首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
With an annual production of about 10 Gt concrete is by far the most used solid man-made material. In order to adjust the workability of fresh concrete most often so-called superplasticisers, essentially water-soluble organic polymers, are utilised. As concrete is commonly in direct contact with soil or water, the leaching of organic and inorganic compounds and their environmental impact need to be assessed. The present study contributes to this purpose by investigating leachates from hardened cement pastes gained using the horizontal dynamic surface leaching test. Pastes were prepared with and without superplasticiser. The root growths as well as the germination behaviour of cress (Lepidium sativum) and white mustard (Sinapis alba) were examined with respect to phytotoxicity. Different proportions (100, 50, 25 and 12.5%) of the leachates were considered in the test scheme. The results indicate a positive effect of most of the leachates on seed germination and root growth, although statistical significance was only found in some cases. Both test species showed no or only slight harmful effects as relative root growth exceeded always 66% for S. alba and 74% for L. sativum. Seed germination was not negatively influenced by the leachates. Slight beneficial effects on both test species could be observed for leachates containing superplasticiser compared to samples in absence of superplasticiser.  相似文献   

2.

Purpose

Wastes from a former Portuguese steel plant were deposited between 1961 and 2001 on the riverbank of a tributary of the Tagus River creating a landfill connected to the river, posing a potential contamination risk to the Tagus estuary ecosystem. This study aims to assess the transfer of chemical elements from contaminated sediments to the estuarine water from cycles of sediment leaching so as to evaluate the ecotoxicity of the leachates, and to analyze the solid phases crystallized from those leachates.

Materials and methods

Landfill sediment and estuarine water samples were collected during low tide. Sediment samples were analyzed for pH, electric conductivity (EC), Corg, NPK, and iron oxides. Leaching assays (four replicates) were done using estuarine water (200 cm3/replicate) and 1.5 kg of sediment per reactor. Each reactor was submitted to four leaching processes (0, 28, 49, and 77 days). The sediment was kept moist between leaching processes. Sediment (total (acid digestion) and available fraction (diluted organic acid extraction-Rhizo)) elemental concentrations were determined by inductively coupled plasma–instrumental neutron activation analysis (ICP/INAA). Leachates, and estuarine and sediment pore waters were analyzed for metals/metalloids by ICP/mass spectrometry (MS) and carbonates/sulfate/chloride by standard methodologies. Ecotoxicity assays were performed in leachates and estuarine and pore waters using Artemia franciscana and Brachionus plicatillis. Aliquots of the leachates were evaporated to complete dryness (23–25 °C) and crystals analyzed by X-ray powder diffraction (XRD).

Results and discussion

Sediment with pH?=?8 and high EC and Corg was contaminated with As, Cd, Cr, Cu, Pb, and Zn. The element concentrations in the available fraction of the sediment were low compared to the sediment total concentrations (<1 % for Rhizo extraction). The concentrations of potentially hazardous elements in the estuarine water were relatively low, except for Cd. Concentrations of hazardous elements in the leachates were very low. Calcium, K, Mg, Na, and chloride concentrations were high but did not vary significantly among the four leaching experiments. Total concentrations of carbonate were much higher in leachates than in estuarine water. Both estuarine water and leachates showed negligible toxicity. Crystals identified in the solids obtained from the leachates by evaporation were halite, anhydrite, epsomite, dolomite, and polyhalite.

Conclusions

The sediment showed the capacity to retain the majority of the potentially hazardous chemical elements. Remobilization of chemical elements from sediment by leaching was essentially negligible. The variation of total concentrations of Ca, carbonate, and sulfate in leachates indicates that the sediment contained reactive sulfides. Due to its composition, the sediment seems to be a dynamic system of pollution control, which should not be disturbed.
  相似文献   

3.

Purpose

The aim of this study was to evaluate (i) the ability of two Technosols, prepared with gossan or sulfide-rich wastes plus mixtures of organic/inorganic amendments, to improve the characteristics of the wastes by the analysis of the variation of elemental concentrations in their simulated leachates, and (ii) the potential environmental risk of these Technosols evaluated through the concentrations of the elements leached from the tailings containing the two wastes, considering their mass in the São Domingos mine.

Materials and methods

Composite samples of two São Domingos mining wastes (gossan wastes—GW; sulfide-rich wastes—SW) were collected. Amendment mixtures, containing different organic/inorganic wastes (from green agriculture, distillation of Ceratonia siliqua and Arbutus unedo fruits, and limestone quarry), were applied at 12, 30, and 60 g/kg. Two sets of microcosm assays were performed under controlled conditions in greenhouse and monitored during 7 and 13 months for GW and SW, respectively. Materials from each pot/treatment (<5 cm of depth) were collected after 1, 4, 7, and 13 months of incubation and used to obtain simulated leachates (DIN extraction). The analytical parameters evaluated in the leachates were pH, electrical conductivity, and element concentrations using flame atomic absorption spectrometry for cations and graphite furnace atomic absorption spectrometry, ionic chromatography, and UV-VIS for elements that normally occur as anions in aqueous solution.

Results and discussion

Simulated leachates from SW had lower pH and higher concentrations of potentially hazardous elements than leachates from GW. The concentrations of As in leachates from GW-Technosols were higher than those in leachates from GW-control but <0.6 mg/kg. In GW-Technosols leachates, the pH and the concentrations of some nutrients (e.g., Ca and phosphates) also increased when compared to the control. In the SW-Technosols, the pH of the leachates increased only in the first month as long as limestone was present. In these leachates, a general decrease of the concentrations of some elements was observed (e.g., As, sulfate, Fe, Pb), especially in the first month. A clear influence of the dose and type of amendments was not observed during the experimental time span for both wastes.

Conclusions

The concentrations of elements like Al, Ca, Fe, and Pb in the leachates are controlled by both the pH of the solutions and the concentrations of phosphates and sulfates. The extensive mass of the studied mine wastes contribute to the release to the neighboring environment of considerable amounts of potentially hazardous elements. The rehabilitation of the mine wastes by the conception of Technosols, especially with sulfide-rich wastes, can reduce significantly their environmental impact.
  相似文献   

4.
To examine the role of a community of soil animals in N-mineralization and C fluxes in dead organic matter, we established a microcosm system with substrates composed of: (a) birch leaf litter; (b) raw coniferous humus; and (c) litter on humus. Every 3–4 wks the substrates were irrigated with distilled water, and the amounts of NO5-N, NH4-N, total-N and total-C (as well as humic substances at one recording) in the leachates were analyzed. At the end of the experiment, water-soluble and exchangeable forms of N were measured in the test materials.

The differences in the release of N were clear both between the replicates with and without soil animals and between the different forms of N. From wk 10 onwards the fauna enhanced significantly the leaching of total-N and NH4-N from the humus alone. The release of total-N from the litter alone was also increased by the fauna. The presence of animals did not significantly affect any form of K.CIextractable N.

The amounts of total C in the leachates increased significantly in almost all samples when the fauna was involved. In addition, the fauna affected the humification process positively in the litter + humus and in humus alone, i.e. relatively more humic substances than total C were liberated from the materials in the presence of animals.  相似文献   


5.

Goals, Scope and Background

Improved quality of surface waters and sediments requires advanced strategies for ecotoxicological assessment. Whilst at least in Germany assessment strategies on the basis of chemical analysis and acute toxicity data dominated the last decades, the development of more specific biological endpoints and biomarkers in ecotoxicology is required in order to arrive at a good ecological potential and good chemical status of surface waters in the European river basins until the year 2015, as required by the European Water Framework Directive. Since sediments have for long been known to function both as a sink and as a source of pollutants in aquatic systems, and since part of the particle-associated substances have frequently been demonstrated to cause mutagenic and carcinogenic effects in aquatic organisms, particularly in fish, there is, among other requirements, an urgent need to develop, standardize and implement integrated vertebrate-based test systems addressing genotoxicity into recent sediment investigation strategies. Thus, the present study was designed to compare the suitability of two commonly used test systems, the comet assay and the Ames test, for the evaluation of the ecotoxicological burden of surface and core sediment samples from the river Rhine.

Methods (or Main Features)

In order to determine the importance of inherent enzymatic activities, two permanent fish cell lines with different biotransformation capacities, RTL-W1 and RTG-2, were compared with respect to their capability of detecting genotoxic effects in 18 surface and core sediment samples from 9 locations along the River Rhine in the comet assay with and without exogenous bioactivation. For further comparison, as a prokaryotic mutagenicity assay, theSalmonella plate incorporation assay (Ames test) with the test strains TA98 and TA 100 with and without exogenous metabolic activation was used.

Results and Discussion

Whereas all sediment extracts induced genotoxic effects in the comet assay with RTL-W1 cells, only 12 out of 18 sediment extracts revealed significant genotoxicity in the tests with the less biotransformation-competent RTG-2 cells. Exogenous bioactivation by addition of ß-naphthoflavone /phenobarbital-induced S9 from rat liver resulted in both reduction or increase of genotoxicity in samples from different sites, however, without consistent reaction patterns. In general, the responses of RTL-W1 cells indicated higher biotransformation capacity than in RTG-2 cells without S9 complementation. In Ames tests using TA98 with S9, 16 out of 18 extracts induced significant mutagenicity with induction factors up to 4. Compared to TA98, the strain TA100 proved less sensitive, with maximum induction factors of 1.3, indicating the potential presence of substances inducing frarneshift mutations, which can only be detected in the strain TA98. Chemical analyses revealed particularly high levels of hexachlorbenzene (up to 860 µg/kg) and priority PAHs (up to 4.8 mg/kg); so far, however, no correlation could be found between compounds analyzed and the corresponding biotests.

Conclusions

Results document that both comet assay and Ames test are capable of detecting xenobiotic interaction with DNA in consequence of exposure to complex environmental samples. Whereas the alkaline version of the comet assay detects a broad range of interactions with the DNA, however without information about their eventual importance, the Ames test only reveals established mutations, but fails to detect transient (reparable) DNA alterations. However, even transient primary changes in the DNA structure might result in carcinogenic processes and, eventually, in implications at the population level. As a consequence, for hazard assessment purposes, a combination of both assays is required to avoid false negatives in genotoxicity evaluation. Poor correlation between data obtained by chemical analysis and results in bioassays is indicative of our limited understanding of the sources of genotoxicity. In fact, numerous studies combining chemical and biological approaches for hazard assessment of complex environmental mixtures indicate that priority pollutant concentrations are a poor indicator of toxicity.If compared to the cell line RTG-2, RTL-W1 proved more effective in detecting genotoxicity in surface sediment samples and, thus, indicated the importance of bioactivation of at least part of the compounds in superficial layers of sediments. Results further document that the common assumption may be wrong that, in comparison to deeper strata, surface layers carry a lower toxic burden in consequence of the current decrease in water pollution. This might at least in part be due to remobilization of more heavily polluted sediments from deeper layers during severe flood events followed by re-sedimentation in flood plains or upstream weirs, where they might cover less polluted younger sediment layers.

Recommendations and Perspectives

For a comprehensive assessment of genotoxicity in surface and core sediments, a combination of eukaryotic (comet assay) and prokaryotic assays (Ames test) with and without exogenous bioactivation is recommended. Since studies with organic sediments extracts simulate a worst-case scenario and fail to take into account bioavailability, there is broad consensus that whole-sediment exposure protocols represent the most realistic scenarios. Whereas more realistic solid phase exposure has frequently been applied in both microbial and invertebrate acute toxicity testing, there is an urgent need to develop corresponding whole sediment fish-based genotoxicity tests.
  相似文献   

6.
Sulfonamide antibiotics can enter agricultural soils by fertilisation with contaminated manure. While only rough estimations on the extent of such applications exist, this pathway results in trace level contamination of groundwater. Therefore, we studied the transport of three sulfonamides in leachates from field lysimeters after application of a sulfonamide-contaminated liquid manure. In a 3-year period, the sulfonamides were determined in 64% to 70% of all leachate samples at concentrations between 0.08 to 56.7 µg L?1. Furthermore, sulfonamides were determined in leachates up to 23 months after application, which indicated a medium- to long-term leaching risk. Extreme dry weather conditions resulted in highest dislocated amounts of sulfonamides in two of the three treatments. Furthermore, soil management such as tillage and cropping affected the time between application and breakthrough of sulfonamides and the intra-annual distribution of sulfonamide loads in leachates. Although the total sulfonamide leaching loads were low, the concentrations exceeded the limit value of the European Commission of 0.1 µg biocide L?1 in drinking water in more than 50% of all samples. Furthermore, the medium-term mean concentration of the sulfonamides ranged from 0.08 and 4.00 µg L?1, which was above the limit value of the European Commission in 91 out of 158 samples. Therefore, sulfonamides applied to soils in liquid manure under common agricultural practice may cause environmental and health risks which call for a setting up of more long-term studies on the fate of antibiotics.  相似文献   

7.
In the present study, different leaching tests were applied on well-characterised samples in order to obtain information on the potential mobility of heavy metals and arsenic. The information deduced from the different methods was compared and evaluated. Besides the comparison of heavy metal release in cascade-, column- and pHstat leaching tests, attention was also paid to the assessment of release kinetics during leaching tests and to the mathematical modelling of leaching behaviour. The aim of this study was to understand the origin of possible discrepancies between the results of different leaching tests. The compatibility of the results of different leaching tests is, besides the inherent differences between methods (single batch tests versus dynamic leaching tests, the duration of the tests, liquid/solid (L/S) ratio,…) to a major extent determined by key-factors such as pH and redox potential. Depending on soil and sediment properties (e.g. acid neutralizing capacity (ANC)) these ‘key-factors’ varied during and at the end of extractions and leaching tests, even when the initial test conditions (e.g. the pH of the reagent) were equal for all test cases. During cascade- and column leaching tests, pH (which is initially 4) will mostly increase, but the extent of this pH-increase mainly depends on the acid neutralizing capacity of the sample. Therefore, measuring the pH of all leachates that are collected during these tests is mandatory for the interpretation of the results. Moreover, the monitoring of other variables such as DOC, anions and major elements can give indications on the reactions that are responsible for the release of elements (e.g. the dissolution of organic matter) and greatly improve the interpretation of the results.  相似文献   

8.

Purpose  

Road runoff residues are often reused in road and civil works building. Although the physicochemical and ecotoxicological characteristics of these materials are known, no extensive ecotoxicological studies have been carried out on the leachates obtained from these residues once they have been spread and exposed to rainfall. This study was aimed at assessing the ecotoxicological risks for lentic aquatic ecosystems receiving the leachates of road runoff residues, either raw or treated, through granulometric sieving.  相似文献   

9.
Stabilisation/solidification (S/S) of heavy metals and a parallel biodegradation of an organic contaminant using magnesium phosphate cements (MPC) was investigated under laboratory conditions. The study was aimed at improving the robustness of S/S technology by encouraging biodegradation in order to bring about some form of contaminant attenuation over time. A silty sand soil, amended with compost was spiked with an organic contaminant, 2-chlorobenzoic acid (2CBA), and two heavy metal compounds, lead nitrate and zinc chloride. Two formulations of the MPC grouts based on different proportions of the cement constituents, with paste pH of approximately 6.5 and 10, were utilised for S/S treatment. The study involved treating the organic contaminant present in the soil with and without the heavy metals by employing the low and high pH MPC grout mixes, and using 10% and 25% compost content. Microbial activity was monitored using dehydrogenase assay, whilst the tests pertaining to the performance criteria such as contaminant concentration, unconfined compressive strength, elastic stiffness, permeability and batch leaching tests were evaluated at set periods. Contaminant recovery analysis after 140 days indicated a similar reduction in 2CBA concentration to approximately 56% in the different grout mixes. The cement constituents exhibited stimulatory and inhibitory effects on soil dehydrogenase activity. Heavy metal leachability as well as the engineering behaviour of the treated soils conformed to acceptable standards. The results of the investigations show considerable promise for the application of MPC in contaminated land remediation.  相似文献   

10.
Artificial adamite [Zn2(AsO4)(OH)] is a convenient structural model because it is isostructural with other rock-forming minerals in secondary ore deposits formed in cementation zones. Microbial activity in these zones accelerates mineral biogeochemical deterioration and metal release, and our results confirmed that Pseudomonas, Rhodococcus and Cupriavidus strains accelerate adamite leaching by 10 to 465 times compared to controls. Here, the Pseudomonas chlororaphis ZK-1 bacterial strain in a static 42-day cultivation proved more effective than Rhodococcus and Cupriavidus by leaching over 90% arsenic and 10% zinc from adamite in one-step in vitro. We evaluated adamite with the VESTA visualization system for electronic and structural analysis, and our results enhance understanding of zinc and arsenic biogeochemical cycles and mobilization, and highlight bacteria’s beneficial natural and biotechnological application in environmental geochemistry and biohydrometallurgy.  相似文献   

11.
We hypothesized that water-soluble C is a major substrate for microbial activity and studied the susceptibility of water-soluble C both to leaching and to microbial degradation. Soil columns, consisting of A-horizon top soil with and without tree seedlings, were leached every 2 weeks for 20 weeks. Water-soluble material was extracted from the soils before and after the 20-week study. Biodegradability of dissolved organic C (DOC) was assessed by solution incubation. DOC in leachates was constant over the 20 weeks and the extractable C pool declined by 31-40% between the start and end of the experiment. The amount and biodegradability of both leachates and extracts were lower in the presence of seedlings. Water extracts contained 8-17 times more DOC than leachates. Percentage biodegradable DOC was 13-16% in leachates and 18-27% in extracts. A soil C destabilization model was proposed based on the measured pools (particulate, water-extractable, and leachable C) and estimates of soil respiration and microbial biomass from the same soil. Leaching loss accounted for 8-14% of the total C destabilized. Due to its low concentration and biodegradability, we concluded that leachable C was not a significant substrate for heterotrophic soil respiration in the studied system. The role of water-extractable C as a major substrate was less clear, as the regeneration rate of the extractable C in soil is still unknown.  相似文献   

12.
Column experiments were conducted over 45 d to determine the degree of P mobility. The sandy loam soil was spiked with 200 mg P kg–1 and 5% organic residues. The treatments included: control without any water‐soluble P and plant residues, potato, wheat, water‐soluble P fertilizer, wheat + water‐soluble P, and potato + water‐soluble P. Each column was leached with distilled water, and leachates were collected and analyzed for P, K+, Ca2+, Mg2+, along with pH and EC. Sequential extraction was performed on soil samples at the end of leaching column experiments. The relatively high initial concentration of P in the leachates decreased to more stable values after 15 d which can be attributed to the colloid‐bound P. The P concentrations in the leachates fluctuated between 8 and 220 mg L–1 in the water‐soluble–P fertilizer treatment, between 0.80 and 230 mg L–1 in the potato + water‐soluble‐P treatment, and between 0.90 and 214 mg L–1 in the wheat + water‐soluble P treatment. Leaching loss of P mainly occurred in the 15 d of leaching, accounting for 94%, 88%, and 65% of total P leached in wheat + water‐soluble‐P, potato + water‐soluble‐P, and water‐soluble‐P treatments, respectively. Maximum amount of P leached was found from an exponential kind model and was in the range 0.45 mg kg–1 to 125.4 mg kg–1 in control and potato + water‐soluble‐P treatments, respectively. Sequential extraction results showed that in control and amended soils the major proportion of P was associated with Ca. The leachate samples in all treatments were saturated with respect to hydroxyapatite, β‐tricalcium phosphate, and octacalcium phosphate up to 20 d of leaching, whereas they were undersaturated with respect to Mg‐P minerals through the entire leaching experiment.  相似文献   

13.
Background, Goal and Scope  Bioassays are frequently used to investigate the water extractable ecotoxicological and genotoxicological potential of contaminated soil samples. A laboratory intercomparison study was performed for validation of miniaturised biological test systems for the assessment of contaminated and remediated sites. The successful performance of this study resulted in an optimisation of microplate assays with respect to the testing of chemicals and environmental samples. Methods  For this purpose, miniaturised bioassays were chosen, which, because of their stage of development, are suitable for routine application in the characterisation of the water extractable ecotoxicological and genotoxicological potential of soils. These ecotoxicological and genotoxicological assays were performed with contaminated soil samples by three institutions at the same time. Results and Discussion  The toxicological assessment of the contaminated and remediated soil samples using LID-values, as a rule, was highly uniform. Some minor deviations could, for the most part, be explained by the heterogeneity of the soil samples and, to a lesser extent, by methodical aspects. The difference in sensitivity towards contaminants of the two bacteria Vibrio fischeri and Pseudomonas putida was pointed out. In the algae test with Desmodesmus subspicatus, the influence of the highest sample concentrations on the growth controls became obvious. It was recommended to modify the experimental setup of the microtitration plate, i.e. to place growth controls located next to both the lowest and the highest dilution steps of the sample. The Ames-test did in some cases provide new information on the genotoxicity of the samples, but is not considered useful in a test battery for the evaluation of the genotoxic potential because of its great expense in time and work. Conclusions  The investigations in this laboratory-intercomparison study for the assessment of the water extractable toxic potential of soil samples show that different bioassays are needed, which, in contrast to chemical-analytical methods, can detect the complete effects of all present pollutants in contaminated and remediated soils and solid substrates path-specifically. Recommendations and Outlook  If the recommended modifications for the performance of the bacterial and algae growth inhibition assays on microplates are taken into consideration, these tests can substitute the tests performed on a macro scale. The usefulness of the umu-test and the NM2009-test for the investigation of the genotoxic potential has been proven. Although the tests performed on microplates require much lower sample amounts, it is recommended that sample amounts be eluted in accordance with current guidelines to ensure representativity of the sample. Further work should focus on toxicity identification studies in the future by combining chemical and toxicological analyses.  相似文献   

14.
Summary An understanding of no-till ecosystems is essential for increased acceptance of conservation tillage practices. The primary objective of the present research was to assess the nutrient contributions of leachates from decomposing corn residue to soil in continuous-corn no-till ecosystems. A secondary objective was to estimate the phytotoxic effects of these leachates on corn seedling growth. The effects of moisture, temperature, and resident and non-resident microflora on leachates recovered from decomposing surface-applied corn residue were also studied. Leachates were analyzed for organic C, total N, PO 4 3– -P, acid and alkaline phosphatase activity, urease activity, and phytotoxic effects. Within the first 90 days of a 215-day field study 73%, 83%, and 60% of C, N, and P, respectively, were leached. In terms of nutrient concentration, this suggests two distinct phases of release of nutrients onto the soil: A high initial flux of nutrients that is followed by a low-concentration release. No phytotoxic effect of field leachates was observed. Acid and alkaline phosphatase activity was highest on days 39 and 47 whereas urease activity peaked on day 149. In laboratory studies, alterations in temperature or moisture had little effect on the leachate nutrient concentration, or phytotoxic or enzyme activity. Increasing amounts of organic C and N were extracted over time. No phytotoxic effects were expressed in the laboratory. Overall, it appears that the maximum leaching of nutrients occurs early in the decomposition process and that in no-till systems no phytotoxicity can be associated with decomposition of surface residues.Paper No. 11871 of the Purdue University Agricultural Experiment Station Series  相似文献   

15.
The aim was to study the influence of soil properties on the leaching of nitrate, phosphate and organic matter (OM) following the application of sewage sludge to contrasting soils. Seventy agricultural soils from different parts of Spain were amended with sewage sludge (50 t dry weight ha−1), and a controlled column study was developed. After 2, 4 and 6 months of incubation, distilled water, equivalent to an autumn rainfall event of 25 l m−2 in Mediterranean environments, was applied and leachates collected and analysed: pH, electrical conductivity (EC), chemical oxygen demand (COD), phosphate and nitrate. The mean values of pH in the leachates after 2, 4 and 6 months were similar and close to the neutrality. The highest concentrations for the rest of the parameters analysed were found after 2 months of incubation and diminished for 4 and 6 months, especially COD. Soil pH and texture were the most relevant soil properties controlling the leaching of the analysed parameters. The OM mineralization seemed to be enhanced at high values of soil pH, thus increasing the nitrate and reducing the COD leaching. However, phosphate levels were reduced at high values of soil pH. In addition, leaching was promoted in sandy soils. Other soil properties influenced phosphate leaching being the equivalent calcium carbonate soil content as the most relevant. Soil organic carbon was negatively related to the EC and nitrate concentration in the leachates but resulting in a weak contribution compared with soil pH and texture. Concerns about nitrate pollution have been confirmed.  相似文献   

16.

Background, aim, and scope

An innovative stabilization/solidification (S/S) process using high-performance additivated concrete technology was developed for remediating soil contaminated by metals from abandoned industrial sites. In order to verify the effectiveness of this new ex situ S/S procedure, an area highly contaminated by metallic pollutants (As, Cd, Hg, and Pb), due to the uncontrolled discharge of waste generated from artistic glass production on the island of Murano (Venice, Italy), was selected as a case study. The technique transforms the contaminated soil into an aggregate material suitable for reuse as on-site backfill. This paper reports the main results of the demonstration project performed in collaboration with the local environmental protection agency (ARPAV).

Materials and methods

An ex situ treatment for brownfield remediation, based on the transformation of contaminated soil into very dense, low porous, and mechanically resistant granular material, was set up and tested. Specific additives (water reducers and superplasticizers) to improve the stabilized material properties were developed and patented. A demonstration plant assembled on the study area to treat 6 m3 h–1was then tested. After excavation, the contaminated soil was screened to remove coarse material. The fraction Ø?>?4 mm (coarse fraction), mainly composed of glass, brick, concrete, and stone debris, was directly reused on site after passing through a washing treatment section. The highly polluted fraction Ø?≤?4 mm (fine fraction) was treated in the S/S treatment division of the plant (European patent WO/2006/097272). The fine fraction was mixed with Portland cement and additives defined on the basis of the high performance concrete technique. the mixture was then granulated in a rolling-plate system. After 28 days curing in an onsite storage area to allow for cement hydration, the stabilized material was monitored before its in situ relocation. The chemical, mechanical, and ecotoxicological reliability and performance of the treatment was checked. Metal leachability was verified according to four leaching test methods: Italian Environmental Ministry Decree (1998), EN 12457 (2002) tout court, amended only with MgSO4 and, lastly, with artificial sea water. The mechanical properties were measured according to BS (1990) and AASHTO (1999) to obtain the Aggregate Crushing Value and California Bearing Ratio, in that order. Moreover, leachate samples prepared with artificial seawater were assessed via the Crassostrea gigas embryotoxicity test and Vibrio fischeri bioluminescence inhibition test to discriminate the presence of potential ecotoxicological effects for the brackish and saltwater biota.

Results

Outcomes from all leachate samples highlighted the effectiveness of the remediation treatment, fully complying with the Italian legislation for non-hazardous material reuse under a physicochemical viewpoint. The stabilized granular material demonstrated high mechanical strength, low porosity, and leachability. Moreover, ecotoxicological surveys indicated the presence of low toxicity levels in leachate samples according to both toxicity tests.

Discussion

Remediated soil samples revealed a significant decrease in leachability of heavy metals as a consequence of the application of additivated cement that enhanced granular material properties, resulting in improved compactness due to the reduction in water content. The toxicity data confirmed this state-of-the-art technique, indicating that leachates could be deemed as minor acutely toxic.

Conclusions

The proposed S/S treatment proved to be able to remediate soil contaminated by heavy metals through trapping pollutants in pellet materials presenting adequate physicochemical, mechanical, and ecotoxicological properties in order to prevent leachability phenomena, their reclamation, and reuse being made easier by its granular form.

Recommendation and perspectives

This project foresees long-term monitoring activity over several years (until 2014) to consider treatment durability.  相似文献   

17.
To quantify the relationship between the soil organic matter and color parameters using the CIE-Lab system, 62 soil samples (0–10 cm, Ferralic Acrisols) from tea plantations were collected from southern China. After air-drying and sieving, numerical color information and reflectance spectra of soil samples were measured under laboratory conditions using an UltraScan VIS (HunterLab) spectrophotometer equipped with CIE-Lab color models. We found that soil total organic carbon (TOC) and nitrogen (TN) contents were negatively correlated with the L* value (lightness) (r = –0.84 and –0.80, respectively), a* value (correlation coefficient r = –0.51 and –0.46, respectively) and b* value (r = –0.76 and –0.70, respectively). There were also linear regressions between TOC and TN contents with the L* value and b* value. Results showed that color parameters from a spectrophotometer equipped with CIE-Lab color models can predict TOC contents well for soils in tea plantations. The linear regression model between color values and soil organic carbon contents showed it can be used as a rapid, cost-effective method to evaluate content of soil organic matter in Chinese tea plantations.  相似文献   

18.
Goal, Scope and Background   Organic solvents are routinely used to extract toxicants from polluted soils and sediments prior to chemical analysis or bioassay. Conventional extraction methods often require the use of heated organic solvents, in some cases under high pressure. These conditions can result in loss of volatile compounds from the sample and the degradation of thermally labile target analytes. Moreover, extracts of soils and sediments also frequently contain substantial quantities of organic macromolecules which can act as sorbing phases for target analytes and in doing so interfere with both chemical analysis and bioassays. Membrane dialysis extraction (MDE) is described as a simple, passive extraction method for selectively extracting toxicologically relevant hydrophobic organic compounds (HOCs) from polluted soils and sediments and anaylzed for its applicability in ecotoxicological investigations. Methods   Toxicologically relevant hydrophobic organic compounds were extracted from wet and dry sediments by sealing replicate samples in individual lengths of pre-cleaned low-density polyethylene (LD-PE) tubing and then dialysing in n-hexane. The efficacy of the MDE method for use in ecotoxicological investigations was assessed by testing the concentrated extracts in the neutral red assay for acute cytotoxicity, in the EROD assay for the presence of dioxin-like compounds and in the Danio rerio fish egg assay for embryotoxic and teratogenic effects. Conditions of the sediment sample (with or without water content), dialysis membrane length and duration of dialysis were analyzed with respect to their impact on three endpoints. Results of the MDE investigations were compared to data obtained in samples prepared using conventional Soxhlet extraction. Results and Discussion   The membrane dialysis extraction was found to be at least as efficient as Soxhlet methodology to extract toxicologically relevant HOCs from sediment samples. In most cases, MDE-derived extracts showed a higher toxicological potential than the Soxhlet extracts. Lack of any significant effects in any MDE controls indicated these differences were not caused by contamination of the LD-PE membrane used. The elevated toxicological potential of MDE extracts is most likely the result of enhanced bioavailability of toxic compounds in consequence of lower amounts of organic macromolecules (i.e. sorbing phases) in the MDE extracts. This effect is probably the result of a size-selective restriction by the LD-PE membrane. Conclusion   Membrane dialysis extraction was found to be a simple, efficient and cost-effective method for the extraction of sediment samples. MDE can be used to extract toxicologically relevant hydrophobic organic compounds from both wet and dry sediments without the risk of loosing volatile and thermally labile target analytes. The size-selectivity of the LD-PE membrane also appears to have the capacity to increase the bioavailablity of potential target analytes in the resulting extracts by retaining much of the organic macromolecules present in the sample. Thus, results suggest that MDE may be particularly useful for the extraction of toxicologically relevant hydrophobic organic compounds from soils and sediments for bioassays and other ecotoxicological investigations. Recommendation and Perspective   Further validation of MDE has been initiated and the applicability of the methodology to other sample types will be investigated. Of particular interest is the potential application of MDE to recover hydrophobic target analytes from biological samples such as muscle, other soft tissues and blood.  相似文献   

19.
The processes controlling the solid–solution partitioning of organic matter in soils are central to understanding carbon cycling in terrestrial ecosystems, yet are poorly understood at present. We studied the partitioning of soil organic matter between solid and solution in batch titrations of 12 soil samples from three European forests in a range of climates. We also examined the release of soil organic matter on repeated leaching. The partitioning was simulated using a model that pictures the pool of potentially mobile organic matter to consist of fractions of differing solubilities. Desorption of organic matter was then effected by an increase in the electrical charge of the organic molecules due to their chemical reactions with other soil components. The model could simulate the partitioning of organic matter in all the soils using two parameters describing the amounts of soil organic matter in each fraction. The release of organic matter on repeated leaching was reasonably well described. The model predicted that dissolved organic matter should have become more hydrophilic with depth in the soil, due to the retention of more hydrophobic components in the upper horizons. This accorded with observed compositions of the soil organic matter. The model also showed that at the ambient pH of the soils, only a small proportion of the potentially mobile organic matter (comprising fulvic acids and hydrophilic moieties) was involved in partitioning to the solution.  相似文献   

20.
The aim of this study was to evaluate the genotoxic and mutagenic potential of contaminated soil diluted in acidic solutions and not acidic, in the offspring of rats exposed during pregnancy and neonatal periods. To this end, a comet assay and micronucleus test were performed. Soil samples were solubilized in the following three solvents: distilled water (control group), acid solvent at pH 5.2, and acid solvent at pH 3.6. Soil and solvent were mixed in a rate of 1:2 in g/mL, and hydrofluoric acid was used in the acid solvents. In the comet assay, the tail length, percentage of DNA within the tail and tail moment was analyzed in the whole blood of the pups that were studied. The number of micronuclei found in the bone marrow cells was counted in the micronucleus test. In all parameters evaluated in the comet assay, the group exposed to the lowest pH value when associated with contaminated soil (p < 0.05) had the most damage. However, the micronucleus test showed differences between all exposed groups and the control group (p < 0.05). These results reaffirm the health risks related to the exposure to soil contaminants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号