首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Water, Air, & Soil Pollution - The elemental content of some soils of continental Chile and the Antarctic Peninsula are reported. The elements: Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb were...  相似文献   

2.
The proportion of metals in soils in equilibrium with soil solution can be determined using isotopic dilution. For this purpose, an isotope dilution mass spectrometric (IDMS) technique has been applied for the elements Cd, Cr, Cu, Mo, Ni, Pb, Tl and Zn. Conventionally, sorbed amounts of heavy metals in soils are analysed by ethylenediamine tetra-acetic acid (EDTA) extraction. The IDMS technique and EDTA extraction were both applied to 115 soil samples and compared. For Cd, Cu, Ni, Pb and Zn, the results of the IDMS technique correlated well with the results of EDTA extractions ( r s(Cd) = 0.965, r s(Cu) = 0.916, r s(Ni) = 0.878, r s(Pb) = 0.922, r s(Zn) = 0.962; all at P < 0.001). For Cd and Zn, no significant differences between the results of both methods could be observed, which suggests that EDTA and IDMS determined the same pool. EDTA extracted more Cu, Ni and Pb than was determined by IDMS (7, 26 and 13%, respectively). The correlation between EDTA extraction and IDMS for Cr was significant but weak ( r s(Cr) = 0.361). For Tl and Mo, EDTA extraction and IDMS did not correlate, and IDMS yielded larger concentrations than EDTA. This can be explained by the fact that Tl and Mo do not form stable EDTA complexes, which are essential for the EDTA technique. Recovery experiments demonstrated that added Cd, Cu, Mo, Ni, Pb, Tl and Zn could be recovered successfully by IDMS analysis (mean recovery = 103 ± 9%). Adsorption isotherms for soil samples were determined for Tl, thereby demonstrating that IDMS gave a better estimation of the native content of sorbed Tl in soils than EDTA extraction.  相似文献   

3.
The relationships between the basic properties and trace elementsin soil argillans and corresponding matrix soils were studied by sampling from the B horizons of 26 Alfisols in croplands of the subtropical area in Central China. The soil elements (K, Na, Ca, Mg, Mn, Co, Cu, Cr, Cd, Li, Mo, Ni, Pb, Ti, V, and Zn) were extracted by acid digestion and their contents were measured using inductively coupled plasma optical emission spectrometry (ICP-OES). The mean contents of clay and organic matter in the argillans were approximately 1.1 and 1.3 times greater than those in the matrix soils, respectively. The pH values and the contents of P2O5 and bases (K2O, Na2O, CaO, and MgO) in the argillans were higher than those in the corresponding matrix soils. Cu, Cd, Ti, and V were enriched in the argillans. Correlation coefficients and factor analyses showed that Co, Cu, Li, and Zn were bound with phyllosilicates and manganese oxides (Mn-oxides) in the argillans. Cr and Pb were mainly associated with iron oxides (Fe-oxides), while Ni was bound with Mn-oxides. Cd, Ti, and V were chiefly associated with phyllosilicates, but Cr and Mo were rarely enriched in the argillans. In contrast, in the matrix soils, Co and Zn were associated with organic matter and Fe-oxides, Cr existed in phyllosilicates, and Mo was bound to Fe-oxides. Cd, Ti, and V were associated with organic matter. The results of this study suggest that clays, organic matter, and minerals in the argillans dominate the illuviation of trace elements in Alfisols. Argillans might be the active interfaces of elemental exchange and nutrient supply in cropland soils in Central China.  相似文献   

4.
Based on the results of the soil-geochemical survey, the assessment of the soil cover pollution in different Ulaanbaatar functional zones is given. The soils of the industrial and traffic zones concentrating a wide spectrum of pollutants (Zn, Mo, Cr, Cr, Cd, Pb, and Cu) are characterized by the strongest technogenic transformation. The soils of the residential areas accumulate Pb and Zn, while those of the recreation zone, Mo, Ni, and Cr. The geochemical mapping allowed distinguishing four groups of elements with similar distribution patterns determined by the common pollution sources, the specific features of the parent rocks, and the intensity of the migration. Among the natural and technogenic factors responsible for the accumulation of microelements in soils, the basic ones are the soil physical and chemical properties: the contents of organic matter (for As, Cd, Cu, Mo, Zn), physical clay (Ni, Co), sulfates (Pb, Sr), and the pH (Cr). The character of the land use noticeably affects the concentration of many elements. The soils of the city are assessed as weakly polluted (Zc = 11). The contents of As, Zn, Mo, and Pb exceeded their MPC in 100, 34, 20, and 16% of the city’s territory, respectively. As compared to the state of the soil cover in 1990, no significant changes were revealed.  相似文献   

5.
The anthropogenic effects of Antarctic refuge buildings and research stations on the surrounding soils are scarcely investigated, especially when the structures are small-sized, and sporadically used or visited. The Coppermine Peninsula (Robert Island, South Shetland Islands archipelago) possesses one of the richest flora in Antarctica, being classified as an Antarctic Specially Protected Area (ASPA). There, a small refuge (Luis Risopatrón) has been seasonally occupied for scientific purposes since 1957, although no studies on the anthropic disturbances in the surroundings soils are reported. The aim of this study was the determination of the potentially toxic metals (Cd, Cr, Cu, Mn, Ni, Pb, V, and Zn) mass fractions in surface soils (n?=?40) collected at the surroundings of the Luis Risopatrón refuge. Enrichment factors (EF) and geoaccumulation index (I geo) were also calculated, using Zr as the reference element, in order to evaluate the anthropogenic impacts of these small buildings in the studied area. The main contaminants were Pb and Zn, which presented EF and I geo values ranging from 1.0 to 18.3 and from ?1.8 to 3.5. The mass fractions of these elements determined after an aqua regia extraction varied from 5.4 to 102 mg kg?1 Pb and from 43 to 210 mg kg?1 Zn. These results highlight that a small refuge can show environmental disturbance from low to moderate, with few hotspots with heavily contaminated soils. Environmental monitoring strategy for similar refuges anywhere in Antarctica is recommended.  相似文献   

6.
广东红壤微量元素含量及分布特征   总被引:6,自引:0,他引:6  
2004年对广东部分红壤9种微量元素含量调查结果表明,9种微量元素平均含量为B 41.38 mg kg-1,Mo21.71 mg kg-1,Cu 77.37 mg kg-1,Pb 33.94 mg kg-1,Zn 265.52 mg kg-1,As 19.018 mg kg-1,Hg 0.056 mg kg-1,Cr 248.95mg kg-1,Cd 0.324 mg kg-1。同族微量元素相比,原子量小的元素的含量大于原子量大的元素的含量。母岩、成土风化作用影响这些微量元素在土壤中的含量。  相似文献   

7.
An investigative study was conducted to determine the heavy metal pollution in the sediment in the Pra Basin of Ghana from 27 sampling points during the dry and wet seasons using the geo-accumulation index (Igeo), enrichment factor (EF), and pollution load index (PLI). Sediments were acid digested and analyzed for the following selected metals: arsenic (As), lead (Pb), cadmium (Cd), zinc (Zn), manganese (Mn), total chromium (Cr), nickel (Ni), and iron (Fe) using the dual atomizer and hydride generator atomic absorption spectrophotometer (model ASC-7000 No A309654, Shimadzu, Japan). The metal concentrations (mg kg?1) in the sediments were as follows: As (0.175)?<?Cd (3.206)?<?Ni (79.927)?<?Zn (118.323)?<?Cr (216.708)?<?Mn (234.742)?<?Pb (335.381)?<?Fe (1354.513) in the dry season and As (0.002)?<?Cd (7.279)?<?Ni (72.663)?<?Zn (35.622)?<?Pb (135.863)?<?Cr (167.604)?<?Mn (183.904)?<?Fe (1138.551) for the wet season. The EF which is an indication of whether metal concentrations are due to anthropogenic activities shows enrichment at all site for the metals Cr, Pb, and Cd in the wet seasons. However, only 4 out of the 27 sites showed Ni enrichment in the wet season. Contrary to the wet season, only Pb and Cr recorded enrichment at all sites during the dry season. Fifteen out of the 27 sites recorded Cd enrichment and 24 out of the 27 sites recorded Ni enriched during the dry season. None of the sites were enriched with Fe, As, Zn, and Mn in either the dry or wet seasons. For both dry and wet seasons, the pollution load index for all the sites except one was at the background levels which is a sign of non-deterioration of the sites studied. In the wet season, the calculated Igeo reveals that the study area is not contaminated with respect to As, Zn, Fe, and Mn; uncontaminated to moderately contaminated with Cd; moderately contaminated with Cr; uncontaminated to moderately to heavily contaminated with Ni; and moderately to heavily contaminated with Pb. The dry season Igeo results reveal non-contamination of the study area with respect to As, Fe, and Mn; uncontaminated to moderately contaminated with Zn; moderately contaminated with Cr; uncontaminated to heavily contaminated with Cd; uncontaminated to extremely contaminated with Ni; and moderately to extremely contaminated with Pb. The high levels of Cd, Pb, and Cr in all the sites are due to unregulated illegal mining activities occurring in and around the study area. It is hoped that this study will prompt the basin management board to improve their management strategies in controlling unregulated illegal mining in the basin sediments.  相似文献   

8.
Soil/solution partitioning of trace metals (TM: Cd, Co, Cr, Cu, Ni, Sb, Pb and Zn) has been investigated in six French forest sites that have been subjected to TM atmospheric inputs. Soil profiles have been sampled and analysed for major soil properties, and CaCl2‐extractable and total metal content. Metal concentrations (expressed on a molar basis) in soil (total), in CaCl2 extracts and soil solution collected monthly from fresh soil by centrifugation, were in the order: Cr > Zn > Ni > Cu > Pb > Co > Sb > Cd , Zn > Cu > Pb = Ni > Co > Cd > Cr and Zn > Ni > Cu > Pb > Co > Cr > Cd > Sb , respectively. Metal extractability and solubility were predicted by using soil properties. Soil pH was the most significant property in predicting metal partitioning, but TM behaviour differed between acid and non‐acid soils. TM extractability was predicted significantly by soil pH for pH < 6, and by soil pH and Fe content for all soil conditions. Total metal concentration in soil solution was predicted well by soil pH and organic carbon content for Cd, Co, Cr, Ni and Zn, by Fe content for Cu, Cr, Ni, Pb and Sb and total soil metal content for Cu, Cr, Ni, Pb and Sb, with a better prediction for acidic conditions (pH < 6). At more alkaline pH conditions, solute concentrations of Cu, Cr, Sb and Pb were larger than predicted by the pH relationship, as a consequence of association with Fe colloids and complexing with dissolved organic carbon. Metal speciation in soil solutions determined by WHAM‐VI indicated that free metal ion (FMI) concentration was significantly related to soil pH for all pH conditions. The FMI concentrations of Cu and Zn were well predicted by pH alone, Pb by pH and Fe content and Cd, Co and Ni by soil pH and organic carbon content. Differences between soluble total metal and FMI concentrations were particularly large for pH < 6. This should be taken into account for risk and critical load assessment in the case of terrestrial ecosystems.  相似文献   

9.
In line with the present-day ecological and toxicological data obtained by Dutch ecologists, heavy metals/metalloids form the following succession according to their hazard degree in soils: Se > Tl > Sb > Cd > V > Hg > Ni > Cu > Cr > As > Ba. This sequence substantially differs from the succession of heavy elements presented in the general toxicological GOST (State Norms and Standards) 17.4.1.02-8, which considers As, Cd, Hg, Se, Pb, and Zn to be strongly hazardous elements, whereas Co, Ni, Mo, Sb, and Cr to be moderately hazardous. As compared to the general toxicological approach, the hazard of lead, zinc, and cobalt is lower in soils, and that of vanadium, antimony, and barium is higher. The new sequence also differs from that of the metal hazard in soils according to the Russian standard on the maximal permissible concentration of mobile metal forms (MPCmob): Cu > Ni > Co > Cr > Zn. Neither an MPCmob nor an APCmob has been adopted for strongly hazardous thallium, selenium, and vanadium in Russia. The content of heavy metals in contaminated soils is very unevenly studied: 11 of them, i.e., Cu, Zn, Pb, Ni, Cd, Cr, As, Mn, Co, Hg, and Se, are better known, while the rest, much worse, although there are dangerous elements (Ba, V, Tl) among them.  相似文献   

10.
Technosols are anthropogenic soils that may be strongly impacted by heavy metal deposition, which have not yet been described in Antarctica. In this paper, we present a chemical study of what is supposedly the oldest manmade soil from Antarctic Peninsula, developed in the vicinity of Trinity House and Nordenskjold Hut at Hope Bay. Chemical and morphological soil attributes indicate that a former ornithogenic site (penguin rookery) was further subjected to human disturbance, following local exploration since 1903. We detected very high amounts of heavy metals such as Cd, Cu, Pb, and Zn. For the most impacted site, pseudototal concentrations of these elements reach 47, 2,082, 19,381, and 5,225 mg kg?1, respectively. Enrichment factors were calculated using Zr as reference element, and high values were found for these contaminated sites, qualifying some of them as extremely polluted. Also, both the mobilizable and mobile fraction of Cd and Pb indicate the need of intervention in the affected area. These findings are all consistent with the human impacts and strong contamination. Strong positive correlation between the pseudototal concentrations of Cd, Cu, Mn, Ni, Pb, and Zn indicates a similar source of pollution. These soils may represent the oldest Technosols in Antarctic Continent.  相似文献   

11.
Metals in water have been monitored for up to 18 years in acidified regions of Sweden. The concentrations of metals (Al, Cd, Cu, Fe, Mn, Mo, Pb, Zn) were determined by AAS and ICP-MS, the dissolved fractions after separation by in-situ dialysis. Elements showing negative pH-correlation were primarily Al, Zn, Cd, Mn, and Pb, while Mo was positively correlated to pH, indicating a predominance of negatively charged ionic forms. Zn, Cd, and Mn occurred primarily in the dissolved fractions, especially at the lower pH levels. Fe, Al, Pb and Mn were further enriched in humic waters. During the study period, some of the sites were subject to lime treatment, which had a marked influence on most elements, causing the mean levels and the seasonal fluctuations to decrease. Treatment on the lake surface was less effective than wetland liming to reduce seasonal fluctuations, especially for metals mainly originating from the catchments, as Fe and Al.  相似文献   

12.
Soil contamination by heavy metals is a problem in agricultural irrigation systems.To assess the accumulation and sources of heavy metals in the Yongji irrigation district of the Hetao area,Inner Mongolia,China,195 soil samples from 39 sites(0–100 cm)were collected,and Zn,Cu,Pb,Cr,and Cd concentrations were analyzed.The mean concentrations were 107.17,32.48,12.31,53.53,and 0.22 mg kg-1,respectively,with no significant differences between soil depths(P>0.05).Concentrations of Zn,Cu,and Cd were higher than the background levels,with moderate accumulation;the contamination factor(CF)values were 1.9,1.7,and 1.9,respectively,and the geoaccumulation index(Igeo)was>0.Concentrations of Pb and Cr were lower than,or close to,the background levels(CF<1,Igeo<0),indicating that they originated from a natural source.The monomial potential ecological risk index(Eri)for Zn,Cu,Pb,and Cr was low;Eri for Cd was 55.73,implying a moderate risk.The grade of potential ecological risk index of the five heavy metals(RI)was low,declining from south to north.The studied soils were contaminated with Zn,Cu,and Cd;principal component(PC)analysis implicated the enrichment of Cd and partial Cu(high loading in PC 2)was related to agricultural activities;Zn and partial Cu,closely associated with PC 3,may have originated from irrigation water from the Yellow River.Future agricultural development should focus on fertilizer and pesticide application and the quality of irrigation water.  相似文献   

13.
三峡库区消落区表层土壤重金属污染评价及源解析   总被引:10,自引:0,他引:10  
三峡库区是我国重要的水源地, 研究库区水陆交错带消落区内土壤重金属污染程度并解析其来源,对水库的水环境和土壤环境具有重要意义。本研究采用地质累积指数, 对三峡库区消落区175 m 水位蓄水前12 个采样区表层68 个土样的土壤重金属Cu、Pb、Zn、Cd、Hg、As 和Cr 污染进行评价, 结果表明: 整个研究区不受Cr 污染, 研究区70%以上面积不受Pb、Cu 和Zn 污染; 研究区As 污染最严重, 其次为Cd 和Hg。利用因子分析法对这7 种重金属来源进行解析的结果表明, 库区消落区土壤重金属源可分为2 大类别:“自然因子”类别元素(Cr、Pb、Cu 和Zn)和“工业污染因子”类别元素(Hg、As 和Cd)。消落区表层土壤重金属污染评价及源解析可为消落区生态环境的综合治理提供参考。  相似文献   

14.
水稻子实对不同形态重金属的累积差异及其影响因素分析   总被引:3,自引:0,他引:3  
在分析成都平原核心区土壤重金属(Cd、Cr、Pb、Cu、Zn)全量、各形态含量及相应点位种植的水稻子实重金属含量的基础上,通过统计分析、空间插值及线性回归方程的模拟,研究了土壤Cd、Cr、Pb、Cu、Zn全量的空间分布状况、各形态重金属含量统计特征,以及水稻子实对重金属各形态的累积差异及其影响因素。结果表明,成都平原水稻土重金属污染较轻,除Cd外,均低于国家土壤环境质量二级标准。土壤中重金属的可交换态含量均较低,Cd主要以铁锰氧化态存在,Cr、Cu、Zn、Pb主要以残渣态存在。水稻子实对5种重金属的累积效应顺序为:Cd>Zn>Cu>Pb>Cr。与水稻重金属累积关系密切的重金属活性形态(可交换态、碳酸盐结合态、铁锰氧化物结合态和有机物结合态)主要有:Cd的碳酸盐结合态、Cr的可交换态、Pb的有机物结合态和Cu的碳酸盐结合态含量;Zn各活性形态对水稻子实含量的影响不明显。土壤理化性质对不同活性形态重金属元素的影响效应各不相同。活性态Cd主要受有机质、pH和容重的影响;活性态Cr与pH、有机质、CEC和容重密切相关;活性态Pb与有机质、容重、中细粉粒、砂粒等均有密切的关系;Cu的活性主要受粘粒、有机质含量的影响;Zn的有效性主要受pH、有机质、砂粒、容重的影响。总的看来,对土壤Cd、Cr、Pb、Cu、Zn各活性形态含量影响效应较强的是有机质、pH、容重,而与土壤吸附性能密切相关的颗粒组成、CEC的影响不甚明显。  相似文献   

15.
The concentration of major and trace elements was determined for tomato (Lycopersicon esculentumcv. Aromata F1) fruits grown in three different substrate systems. The systems were soil and rockwool irrigated with a normal nutrient solution and rockwool irrigated with a nutrient solution with elevated electrical conductivity (EC). At three harvest times, tomato fruits were analyzed for Ca, Cu, Fe, K, Mg, Mn, Na, P, S, Sr, and Zn by ICP-AES and for Cd, Cr, Mo, Ni, Pb, Sn, and V by HR-ICPMS. The concentrations of Ca, Cd, Fe, Mn, Mo, Na, Ni, Sr, and Zn were significantly different (p < 0.05) for tomato fruits grown on the different substrates. Between the harvest times different levels (p < 0.05) were shown for Ca, Cd, Fe, Mn Na, Ni, Sr, Zn Cu, K, Mg, P, Sn, and V. The concentration of Cd was >15 times higher and the concentration of Ca was 50-115% higher in soil-grown fruits than in rockwool-grown fruits. Principal component analysis applied on each harvest split the data into two groups. One group includes soil-grown fruits, and the other group includes rockwool-grown fruits with the two different nutrient solutions.  相似文献   

16.
Penguins can bioaccumulate metals, a portion of which can be deposited in the environment through organic remains such as excrement, carcasses, and eggshells. In order to determine Cu and Pb concentrations and their relationship to soil, organic matter and grain size were determined in 27 samples collected in zones without penguins, penguin transit zones, and Adelie (Pygoscelis adeliae), Chinstrap (P. antarctica), and Gentoo penguin (P. papua) colonies on the Ardley Peninsula, Maritime Antarctica. An atomic absorption spectrophotometry analysis was carried out, organic matter was determined by loss on ignition, and grain size was measured with a laser diffraction particle size analyzer. The principal component analysis shows a relationship between the variables Cu, Pb, and grain size and areas with penguin presence. Cu concentrations in soils varied among areas (χ2, 15.707; p =?0.0004), with higher concentrations in transit zones and penguin colonies (142.63 and 140.79 mg/kg, respectively) than in zones without penguins (83.33 mg/kg). Pb concentrations in soils also varied among areas (χ2, 6.5029; p =?0.0387), and were higher in transit zones (5.92 mg/kg) than in the penguin colonies (4.45 mg/kg). Grain size differed significantly among areas (χ2, 13.506; p =?0.0012), with higher values in transit zones (avg. 37.38 μm) than in penguin colonies (avg. 26.93 μm) and zones without penguins (avg. 20.72 μm). Organic matter did not differ significantly among the studied zones (χ2, 2.0882; p =?0.3520). There is a positive correlation between Cu-Pb (Rho, 0.5532; p =?0.0028), Cu-grain size (Rho, 0.4756; p =?0.0130) and Pb-grain size (Rho, 0.4879; p =?0.0098). The presence of penguins increases Cu concentrations in Antarctic soils due to its bioaccumulation and elimination through excrement; however, the presence of penguins has a minor influence on Pb concentration in soil, probably because this metal is stored efficiently in bones, feathers, and eggshells.  相似文献   

17.
Lead, fluoride, and other elements in bonemeal supplements   总被引:2,自引:0,他引:2  
The Pb, Cd, F, Al, Cr, Cu, Fe, Mn, Mo, Ni, Ti, and Zn content of 20 commercial bonemeal supplements was determined. Samples were mineralized with nitric and perchloric acids prior to determination of all elements except F, for which a diffusion method was used. Pb and Cd were determined by differential pulse anodic stripping voltammetry, F was measured using an ion selective electrode, and all other elements were determined by inductively coupled argon plasma spectroscopy. The mean recoveries of Pb and F were 97 and 99%, respectively. The concentration range of Pb was 1.5-8.7 microgram/g. Cd was quantitated in only one sample at a level of 2.5 microgram/g; all other samples were estimated to contain less than 0.05 microgram Cd/g. The concentration of F ranged from 261 to 921 microgram/g.  相似文献   

18.
The objective of this study was to investigate changes of total concentrations and various extract-defined Al and heavy metal fractions in Slovak agricultural soils during the last 25 years. We compared 7 stored soil samples collected between 1966 and 1970 with samples collected in 1994 at the same sites. Seven fractions of Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn were determined with a sequential extraction procedure in all samples. Total concentrations of Cd, Zn, Mn, Ni, and Cu were lower in the 1994 samples; those of Al, Fe, Pb, and Cr were higher. Based on the initial concentrations, the average total concentration changes were: Cd(-10,3%)<Zn(-7,2%)<Mn(-4,8%)<Ni(-2,3%)<Cu(-1,4%)<Al(+2,1%)<Fe(+2,9%)<Cr(+7,4%)<Pb(+8,3%). This row is consistent with the decrease in metal mobility. The differences in salt-extractable metals showed the same pattern; however, changes were more pronounced than for total concentrations. The results suggest that decreases during the last 25 years are caused by higher leaching than deposition rates and increases vice versa. The highest increase in Cr and Pb concentrations is observed in the EDTA-extractable fraction, which mainly characterizes organically bound metals.  相似文献   

19.
湘中下寒武统黑色页岩土壤的地球化学特征   总被引:11,自引:0,他引:11  
以湘中发育于下寒武统黑色页岩之上的土壤为研究对象,选择安化东坪、烟溪,桃江,宁乡等地的典型土壤及相应成土母岩,利用等离子质谱(ICP-MS)、X射线荧光光谱(XRF)等分析技术,对土壤、成土母岩(黑色页岩)的主量元素和微量元素(包括重金属元素、稀土元素等)进行了较系统的分析测定。结果表明,湘中下寒武统黑色页岩土壤风化作用强烈,风化指数CIA均在73以上。强烈的风化使得土壤具有明显贫CaO、Na2O,而富Al2O3、Fe2O3的化学组成特征。土壤因继承成土母岩(黑色页岩)的特征而富集Mo、Cd、Sn、Sb、U、V、Cr、Co、Ni、Cu、Zn、Tl、Pb、Th等多种重金属元素,其综合富集指数(EI值)平均在3以上,最高达17。地质累计指数(Igeo)评价结果显示,土壤重金属的富集已达到污染程度,土壤存在Cd、Mo、Sb、U、Sn、V、Cu、Tl、Ba等重金属的污染,并以Cd、Mo、Sb等重金属污染最强,达中度至极强污染程度。重金属与主量元素的相关性分析显示,土壤中的重金属主要赋存于黏土矿物和铁氧化物(针铁矿)等矿物相中,其中Ba、Sn、Th、Cu、Sc等主要赋存黏土矿物中;Zn、Ni、Mn、Co、Cd、Tl、Pb等则主要赋存于铁氧化物矿物(针铁矿)中;而Cr、V、Mo、Sb、U等则不受黏土矿物和铁氧化物矿物的控制。此外,不同地区土壤的Zr/Hf、Ta/Nb、Nd/Sm等元素比值相对稳定,依次为36.20、0.085、5.30(n=73),并与相应的成土母岩(黑色页岩)相应值基本一致。土壤与成土母岩具有相同的稀土配分型式,且成土过程中稀土元素不发生明显的分异。微量元素比值和稀土元素特征指示土壤中的重金属来自成土母岩(黑色页岩)本身,为自然污染源。  相似文献   

20.
In previous greenhouse experiments red mud, a residue of the alumina industry, was identified as effective amendment for in situ fixation of heavy metals. In the present study, we further evaluated the efficiency and potential drawbacks of red mud in an outdoor pot experiment. Application of 5 % (w/w) red mud (RM) should reveal possible drawbacks of red mud due to indigenous pollutants such as As, Cr, and V. Three soils from arable land in Lower Austria named Untertiefenbach (U) (Eutric Cambisol), Weyersdorf (W) (Dystric Cambisol), and Reisenberg (R) (Calcic Chernozem) were spiked with Cd, Zn, Cu, Ni, and V at two concentration levels in 1987, two soils originate from long‐term industrially polluted sites, located in Carinthia (Arnoldstein – Rendzic Leptosol; Zn, Cd, and Pb) and Tyrol (Brixlegg – Dystric Fluvisol; Cu, Zn). Zea mays was cultivated in pots for three months in outdoor conditions. Extraction with 1 M NH4NO3 was used to assess the influence of RM on the labile metals. Lability of Cd, Zn, Ni, and Pb was reduced upon RM treatment on a sandy soil up to 91 %, 94 %, 71 %, and 83 % of the control, respectively. Metal accumulation in shoots was reduced for Cd and Zn up to 54 % and for Ni up to 75 % (soil W), but not for Pb (soil A). Addition of RM (5 % w/w) increased the total As, Cr, and V concentrations in soils by 5, 20, and 50 mg kg–1, respectively. Whereas the lability of Cr was not affected, 1 M NH4NO3‐extractable As and V exceeded the trigger value for water quality according to Prüeß (1994). Lability of Cu increased upon RM application, especially on the Cu polluted industrial soil (B), while Cu toxicity appeared to be reduced as indicated by the higher corn biomass production. Red mud holds promise as soil amendment in terms of reduction Cd, Zn, and Ni bioavailability. However, at additions as high as 5 % (w/w) large As, Cr, and V concentrations of this material may limit its application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号