated a potential offset of peak values from the road surface due to plowing and splash transport processes, and indicated different distribution behavior during winter months than during summer months. One-dimensional transport modeling demonstrated the importance of adsorption and other retentive factors to the migration of contaminants to groundwater and provided an estimate for potential long-term contaminant concentrations.  相似文献   

9.
Background, Aims, and Scope  Groundwater in urban areas is often contaminated and emission sources can be located close to groundwater wells. The delineation of contaminant plumes is difficult because of the various potential emission sources. Thus, detection, quantification and remediation of contaminated sites in a city need more integrative approaches. Methods  A method has been developed which allows quantification of mass fluxes of contaminants in groundwater between control planes. Budget zones along the flow path are defined to calculate a contaminant balance and to quantitatively reveal input areas. Concentrations and water budgets are used to calculate mass balances for each contaminant. The city of Darmstadt (Germany) was chosen to evaluate the method. Results  The groundwater monitoring wells (GMWs) upstream of the city showed anthropogenically superposed background values for all naturally occurring inorganic species. The contaminant concentrations increased in the city (probably influenced by road traffic, gas stations, leaking sewers, etc.). Downstream from the city, concentrations usually decreased. Organic compounds typical for urban environments, such as polycyclic aromatic hydrocarbons (PAH), locally exceeded drinking water regulations. In GMWs with high concentrations of organic contaminants in the city or downstream from industrial areas, a significant increase in Fe2+ and Mn2+ could be observed, in some cases coinciding with a decrease in NO3, SO4 and an increase in NH4. Discussion  For typical urban contaminants, a positive budget was calculated in several zones, which shows that emissions from urban sources are reaching the groundwater. Negative budgets can be mainly explained with diving plumes and degradation. The input calculated from the individual budget zones is usually higher than the input estimated from urban emissions. Differences between the calculated and the estimated input can be explained with additional sources or (bio)degradation processes. Conclusions  It was confirmed that high concentrations of contaminants do not necessarily correlate with high fluxes. Integrative approaches can reveal areas of high contaminant mass input. The results obtained with the new method are plausible compared to the land use and the estimated urban input. The concentration pattern of Fe2+, Mn2+, SO4 and NO3 is partly due to natural processes, triggered by the degradation of organic matter and organic contaminants. Recommendations  Since this method includes mass balances and flux calculations, avoiding an overestimation of single point contaminant concentration, it is recommended to use this approach to quantify groundwater contamination in cities. Further research is focusing on the role of urban soils as natural reservoirs for the input of contaminants.  相似文献   

10.
以苏南某焦化厂为研究对象,在对污染区域初步识别的基础上,采集了0~4.5 m深的22个土壤样品和2个地下水样品,利用GC/MS等检测了多环芳烃类、总石油烃、苯系物、重金属,总氰化物、挥发酚、硫化物的含量,并研究了其在不同功能区土壤和地下水中的特征分布。结果表明:(1)该焦化场土壤和地下水受到了不同程度的污染,其中炼焦炉周边、焦油和洗油储罐区、焦油和粗苯加工车间是污染最严重的区域;(2)土壤中主要超标污染物是多环芳烃、总氰化物、总石油烃、单环芳香烃、二苯呋喃、苯胺、硫化物、挥发酚和一些苯酚类化合物;(3)地下水重点污染区域粗苯车间受到总氰化物、苯胺、苯酚类、萘、总石油烃、单环芳香烃的严重污染,污水处理站区域地下水主要污染物包括总氰化物、萘、总石油烃、苯。  相似文献   

11.
Abstract

The analysis of soils, using 0.1 N HC1 as an extractant for the heavy metals, Cd, Cr, Ni and Pb on “fine”; textured North Shore and “coarse”; textured Annapolis Valley soils was completed. Results show ranges of 0.012 to 0.469 parts per million Cd; 0.102 to 2.90 parts per million Cr; 0.16 to 29.25 parts per million Ni and 0.12 to 244.8 parts per million Pb. Correlation studies indicate that the heavy metal content of fine textured soils is less influenced by changes in clay content and organic matter than are coarse textured soils. Generally the surface layers (0–15 cms) are higher in extractable heavy metal content than the lower layers (15–30 cms).  相似文献   

12.
Results of many independent experimental findings related to fingered preferential flow are combined into a concise, conservative engineering methodology for predicting pollutant transport through fingered flow paths. Preferential flow can occur in all textures of soil, with fingering occurring in less structured coarse soils, giving over to macropore flow in finer-textured soil regimes. A simple example comparing groundwater loading of naphthalene using plug flow and fingered flow assumptions illustrates that fingered flow can increase contaminant loading to groundwater aquifers by over two orders of magnitude at sites with coarse vadose zone materials.  相似文献   

13.
Study of Biodegradation Processes of BTEX-ethanol Mixture in Tropical Soil   总被引:1,自引:0,他引:1  
In Brazil, gasoline is currently blended with ethanol and both compounds may contaminate the environment when spills occur. Ethanol preferential biodegradation delays gasoline degradation in the aquifer, as previously observed; in unsaturated soil a delayed recovery of culturable bacteria and removal of residues in the presence of ethanol suggest a similar situation. This study monitors microbial degrading activity in unsaturated soil with BTEX and BTEX-ethanol mixtures under tropical conditions as well as the effects of bioventing on contaminants degradation. Enzymatic activity was quantified by measuring fluorescein-diacetate hydrolysis by microorganisms, which determines total degrading activity in soil. As microbial enhanced activity may alter soil electromagnetic properties, soil dielectric constant shifts were monitored using Time Domain Reflectometry (TDR), while chemical analyses evaluated contamination residues throughout the experiment. Results suggest that ethanol delays BTEX biodegradation and that bioventing may compensate for this delay by providing oxygen for the continuation of microbial activity. Contamination and bioventing stimulated soil microbiota, while culturable populations were inhibited by contamination, showing soil toxicity. The presence of ethanol caused a higher and longer-lasting boost in enzymatic activity; TDR measurements did not follow these activity shifts, proving not to be an adequate tool for evaluating microbial activity in these experimental conditions. Residual BTEX were detected only in ethanol-containing non-ventilated soils after contamination. The set of results suggests that ethanol could delay BTEX degradation because of its constitutive degradation by soil microbiota, but this effect may be bypassed by bioventing.  相似文献   

14.
Activated carbon-coated electrode was developed and applied in electrostatic precipitator to remove volatile organic compound gases simultaneously with dust particles from a contaminated air. The activated carbon coating mixture was made up of powdered activated carbon (AC), carbon black (CB), and polyvinyl acetate (PVA), and methanol was added as a solvent to control the thickness of the mixture for best coating performance. During the coating process, the Brunauer-Emmett-Teller (BET) surface decreased to 86% of the original AC while pore volume percentages of macro pore increased, compared to micro- and meso-sized pores. The adsorption isotherm of benzene, toluene, ethyl benzene, and xylene (BTEX) gases onto the original AC and AC coating mixture (AC thoroughly mixed with PVA and methanol for coating and powdered again after dry) were tested and compared to each other, and it was found that both isotherm were best fitted to Freundlich and Langmuir isotherm with the order of adsorption capacities; ethyl benzene?>?m-xylene?>?toluene?>?benzene. The difference between adsorption capacities was clearer with the absorbent AC but became little with the AC coating mixture. In removing BTEX at increasing linear velocities up to 6.7 cm/s, it appeared that the surface area of AC electrode was directly proportional to its removal rate of BTEX. The thermal desorption was applied to regenerate the AC electrode, and 200 °C was found to be most efficient for benzene desorption, but higher temperature would be required for entire BTEX gases desorption.  相似文献   

15.
On the genesis of tidal marsh soils I. The influence of sediment- and soil-structure The significance of sediment structure for soil structure has often been disregarded when discussing the properties and genesis of tidal marsh soils. After defening several terms that are often misinterpreted, three types of tidal-marsh-soils with different structure are described: 1 . the typical clayey tidal-marsh-soils with very various aggregate structures: The well aired and permeable “SEEMARSCH” (marine-tidal-marsh-soil) with polyhedral and prismatic structure, which is formed from the flaky “card-house” structure of marine sediments rich on salt; the densely paked “BRACKMARSCH” (brackish-tidal-marsh-soil), whose moisture is due to perched water, which coarse prismatic to columnar structure, which is formed from the mainly horizontally orientet structure of brackish sediments due to dispersion; the moderately permeable “FLUSSMARSCH” (tidal-river-marsh-soil), whose wetness is often due to groundwater, with medium to coarse prismatic structure, which is formed from the finely aggregated structure of perimarine tidal-river sediments; 2 . the tidal marsh soils poor in clay, rich in silt and very fine sand with coherent structure and low air porosity, due to a strong tendency towards puddling of the top soil by raindrops, causes the formation of “HAFTNÄSSEMARSCH” (marsh soil whose moisture is due to capillar water); 3 . the tidal-marsh-soils rich in plant remains, clay and with a high level of groundwater often extremly acid, with coherent structure, which formed the generally highly permeable “ORGANOMARSCH”. The conditions of formation of these soils and the soil parameters are discussed also.  相似文献   

16.
Organo-clay can be utilized for the containment of environmentalpollutants originating from waste sites or accidental spills. Abatch study was conducted using organo-clays produced from aWyoming montmorillonite (SWy) and three organic cations(trimethylphenylammonium (TMPA), trimethylammonium adamantane(Adam), and hexadecyltrimethylammonium (HDTMA)) to characterizeBTEX (benzene, toluene, ethylbenzene, o-, m-, p-xylene) sorption. Sorption data were fitted to two models,with Freundlich resulting in greater correlations of the datathan the Langmuir model (R 2 at P ≤0.001-0.05). The Freundlich conditional index (n f),which describes the experimental sorption characteristics,decreased curvilinearly with organic-cation molecular weights,thus suggesting organo-clays with smaller cations had greaterhydrocarbon retention. Sorption of BTEX followed the order ofTMPA > Adam > HDTMA organo-clays. A similar sequence in themagnitudes of log K d and log K omsupportedthis finding. Positive log K om/K ow valuesfor TMPA and Adam derivatives indicated there was a greaterretention of BTEX by these organo-clays than octanol. The orderof log K om for SWy-HDTMA, although concentration-dependent, was analogous to the log K ow order,indicating partitioning was the dominant sorption mechanism forthe HDTMA-clay. Isotherms for SWy-TMPA and SWy-Adam followed aconvex up pattern. In contract, a concave up curvature, notedfor SWy-HDTMA isotherms, was probably caused by a cosorptiveenhancement process resulting from an effective increase in organic matter content of the organo-clay due to furtherhydrocarbon sorption,in concurrence with a decrease inadsorbate activity coefficients. Values of binding affinityconstant, K f, for SWy-TMPA were consistently higherthan SWy-Adam. The K f values determined for totalBTEX sorption by TMPA and Adam derivatives were higher thanthose for the individual hydrocarbons. With SWy-HDTMA, the same order was observed for benzene and toluene; however, ethylbenzene and xylenes had greater K f values thanthat for the BTEX mixture, possibly due to higher partitioningaffinity of the larger alkylbenzenes. With SWy-HDTM, thesequence of K f values was: ethylbenzene > m-xylene > p-xylene > o-xylene > toluene >benzene. Trends for SWy-TMPA and SWy-Adam were in contrast tothat of the partitioning order, suggesting that adsorption, ratherthan partitioning, was the primary sorption mechanism for thesetwo organo-clays. With respect to the equilibriumconcentrations, the sorbed amounts for total BTEX mixture weregenerally higher than those for the individual compounds. Ascompared to benzene and toluene, the large-size alkylbenzenesshowed greater partitioning affinity due to their high hydrophobicity.  相似文献   

17.
土壤性质对砂土亚表层磷迁移的影响   总被引:5,自引:0,他引:5  
ZHANG Ming-Kui 《土壤圈》2008,18(5):599-610
The soil factors influencing the potential migration of dissolved and particulate phosphorus (P) from structurallyweak sandy subsoils were evaluated by means of soil column leaching experiments. Soil colloids were extracted from two types of soils to make the colloid-bound forms of P solution. Eight sandy soils with diverse properties were collected for packing soil columns. The effects of influent solutions varying in concentrations of colloids, P, and electrolyte, on the transport of P and quality of leachates were characterized. P migration in the soils was soil property-dependent. High soil electrical conductivity values retarded the mobility of colloids and transportability of colloid-associated P (particulate P). Soil electrical conductivity was negatively correlated with colloids and reactive particulate P (RPP) concentrations in the leachates, whereas, the total reactive P (TRP) and dissolved reactive P (DRP) concentrations in the leachates were mainly controlled by the P adsorption capacity and the P levels in the subsoil. The reactive particulate P in the leachates was positively correlated with the colloidal concentration. Increased colloidal concentration in the influent could significantly increase the colloidal concentration in the leachates. Elevated P concentration in the influent had little effect on P recovery in the leachates, but it resulted in significant increases in the absolute P concentration in the leachates.  相似文献   

18.
挥发性有机污染物在土壤中的运移机制与模型   总被引:7,自引:0,他引:7       下载免费PDF全文
彭胜  陈家军  王红旗 《土壤学报》2001,38(3):315-323
挥发性有机污染物在土壤多孔介质中有三种可能的存在状态:溶于水中、挥发为气体及吸附于固体颗粒。挥发性有机污染物在水、气、固体颗粒三相间的物质交换与分配是决定其运移的重要因素,在相间物质交换为平衡的条件下,可用阻滞系数来表示其影响,污染物与土壤固体颗粒间的非平衡吸附解吸是相间交换中影响污染物运移的最重要的机制,由于天然土壤具有固有的不均质性,必须用多个反应系数才能准确描述污染物与固体颗粒间的非平衡吸附解吸。  相似文献   

19.
The objective of this study was to test the effectiveness of a nitrate-rich nutrient solution and hydrogen peroxide (H2O2) to enhance in-situ microbial remediation of toluene in the unsaturated zone. Three sand-filled plots were tested in three phases (each phase lasting approximately 2 weeks). During the control phase, toluene was applied uniformly via sprinkler irrigation. Passive remediation was allowed to occur during this phase. A modified Hoagland nutrient solution, concentrated in 150 L of water, was tested during the second phase. The final phase involved addition of 230 moles of H2O2 in 150 L of water to increase the available oxygen needed for aerobic biodegradation. During the first phase, measured toluene concentrations in soil gas were reduced from 120 ppm to 25 ppm in 14 days. After the addition of nutrients during the second phase, concentrations were reduced from 90 ppm to about 8 ppm within 14 days, and for the third phase (H2O2), toluene concentrations were about 1 ppm after only 5 days. Initial results suggest that this method could be an effective means of remediating a contaminated site, directly after a BTEX spill, without the intrusiveness and high cost of other abatement technologies such as bioventing or soil-vapor extraction. However, further tests need to be completed to determine the effect of each of the BTEX components.  相似文献   

20.
Arsenic (As) poisoning of groundwater in Bangladesh has become a major environmental and health issue. The extensive use of groundwater in irrigation of rice has resulted in elevated As in soils and crops. A study was undertaken to determine As concentrations in groundwater, soils, and crops in 16 districts of southwestern Bangladesh. Groundwater samples were collected from shallow-tube and hand-tube wells (STW and HTW) used for irrigation and drinking water. Soil and rice plants were sampled from the command area of the tube wells. Arsenic concentrations were determined using an atomic absorption spectrometer equipped with flow injection hydride generator. Groundwater samples contained <10 to 552 μg As L?1. Arsenic concentrations in 59% of STW samples exceeded 50 μg As L?1, the national standard for As in drinking water. Unlike groundwater, most of the surface water samples contained <10 μg As L?1. Concentrations of As in the soils from the command area of the tube wells ranged from 4.5 to 68 mg kg?1. More than 85% of the soils contained <20 mg As kg?1. The mean As concentration in the rice grain samples was 0.23 mg kg?1, which is much less than the maximum food hygiene standard. A positive relationship was observed between groundwater and soil As, implying that soil As level increases as a result of irrigation with contaminated water. However, irrigation water As did not show any relation with rice grain As. The findings suggest that surface water bodies are a safe source of irrigation water in the As-contaminated areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号