首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The impact of nanoparticles (NPs) in zooplankton is poorly studied, particularly when organisms are exposed through diet. Food, constituted mainly by unicellular algae, can act as an important route of contamination for zooplankton. Since unicellular algae have a high surface area in relation to their volume, NPs can interact with their cell membranes and walls, as well as with exopolysaccharides secreted by them. In the present research, we investigated both the acute effects of waterborne titanium dioxide nanoparticles (TiO2 NPs), and its chronic effects via dietary exposure on the Neotropical freshwater zooplankton Ceriodaphnia silvestrii Daday, 1902 (Crustacea: Cladocera). The observed acute effects served as support for chronic tests, in which we investigated the effects of TiO2 NPs on survival and life history parameters (body length, numbers of eggs, and neonates produced) of cladoceran adult females, using the freshwater cosmopolitan chlorophycean Raphidocelis subcapitata as source of contamination of TiO2 NPs for zooplankton. R. subcapitata cells were exposed to concentrations of 0, 0.01, 1, and 10 mg L?1 of TiO2 NPs for 96 h, and then provided as food for females of C. silvestrii until the third brood was released. Significant toxic effects were observed in body length and total number of neonates and eggs produced by females of C. silvestrii at concentrations of 1 and 10 mg L?1 of TiO2 NPs. Survival was the most sensitive parameter when exposure was given via food. From the concentration of 0.01 mg L?1 of TiO2 NPs, there was a decrease in the survival of C. silvestrii females. The quantification of TiO2 NPs in algae evidenced that they have retained NPs in their cells, being, therefore, an important route of exposure and toxicity of TiO2 NPs to the studied microcrustacean.  相似文献   

2.
Photocatalytic treatment of real community wastewater using Fe-doped TiO2 nanofilm was prepared by modified sol-gel method together with a simple dip-coating technique. The process was investigated in a home-made batch photoreactor. The as-prepared nanocomposite film was characterized by UV-Vis diffuse, XRD, BET, and Fe-SEM analysis. The poultry processing wastewater was collected from Nakhonsawan Municipality. Subsequently, the photocatalytic treatment of the wastewater was performed using a home-made photoreactor operated in batch mode to demonstrate the effects of Fe-dopant concentration with various layer numbers. The catalysts were irradiated using four lamps of 15 W power that emitted visible light and performed at room temperature. The samples were collected every 15 min and analyzed for biochemical oxygen demand (BOD) and chemical oxygen demand (COD) removal efficiency compared to pure TiO2 nanofilm and direct photolysis. From the results, the mixture of rutile and anatase was obtained with the maximum specific surface area of 150.12 mg2/g and the average particle size of 39.95 nm for 3 layers of 0.15% wt/v Fe-doped TiO2. The BOD and COD value at 90 min time treatment was presented to be 8.87 and 32 mg L?1, respectively, in the presence of 0.15% wt/v Fe-doped TiO2 film photocatalysts. Moreover, atomic absorption spectrometric result ensured that no Ti contamination was detected in all parts of plants after watering by the treated water. Hence, the photocatalytic treatment markedly improved the quality of the community wastewater.  相似文献   

3.
Microcystins (MCs) are endotoxins produced by cyanobacteria in freshwaters globally. With known potential for human health risks, rapid and effective treatment methods are needed for MCs. Previous studies have shown photocatalysis can achieve rapid half-lives with UV lamps and slurries of TiO2. In this experiment, rates and extents of solar photocatalysis of MCs were measured using bench-scale reactors with fixed films of TiO2 for solutions with a range of cellular:aqueous MC ratios. Since cellular MCs can be removed physically, photocatalysis rates were measured following sand filtration to discern the extent of MC removal post-filtration. Since UV energy drives photocatalysis using TiO2, rates of removal were calculated as a function of cumulative UV insolation and time. For water containing < 10% aqueous MC, filtration removed 90% of total MC, and the subsequent photocatalysis half-life was 0.37 MJ/m2 (or 111 min). For water with ~?50% aqueous MCs, filtration removed 52% of the total MCs, and the average half-life for photocatalysis was 0.38 MJ/m2 (or 138 min). For the >?90% aqueous MC treatment, filtration removed 0% MCs, and the photocatalysis half-life for MCs was 0.37 MJ/m2 (or 135 min). Previous studies have used clarified waters; however, results from this study are likely representative of scenarios with waters containing confounding water characteristics and use of solar light for UV, as anticipated in developing countries with less advanced water treatment methods. Photocatalysis is a rapid and effective process for decreasing concentrations of MCs and could be useful for mitigating risks from MC exposures in drinking water.  相似文献   

4.
Photocatalytic reduction of CO2 in seawater into chemical fuel, methanol (CH3OH), was achieved over Cu/C-co-doped TiO2 nanoparticles under UV and natural sunlight. Photocatalysts with different Cu loadings (0, 0.5, 1, 3, 5, and 7 wt%) were synthesized by the sol–gel method and were characterized by XRD, SEM, UV–Vis, FTIR, and XPS. Co-doping with C and Cu into TiO2 remarkably promoted the photocatalytic production of CH3OH. This improvement was attributed to lowering of bandgap energy, specific catalytic effect of Cu for CH3OH formation, and the minimization of photo-generated carrier recombination. Co-doped TiO2 with 3.0 wt% Cu was found to be the most active catalyst, giving a maximum methanol yield rate of 577 μmol g-cat?1 h?1 under illumination of UV light, which is 5.3-fold higher than the production rate over C-TiO2 and 7.4 times the amount produced using Degussa P25 TiO2. Under natural sunlight, the maximum rate of the photocatalytic production of CH3OH using 3.0 wt% Cu/C-TiO2 was found to be 188 μmol g-cat?1 h?1, which is 2.24 times higher than that of C-TiO2, whereas, no CH3OH was observed for P25.  相似文献   

5.
The contamination of drinking water with arsenic has been a problem in a lot of countries around the world because of its toxicological and carcinogenic effects on human health. Porous materials modified with Fe3O4 nanoparticles (Fe3O4 NPs) represent convenient removers for that contaminant. A co-precipitation method of Fe(III) and Fe(II) in alkaline media was applied to obtain Fe3O4 NPs. In a first stage, single nanoparticles were synthesized and stabilized with carboxylic acids. A characterization with attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, and X-ray diffraction (XRD) confirms a magnetite-type structure. Moreover, transmission electron microscopy (TEM) and calculations from XRD data using Scherrer’s equation indicate an average particle size of 13 nm and an average crystallite size of 10 nm, both independent of the stabilizer used. Then, the co-precipitation method studied was applied to modify kaolin, bentonite, diatomite, and silica and thus prepare magnetic composites having support-magnetite weight ratios of 2:1. Among them, silica-modified material presented the best hydraulic characteristics, an important aspect for large-scale applications such as removal under gravity. This composite has the capacity to remove up to 80 and 70% for initial concentrations of 25 and 50 μg/L, respectively, representing a convenient remover for processes developed in subsequent stages or in continuous flow.  相似文献   

6.
In this study, cobalt magnetic nanoparticles (MNPs) were synthesized and then modified by sodium dodecyl sulfate (SDS) and 2-(5-bromo-2-pyridylazo)-5-diethyl aminophenol ligand (5-Br-PADAP), through a chemical precipitation method. Characterization of the prepared MNP adsorbents was performed by Fourier transform infrared and transmission electron microscopy. Cobalt nanoparticles (NPs) surface modified with SDS and 5-Br-PADAP was evaluated as a nanoparticulate solid-phase extraction (SPE) absorbent for lead ions Pb(II) from water and standard samples, prior to its flame atomic absorption spectrometry determination. Effects of pH, amount of sorbent, desorption solvent, adsorption time, desorption time, and interfering ion concentration on extraction efficiency were investigated. Under optimal conditions, the calibration curve was linear in the range of 1.0–500 ng mL?1of Pb(II) with R2 = 0.998. Detection limit was 1.6 ng mL?1 in the original solution (3Sb/m), and the relative standard deviation for replicate determination of 0.5 μg mL?1 Pb(II) was ±2.7%.  相似文献   

7.
Nanoparticles (NPs) are emerging as a new type of contaminant in water and wastewater. The fate of titanium dioxide nanoparticles (TiO2NPs) in a granular activated carbon (GAC) adsorber and their impact on the removal of trichloroethylene (TCE) was investigated. Key parameters governing the TiO2NP?CGAC interaction such as specific surface area (SSA), zeta potential, and the TiO2NP particle size distribution (PSD) were determined. The impact of TiO2NPs on TCE adsorption on GAC was tested by conducting TCE adsorption isotherm, kinetic, and column breakthrough studies in the presence and absence of TiO2NPs. SSA and pore size distribution of the virgin and spent GAC were obtained. The fate and transport of the TiO2NPs in the GAC fixed bed and their impact on TCE adsorption were found to be a function of their zeta potential, concentration, PSD, and the nature of their aggregation. The TiO2NPs under investigation are not stable in water and rapidly form larger aggregates. Due to the fast adsorption kinetics of TCE, the isotherm and kinetic studies found no effect from TiO2NPs. However, TiO2NPs attached to GAC and led to a reduction in the amount of TCE adsorbed during the breakthrough experiments suggesting a preloading pore blockage phenomenon. The analysis of the used GAC confirmed the pore blockage and SSA reduction.  相似文献   

8.
Removal of arsenic from water reservoirs is the issue of great concern in many places around the globe. As adsorption is one of the most efficient techniques for treatment of As-containing media, thus the present study concerns application of iron oxides-hydroxides (akaganeite) as adsorbents for removal of this harmful metal from aqueous solution. Two types of akaganeite were tested: synthetic one (A) and the same modified using hexadecyltrimethylammonium bromide (AM). Removal of As was tested in batch studies in function of pH, adsorbent dosage, contact time, and initial arsenic concentration. The adsorption isotherms obey Langmuir mathematical model. Adsorption kinetics complies with pseudo-second-order kinetic model, and the constant rates were defined as 2.07?×?10?3and 0.92?×?10?3 g mg?1 min?1 for the samples (A) and (AM), respectively. The difference was caused by significant decrease in adsorption rate in initial state of the process carried out for the sample AM. The maximum adsorption capacity achieved for (A) and (AM) akaganeite taken from Langmuir isotherm was 148.7 and 170.9 mg g?1, respectively. The results suggest that iron oxides-hydroxides can be used for As removal from aqueous solutions.  相似文献   

9.
Sludge-derived activated carbons (ACs) were prepared by conventional heating and microwave pyrolysis. The ACs were characterized using several analytical and functional techniques and used for removal of six phenolic compounds from aqueous solutions. The adsorbents exhibited similar features and possessed hydrophobic surfaces. The ACs were assigned mesoporous materials, with specific surface areas of up to 641 and 540 m2 g?1 for CAC-500 and MAC-980, respectively. The preliminary results indicated that phenol removal onto the ACs increased in the order: m-cresol?<?phenol?<?o-cresol?<?2-chrorophenol?<?2-nitrophenol?<?hydroquinone. Hydroquinone exhibited the highest adsorption capacity and was chosen to continue the remaining part of the experimental work—kinetic and isothermal studies. The adsorption kinetic and isotherm data were well described by the Avrami fractionary order and Redlich–Peterson models, respectively. The maximum amounts (Q max) of hydroquinone adsorbed at 25 °C were too high, reaching 1218.3 and 1202.1 mg g?1 for CAC-500 and MAC-980, respectively. The mechanism of adsorption was proposed in this work, and it was suggested that donor–acceptor complex and ππ interactions play major roles in the adsorption process. The adsorbents were also tested on simulated effluents. The two ACs displayed good efficiency for the treatment of industrial simulated effluents.  相似文献   

10.
A batch sorption method was used to study the removal of few toxic metals onto the Late Cretaceous clays of Aleg formation (Coniacian–Lower Campanian system), Tunisia, in single, binary and multi-component systems. The collected clay samples were used as adsorbents for the removal of Pb(II), Cd(II), Cu(II) and Zn(II) from aqueous solutions. Results show that the natural clay samples were mainly composed of silica, alumina, iron and magnesium oxides. N2-adsorption measurements indicated mesoporous materials with modest specific surface area of <71 m2/g. Carbonate minerals were the most influencing parameters for heavy metal removal by natural clays in both single and multi-element systems. The affinity sequence was Pb(II)>Cu(II)>Zn(II)>Cd(II) due to the variable physical properties of the studied metals. The maximum adsorption capacity reached 131.58 mg/g in single systems, but decreased to <50.10 mg/g in mixed systems. In single, binary and muti-element systems, the studied clay samples removed substantial amounts of heavy metals, showing better effectiveness than the relevant previous studies. These results suggest that the studied clay samples of the Late Cretaceous clays from Tunisia can be effectively used as natural adsorbents for the removal of toxic heavy metals in aqueous systems.  相似文献   

11.
A peanut shell-derived oxidized activated carbon (OAC) with high surface area was prepared by zinc chloride (ZnCl2) chemical activation and subsequent nitric acid oxidation. OAC was characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), and N2 adsorption-desorption. The results showed that OAC had the surface area of 1807 m2 g?1, with the total pore volume of 0.725 cm3 g?1 and average pore diameter of 3.8 nm. More importantly, when OAC acted as an adsorbent, it exhibited high efficiency to remove basic blue 41 (BB-41), congo red (CR), phenol, Cr(VI), and Pb(II) from aqueous solution due to its universality in adsorption. Batch adsorption experiments were carried out to study the effect of various parameters such as pH, initial concentration, temperature, and contact time. Also, the isotherms, kinetic models, and thermodynamics of adsorption process were investigated. The equilibrium data for CR and Pb(II) were fitted to Langmuir isotherm model, while Freundlich model was suitable for the equilibrium isotherm of BB-41, phenol, and Cr(VI), respectively. As the result indicated, peanut shell was a suitable raw material to synthesize OAC which could be employed as an efficient and universal adsorbent for removing organic pollutants and heavy metal ions from wastewater.  相似文献   

12.
In this study, Extran (biodegradable surfactant) was used for the preparation of Fe3O4 nanoparticles by microemulsion process to improve removal efficiency of As(III) from aqueous solution. Fe3O4 nanoparticles were characterized by XRD, FTIR, FESEM, TEM, HRTEM, and VSM instrumental techniques. The effect of different parameters such as adsorbent dose, initial As(III) concentration, and solution pH were studied by response surface methodology (RSM) based on Box-Behnken design (BBD). The optimized condition for adsorption of As(III) from aqueous solution was obtained as adsorbent dose of 0.70 mg/g, solution pH of 7.7, and initial As(III) concentration of 33.32 mg/L. In this optimum condition, about 90.5% of As(III) was removed from the aqueous solution. Isotherm studies have been done at optimal condition, and it was observed that the Langmuir isotherm models were fitted well with experimental data having a high correlation coefficient of 0.993. From the Langmuir isotherm data, the maximum adsorption capacity of Fe3O4 nanoparticles was found to be 7.18 mg/g at pH 7.7 in room temperature. This study revealed that Fe3O4 nanoparticles can be used as an efficient, eco-friendly, and effective material for the adsorptive removal of As(III) from aqueous system.  相似文献   

13.
Effluents containing phosphorous as phosphate ions are frequently discharged in freshwater resources contributing to the eutrophication and directly interfering in the biological equilibrium. Clam shell residues and sewage sludge were combined for preparing efficient adsorbents for phosphate removal from aqueous medium. The adsorbents were characterized before and after adsorption testing, and the adsorption equilibrium and kinetics were investigated. Phosphate removal of 89?±?1% was attained for samples prepared with 0.1?< X <?1.0, where X corresponds to sewage sludge/clam shell mass ratio. The analyses of the experimental errors indicated that the phosphorous removal followed the Elovich kinetic model, which describes adsorption in very heterogeneous surfaces. On the other hand, the best modelling was achieved using the Koble–Corrigan isotherm model, which incorporate different aspects of both Langmuir and Freundlich isotherms to represent the equilibrium data. The observed adsorption capacity (21.4 mgP g?1) are comparable or greater to that observed for other adsorbents described in the literature.  相似文献   

14.
The adsorption isotherms (20°C) of phosphate on two potassium kaolinites and two aluminium oxides have been determined at pH values from 3 to 10 and at concentrations ranging from 10?4 to 10?2M. The reversibility of the adsorption with respect to pH and concentration has also been examined. The isotherms result from at least three types of adsorption site (regions I, II, and III) of widely different reactivities. The number of adsorption sites increases to a limit with decrease in pH for regions I and II. The behaviour of region III is more complex. The different adsorbents behave in essentially the same manner and differ only in the number of adsorption sites. It is tentatively suggested that regions I and II are located on an edge –Al(OH)2 of the adsorbents, while region III results from penetration into some amorphous region of the crystal surface.  相似文献   

15.
The adsorption capacity of seven inorganic solid wastes [air-cooled blast furnace (BF) slag, water-quenched BF slag, steel furnace slag, coal fly ash, coal bottom ash, water treatment (alum) sludge and seawater-neutralized red mud] for Cd2+, Cu2+, Pb2+, Zn2+ and Cr3+ was determined at two metal concentrations (10 and 100 mg?L?1) and three equilibrium pH values (4.0, 6.0 and 8.0) in batch adsorption experiments. All materials had the ability to remove metal cations from aqueous solution (fly and bottom ash were the least effective), their relative abilities were partially pH dependant and adsorption increased greatly with increasing pH. At equimolar concentrations of added metal, the magnitude of sorption at pH 6.0 followed the general order: Cr3+????Pb2+????Cu2+?>?Zn2+?=?Cd2+. The amounts of previously sorbed Pb and Cd desorbed in 0.01 M NaNO3 electrolyte were very small, but those removed with 0.01 M HNO3, and more particularly 0.10 M HNO3, were substantial. Water treatment sludge was shown to maintain its Pb and Cd adsorption capability (pH 6.0) over eight successive cycles of adsorption/regeneration using 0.10 M HNO3 as a regenerating agent. By contrast, for BF slag and red mud, there was a very pronounced decline in adsorption of both Pb and Cd after only one regeneration cycle. A comparison of Pb and Cd adsorption isotherms at pH 6.0 for untreated and acid-pre-treated materials confirmed that for water treatment sludge acid pre-treatment had no significant effect, but for BF slag and red mud, adsorption was greatly reduced. This was explained in terms of residual surface alkalinity being the key factor contributing to the high adsorption capability of the latter two materials, and acid pre-treatment results in neutralization of much of this alkalinity. It was concluded that acid is not a suitable regenerating agent for slags and red mud and that further research and development with water treatment sludge as a metal adsorbent are warranted.  相似文献   

16.
The present study deals with the synthesis and subsequent application of Fe3O4@n-SiO2 nanoparticles for the removal of Cr(VI) from aqueous solutions. Rice husk, an agrowaste material, was used as a precursor for the synthesis of nanoparticles of silica. Synthesized nanoparticles were characterized by XRD and SEM to investigate their specific characteristics. Fe3O4@n-SiO2 nanoparticles were used as adsorbent for the removal of Cr(VI) from their aqueous solutions. The effects of various important parameters, such as initial Cr(VI) concentration, adsorbent dose, temperature, and pH, on the removal of Cr(VI) were analyzed and studied. A pH of 2.0 was found to be optimum for the higher removal of Cr(VI) ions. It was observed that removal (%) decreased by increasing initial Cr(VI) concentration from 1.36?×?10-2 to 2.4?×?10-2 M. The process of removal was found to be endothermic, and the removal increased with the rise in temperature from 25 to 45 °C. The kinetic data was better fitted in pseudo-second-order model in comparison to pseudo-first-order model. Langmuir and Freundlich adsorption capacities were determined and found to be 3.78 and 1.89 mg/g, respectively, at optimum conditions. The values of ΔG 0 were found to be negative at all temperatures, which confirm the feasibility of the process, while a positive value of ΔH 0 indicates the endothermic nature of the adsorption process. The present study revealed that Fe3O4@n-SiO2 nanoparticles can be used as an alternate for the costly adsorbents, and the outcome of this study may be helpful in designing treatment plants for treatment of Cr(VI)-rich effluents.  相似文献   

17.
The adsorption of copper (Cu(II)) from aqueous solutions by activated Luffa cylindrica biochar fibres has been investigated by means of batch equilibrium experiments and FTIR spectroscopy. The effect of various physicochemical parameters, such as pH, initial metal concentration, ionic strength, mass of the adsorbent, contact time and temperature, has been evaluated by means of batch type adsorption experiments. FTIR spectroscopy, as well as acid-base titrations, was used for the characterization of the material and the surface species formed. According to the experimental results even at pH 3, the relative sorption is above 85% and the adsorption capacity of the activated biochar fibres for Cu(II) is q max = 248 g kg?1. Moreover, the interaction between the surface carboxylic moieties and Cu(II) results in the formation of very stable inner-sphere complexes (?G o = ?11.2 kJ mol?1 at pH 3 and ?22.4 kJ mol?1 at pH 5.5).  相似文献   

18.
In this paper, Taguchi method was applied to determine the optimum condition for Pb (II) removal from aqueous solution by spent Agaricus bisporus. An orthogonal array experiment design (L9(34) which is of four control factors (pH, t (contact time), m (sorbent mass), and C 0 (initial Pb (II) concentration)) having three levels was employed. Biosorption capacity (mg metal/g biosorbent) and percent removal (%) were investigated as the quality characteristics to be optimized. In order to determine the optimum levels of the control factors precisely, range analysis and analysis of variance were performed. The optimum condition for biosorption capacity was found to be pH?=?5.00, t?=?5.0 h, m?=?0.010 g, and C 0?=?50 mg/L. And for percent removal, the optimum condition was found to be pH?=?4.00, t?=?4.0 h, m?=?0.100 g, and C 0?=?50 mg/L. Under these optimum conditions, biosorption capacity and percent removal can reach 60.76 mg/g and 80.50%, respectively.  相似文献   

19.
A high soil nitrogen (N) content in irrigated areas quite often results in environmental problems. Improving the management practices of intensive agriculture can mitigate greenhouse gas (GHG) emissions. This study compared the effect of maize stover incorporation or removal together with different mineral N fertilizer rates (0, 200 and 300 kg N ha?1) on the emission of nitrous oxide (N2O) and carbon dioxide (CO2) on a sprinkler-irrigated maize (Zea mays L.). The trail was conducted in the Ebro Valley (NE Spain) in a high nitrate-N soil (i.e. 200 g NO3–N kg?1). Nitrous oxide and CO2 emissions were sampled weekly using a semi-static closed chamber and quantified using the photoacoustic technique in 2011 and 2012. Applying sidedress N fertilizer tended to increase N2O emissions whereas stover incorporation did not have any clear effect. Nitrification was probably the main process leading to N2O. Denitrification was limited by the low soil moisture content (WFPS <?54%), due to an adequate irrigation management. Emissions ranged from ??0.11 to 0.36% of the N applied, below the IPCC (2007) values. Nitrogen fertilization tended to reduce CO2 emission, but only in 2011. Stover incorporation increased CO2 emission. Nitrogen use efficiency decreased with increasing mineral fertilizer supply. The application of N in high N soils of the Ebro Valley is not necessary until the soil restores a normal mineral N content, regardless of stover management. This will combine productivity with keeping N2O and CO2 emissions under control provided irrigation is adequately managed. Testing soil NO3 ?–N contents before fertilizing would improve N fertilizer recommendations.  相似文献   

20.
The application of magnetite-immobilized chitin in pentachlorophenol (PCP) removal was demonstrated in this study. The physicochemical parameters for immobilization of chitin by magnetite, and for PCP adsorption using magnetite-immobilized chitin were optimized. For chitin immobilization, the optimized conditions were: magnetite to chitin (m:c) ratio at 1:2, initial pH 6, 25°C, 200 rpm and 60 min in batch system. The immobilization efficiency (IE) was 99.4% and immobilization capacity (IC) was 2.0 mg chitin mg?1 magnetite. High initial pH (pH?>?11) and temperature (>30°C) lowered the IE and IC. For PCP (10 mg l?1) adsorption, the optimized conditions were: 1,500 mg l?1 immobilized chitin, initial pH 6, 25°C, 200 rpm and 60 min in batch system. The removal efficiency (RE) was 57.9% and removal capacity (RC) was 5.4 mg g?1. The adsorption ability of immobilized chitin decreased with pH and temperature increased. However, increasing the amount of immobilized chitin (24,000 mg l?1) can increase the RE up to 92%. Both chitin immobilization and PCP adsorption exhibited Langmuir and Freundlich adsorption isotherms. Results in this study indicated that magnetite-immobilized chitin was a cost-effective and environmental friendly adsorbent to remove environmental pollutants such as PCP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号