首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The impact of nanoparticles (NPs) in zooplankton is poorly studied, particularly when organisms are exposed through diet. Food, constituted mainly by unicellular algae, can act as an important route of contamination for zooplankton. Since unicellular algae have a high surface area in relation to their volume, NPs can interact with their cell membranes and walls, as well as with exopolysaccharides secreted by them. In the present research, we investigated both the acute effects of waterborne titanium dioxide nanoparticles (TiO2 NPs), and its chronic effects via dietary exposure on the Neotropical freshwater zooplankton Ceriodaphnia silvestrii Daday, 1902 (Crustacea: Cladocera). The observed acute effects served as support for chronic tests, in which we investigated the effects of TiO2 NPs on survival and life history parameters (body length, numbers of eggs, and neonates produced) of cladoceran adult females, using the freshwater cosmopolitan chlorophycean Raphidocelis subcapitata as source of contamination of TiO2 NPs for zooplankton. R. subcapitata cells were exposed to concentrations of 0, 0.01, 1, and 10 mg L?1 of TiO2 NPs for 96 h, and then provided as food for females of C. silvestrii until the third brood was released. Significant toxic effects were observed in body length and total number of neonates and eggs produced by females of C. silvestrii at concentrations of 1 and 10 mg L?1 of TiO2 NPs. Survival was the most sensitive parameter when exposure was given via food. From the concentration of 0.01 mg L?1 of TiO2 NPs, there was a decrease in the survival of C. silvestrii females. The quantification of TiO2 NPs in algae evidenced that they have retained NPs in their cells, being, therefore, an important route of exposure and toxicity of TiO2 NPs to the studied microcrustacean.  相似文献   

2.
Although dilution of lake water has been used for improvement of water quality and algal blooms control, it has not necessarily succeeded to suppress the blooms. We hypothesized that the disappearance of algal blooms by dilution could be explained by flow regime, nutrient concentrations, and their interaction. This study investigated the effects of daily renewal rate (d), nitrogen (N) and phosphorus (P) concentration, and their interaction on the domination between Microcystis aeruginosa and Cyclotella sp. through a monoxenic culture experiment. The simulation model as functions of the N:P mass ratio and dilution rate (D) (calculated from d) was constructed, and the dominant characteristics of both species were predicted based on the model using parameters obtained in a monoculture experiment and our previous study. Results of monoxenic culture experiment revealed that M. aeruginosa dominated in all conditions (d = 5 or 15%; N = 1.0 or 2.5 or 5.0 mg-N L?1; P = 0.1 or 0.5 mg-P L?1) and the predicted cell densities were substantially correspondent to experimental data. Under various N:P ratios and D values, characteristics of domination for each species were predicted, indicating that Cyclotella sp. tended to be dominant under high P concentrations (P ≥ 0.36 mg-P L?1) when the N:P ratio was less than 7.0, and M. aeruginosa could not form algal blooms at the N:P ratio ≤ 7.0 (N ≤ 0.7 mg-N L?1). It was also suggested that the dilution rate leading to the Cyclotella sp. domination required 0.20 day?1 or higher regardless of the N:P ratios.
Graphical Abstract ? M. aeruginosa and Cyclotella sp. could be a superior competitor in nutrient-limited and nutrient-rich conditions, respectively. ? The simulation model in this study indicated that the predicted cell density and nutrient concentration were substantially correspondent to experimental data. ? The model predicted that Cyclotella sp. tended to be dominant at the P ≥ 0.36 mg-P L?1 when the N:P ratio was less than 7.0, and M. aeruginosa could not form algal blooms at the N:P ratio ≤ 7.0 (N ≤ 0.7 mg-N L?1).
  相似文献   

3.
The widely used plastic film containing di(2-ethylhexyl) phthalate (DEHP) in agriculture has caused serious soil pollution and poses risks to human health through the food chain. An effective DEHP degradation bacteria, Microbacterium sp. J-1, was newly isolated from landfill soil. Response surface methodology was successfully employed for optimization resulting in 96% degradation of DEHP (200 mg L?1) within 5 days. This strain degraded DEHP by hydrolysis of the ester bond and hydroxylation of the aromatic ring to form 2-ethyl hexanol, mono-(2-ethylhexyl) phthalate, phthalate acid, and protocatechuic acid, and subsequently transformed these compounds with a maximum specific degradation rate (q max), half-saturation constant (K s ), and inhibition constant (K i ) of 1.46 day?1, 180.2 mg L?1, and 332.8 mg L?1, respectively. Bioaugmentation of DEHP-contaminated soils with the strain J-1 greatly enhanced the DEHP dissipation rate (~88%). Moreover, this strain could efficiently colonize the rhizosphere soil of inoculated vegetables and further enhanced DEHP degradation (~97%), leading to a significant decrease (>70%) in DEHP accumulation in shoots and roots of the inoculated vegetables compared to uninoculated vegetables. The results highlighted the roles of the inoculated exogenous bacteria in simultaneously bioremediating contaminated soils and reducing bioaccumulation of DEHP in the edible part of the vegetable for food safety.  相似文献   

4.
The use of plants for ecological remediation is an important method of controlling heavy metals in polluted land. Cotinus coggygria is a landscape plant that is used extensively in landscaping and afforestation. In this study, the cadmium tolerance level of C. coggygria was evaluated using electrical impedance spectroscopy (EIS) to lay a theoretical foundation for broad applications of this species in Cd-polluted areas and provide theoretical support to broaden the application range of the EIS technique. Two-year-old potted seedlings of C. coggygria were placed in a greenhouse to analyse the changes in the growth, water content and EIS parameters of the roots following treatment with different Cd concentrations (50, 100, 200, 500, 1000 and 1500 mg kg?1), and soil without added Cd was used as the control. The roots grew well following Cd treatments of 50 and 100 mg kg?1. The Cd contents increased with the increase in Cd concentration in the soil. However, the lowest root Cd content was found at 4 months of treatment. The extracellular resistance re and the intracellular resistance ri increased first overall and then decreased with the increasing Cd concentration, and both parameters increased with a longer treatment duration. The water content had a significant negative correlation with the Cd content (P?<?0.01) and the re (P?<?0.05). C. coggygria could tolerate a soil Cd concentration of 100 mg kg?1. There was a turning point in the growth, water content and EIS parameters of the C. coggygria roots when the soil Cd concentration reached 200 mg kg?1. The root water content and re could reflect the level of Cd tolerance in C. coggygria.  相似文献   

5.
The removal efficiency and tolerance of Typha domingensis to Cr(VI) in treatments with and without organic matter (OM) addition were evaluated in microcosm-scale wetlands. Studied Cr(VI) concentrations were 15 mg L?1, 30 mg L?1, and 100 mg L?1, in treatments with and without OM addition, arranged in triplicate. Controls (without neither metal nor OM addition—without metal with OM addition) were disposed. Cr(VI) was removed efficiently from water in all treatments. OM addition enhanced significantly Cr(VI) and total Cr removals from water. In the treatments with OM addition, significantly higher Cr concentrations were found in sediment than the treatments without OM addition. Plants of the treatments without OM addition showed significantly higher Cr concentrations in tissues but lower biomass increase than the treatments with OM addition. The highest Cr concentrations in tissues were observed in submerged parts of leaves, followed by roots. According to SEM analysis, in the 100 mg L?1 treatments, the highest Cr accumulation was observed in the epidermis of old leaves. Although Cr(VI) produced changes in root morphology, the OM addition favored the plant growth. In T. domingensis, root morphological plasticity is an important mechanism to improve metal tolerance and Cr uptake in wetland systems minimizing the environmental impact.  相似文献   

6.
Acute (24 h) and sublethal (35 days) effects of cadmium chloride (CdCl2) were examined in Cirrhinus mrigala using various endpoints (accumulation pattern, thyroid hormones (THs), and antioxidants). The mean concentrations of CdCl2 for 24 and 96 h were found to be 35.974 and 22.387 mg L?l, respectively. LC50 concentration of CdCl2 for 24 h (35.97 mg L?l) was used for the acute study. For the sublethal studies, fish were exposed to 3.59 mg L?1 (Treatment I) and 7.19 mg L?1 (Treatment II) corresponding to 1/10th and 1/5th of 24 h LC50 of the CdCl2. During acute exposure, higher accumulation of CdCl2 was noticed in the gill, liver, and kidney of C. mrigala, which is found in the order gill > liver > kidney tissues. Similarly, in sublethal treatments (Treatment I and II), a concentration and time-dependent increase of CdCl2 accumulation was noticed in the order of gill > liver > kidney. GSH, GST, and GPx activities were found to be relatively lower from the treated groups in both acute and sublethal treatments. However, LPO activity was significantly increased in CdCl2-treated fish C. mrigala. Further, plasma T3 reduction was more pronounced than T4 in acute study. During sublethal treatments, both T4 and T3 levels showed a continuous decrease as the exposure period extended. All the values in this study were statically significant (P < 0.01 and P < 0.05).  相似文献   

7.
Comamonas sp. UVS was able to decolorize Reactive Blue HERD (RBHERD) dye (50 mg L?1) within 6 h under static condition. The maximum dye concentration degraded was 1,200 mg L?1 within 210 h. A numerical simulation with the model gives an optimal value of 35.71?±?0.696 mg dye g?1 cell h?1 for maximum rate (Vmax) and 112.35?±?0.34 mg L?1 for the Michaelis constant (Km). Comamonas sp. UVS has capability of decolorization of RBHERD in the presence of Mg2+, Ca2+, Cd2+, and Zn2+, whereas decolorization was completely inhibited by Cu2+. Metal ions also affected the levels of biotransformation enzymes during decolorization of RBHERD. Comamonas sp. UVS was also able to decolorize textile effluent with significant reduction in COD. The biodegradation of RBHERD dye was monitored by UV–vis spectroscopy, FTIR spectroscopy, and HPLC.  相似文献   

8.
The herbicides 2,4-diclorophenoxiacetic and 4-chloro-2-methylphenoxyacetic acids (2,4-D and MCPA) are widely used in agricultural practices worldwide. Not only are these practices responsible of surface waters contamination, but also agrochemical industries through the discharge of their liquid effluents. In this investigation, the ability of a 2,4-D degrading Delftia sp. strain to degrade the related compound MCPA and a mixture of both herbicides was assessed in batch reactors. The strain was also employed to remove and detoxify both herbicides from a synthetic effluent in a continuous reactor. Batch experiments were conducted in a 2-L aerobic microfermentor, at 28 °C. Continuous experiments were carried out in an aerobic downflow fixed-bed reactor. Bacterial growth was evaluated by the plate count method. Degradation of the compounds was evaluated by UV spectrophotometry, gas chromatography (GC), and chemical oxygen demand (COD). Toxicity was assessed before and after the continuous process by using Lactuca sativa seeds as test organisms. Delftia sp. was able to degrade 100 mg L?1 of MCPA in 52 h. When the biodegradation assay was carried out with a mixture of 100 mg L?1 of each herbicide, the process was accomplished in 56 h. In the continuous reactor, the strain showed high efficiency in the simultaneous removal of 100 mg L?1 of each herbicide. Removals of 99.7, 99.5, and 95.0% were achieved for 2,4-D, MCPA, and COD, respectively. Samples from the influent of the continuous reactor showed high toxicity levels for Lactuca sativa seeds, while toxicity was not detected after the continuous process.  相似文献   

9.
The concentrations of mercury, lead, cadmium, and arsenic were evaluated in 96 samples, 12 by each one of the following eight fish species: snook (Centropomus undecimalis), crevalle jack (Caranx hippos), Serra Spanish mackerel (Scomberomorus brasiliensis), southern red snapper (Lutjanus purpureus), blue runner (Caranx crysos), Atlantic tarpon (Megalops atlanticus), ladyfish (Elops saurus), and Atlantic goliath grouper (Epinephelus itajara), which were collected during 1 year in the Atrato River Delta in the Gulf of Urabá, Colombian Caribbean. Three fish were caught from each of the following sites the community usually uses to catch them (known as fishing grounds): Bahía Candelaria, Bahía Marirrío, Bocas del Roto, and Bocas del Atrato. The quantification of metals was performed by microwave-induced plasma-optical emission spectrometry. The Pb concentration fluctuated from 0.672 to 3.110 mg kg?1, surpassing the maximum permissible limit (MPL?=?0.3 mg kg?1) for human consumption for all species. The Hg concentration ranged between < Limit of detection and 6.303 mg kg?1, and in the crevalle jack and Atlantic tarpon, concentrations exceeded the MPL (0.5 mg kg?1). The levels of Cd and As were not significant in the studied species and did not exceed the MPL (0.05 mg kg?1).  相似文献   

10.
Poly- and perfluorinated alkyl substances (PFASs) are groups of persistent toxic substances that have been commonly detected in wastewater treatment plants (WWTPs). In some cases, the activated sludge (AS) in WWTPs will encounter special wastewaters containing PFASs up to tens of milligram per liter (mg L?1). However, under this condition, the potential impacts of PFASs on AS process remain unclear. In the present research, a lab-scale sequencing batch reactor was continuously exposed to perfluorooctanoic acid (PFOA), used as a representation for PFASs, at 20 mg L?1 to mimic the extreme condition. The objective is to explore the impact of PFOA on AS process in terms of its wastewater treatment performance and evolution of microbial communities. The results indicate that PFOA restrained the microbial growth and affected the dissolved organic carbon removal. These negative impacts could be recovered after long-term adaptation. Besides, 20 mg L?1 PFOA shows limited inhibition on nitrification and denitrification, suggesting a safe exposure level of PFOA for nitrogen removal. For microbial evolution, PFOA induced changes of communities during long-term exposure. The high abundance of Bacteroidetes, Proteobacteria, and Acidobacteria maintained over time reveals their tolerance towards PFOA. The occurrences of PFOA-resistant species are also observed. The present research provides new insight into the possible impacts of typical PFAS at high concentrations on AS process.  相似文献   

11.
In consideration of the hazards associated with the presence of the textile azo-dye and their biotransformation products in the environment, the goal of this work was to study bioremediation process by the yeast strain Pichia kudriavzevii CR-Y103 related to the ability to degrade and detoxify the sulfonated Reactive Orange 16 azo-dye. In experimental conditions, the optimal inoculum/dye concentration ratio required for complete decolorization (100%) of culture medium and biomass within 24 h has been 1 g L?1 yeast cell (dry weight)/50 mg L?1 Reactive Orange 16. In the presence of 400 mg L?1 of Reactive Orange 16 (RO16), 95% of the dye was removed after 72 h of incubation. Also, the yeast strain could decolorize other eight textile dyes (56.48–99.98% decolorization within 24 h). NADH-DCIP reductase and azo reductase activities were significantly increased (ca. 5.4 times and ca. 37 times, respectively) during the decolorization process. UV-VIS spectra, high-performance liquid chromatography (HPLC), and Fourier transform infrared spectroscopy (FTIR) analysis confirmed the presence of new biotransformation products in extracted metabolites, highlighting the partial biodegradation of the dye by the new yeast isolate. The phytotoxicity evaluation strongly supported the decreased toxicity of biodegraded products as minor inhibition on germination (%), root and shoots elongation of T. pratense L. and T. aestivum L. seedlings. Increasing of mitotic index value and decreasing the frequency of chromosomal aberrations in tested plant meristem cells treated with biodegraded products, compared with RO16 treatment (500 ppm), confirmed their slightly toxic nature. A cell viability assay also confirmed the reduced toxicity of biodegraded products on healthy monkey kidney cells (Vero cells).  相似文献   

12.
Biodegradability of chlorhexidine (CH), triclosan (TC), and benzalkonium chloride (CBA) has been tested in 18 surface water sampling points in the urban area of Buenos Aires. Sampling points were located in both the Reconquista and the Matanza-Riachuelo basins as well as in the La Plata River. High tolerance to the three disinfectants was found and indigenous strains capable of degrading CBA and TC were isolated. Neither tolerance nor biodegradation were correlated with sewage pollution. A strain that degrades CBA was identified as belonging to the genus Pseudomonas using the API20NE system and 16SRNA sequencing. In batch assays, the strain was capable of degrading 100, 200, and up to 500 mg L?1 of CBA in 10, 25, and 46 h respectively with specific growth rates (μ) of 0.56, 0.30, and 0.14 h?1. The efficiency of the process was between 99.5–98.0% in terms of compound removal and between 93.8–89.1% in terms of chemical oxygen demand (COD). The detoxification of the compound as a result of the biodegradation was assessed using Pseudokirchneriella subcapitata, Vibrio fischeri, and Lactuca sativa as test organisms.  相似文献   

13.
14.
Soil components from different environments (forest (OF), semiarid (SZ), and sand (AS)) were separated from fulvic and humic substances, characterized by DRX, EDS(SEM), and zero-charge points were determined. The sorption of U(VI) by these materials was determined considering contact time, concentration of U(VI), pH, ionic strength, and presence of sodium chloride and humic acids. The time to reach the kinetic sorption equilibrium was ca. 1 min for the components of the SZ and AS soils, whereas those from OF required longer times. The zero-charge points of the materials indicate that in the experimental conditions, the surfaces of the materials are positively charged, as are uranyl ions. The sorption kinetic data were well fitted to the pseudo-second-order model, which indicates chemical sorption. The maximum sorption capacities for U(VI) obtained from data fitted to the Langmuir model of OF and SZ were 49 and 19.8 mg g?1 respectively. Sorption isotherm data for AS were best fitted to the Freundlich model (qe?=?5.4 mg g?1). The maximum values of distribution coefficients (Kd) were 23?±?7 L kg?1, 545?±?64 L kg?1, and 1178?±?229 L kg?1 for AS, SZ, and OF, respectively; these values may depend on pH, contact time, initial concentration of U(VI), and the composition of the materials. Sodium chloride in the aqueous solutions affects U(VI) sorption by the materials SZ and AS. The effect of humic acids depends on pH, only in acid media soluble humate complexes may be formed.  相似文献   

15.
It is now acknowledged that aromatic hydrocarbons present in contaminated soils occur in mixtures. The effect of single, binary and quinary mixtures of phenanthrene and selected nitrogen-containing polycyclic aromatic hydrocarbons (N-PAHs) were investigated on the survival, growth and behavioural index of earthworms (Eisenia fetida) over a 21-day incubation in soil. The results showed that the LC50 values ranged from (not detected) ND–329.3 mg kg?1 (single mixture), ND–219.8 mg kg?1 (binary mixtures) to 148.4 mg kg?1 (quinary mixture), while the EC50 values (based on weight loss) ranged from 13.3–148.4 mg kg?1 (single mixture), 63.8–148.4 mg kg?1 (binary mixture) to 24.2 mg kg?1 (quinary mixture). Greater impacts were recorded where N-PAHs are present with phenanthrene. Further, behavioural index of E. fetida was affected after 24-h exposure to N-PAH-amended soils. Among the N-PAHs however, benzo[h]quinoline recorded the greatest impact on the survival, growth and behavioural index of E. fetida in soil. Findings from this study showed that three ring-N-PAHs are more toxic than phenanthrene as expected from their physico-chemical properties. The binary and quinary mixtures of phenanthrene and N-PAHs in soil intensified toxicity, suggesting that PAHs-N-PAHs mixtures represent greater risk to soil biota.  相似文献   

16.

Purpose

This study aimed to evaluate the effect of combination of alkyl polyglucoside (APG) and nitrilotriacetic acid (NTA) on improving the efficiency of phytoremediation for pyrene and lead (Pb) co-contaminated soil by Scirpus triqueter.

Materials and methods

Seedlings of S. triqueter with a similar size and biomass (3 g/pot) were grown on 2-month aged soil contaminated with 184.5 mg kg?1of pyrene and 454.3 mg kg?1 of Pb at pH?=?8.3. After growth for 10 days, different doses of APG and NTA were added into the soil. After 60 days, the height of plants, Pb concentrations in plants, and pyrene amounts in soil were determined.

Results and discussion

Combined application of NTA and APG with lower dosage (1 + 1 g kg?1 soil and 1 + 2 g kg?1 soil) had no notable negative influence on the growth of S. triqueter. Moreover, significant synergy on Pb accumulation in S. triqueter was achieved with APG and NTA combined application. Besides, the dissipation of pyrene from soil after 60-day planting was increased in APG and NTA treatments when compared with the control treatments. Application of APG alone or combined with NTA had greater effect on enhancing dissipation of pyrene from soil than NTA alone.

Conclusions

This study demonstrated that the remediation of Pb and pyrene co-contaminated soil by S. triqueter can be enhanced by combined application of APG and NTA. Long-term evaluation of this strategy is needed in co-contaminated field sites.
  相似文献   

17.
Sludge-derived activated carbons (ACs) were prepared by conventional heating and microwave pyrolysis. The ACs were characterized using several analytical and functional techniques and used for removal of six phenolic compounds from aqueous solutions. The adsorbents exhibited similar features and possessed hydrophobic surfaces. The ACs were assigned mesoporous materials, with specific surface areas of up to 641 and 540 m2 g?1 for CAC-500 and MAC-980, respectively. The preliminary results indicated that phenol removal onto the ACs increased in the order: m-cresol?<?phenol?<?o-cresol?<?2-chrorophenol?<?2-nitrophenol?<?hydroquinone. Hydroquinone exhibited the highest adsorption capacity and was chosen to continue the remaining part of the experimental work—kinetic and isothermal studies. The adsorption kinetic and isotherm data were well described by the Avrami fractionary order and Redlich–Peterson models, respectively. The maximum amounts (Q max) of hydroquinone adsorbed at 25 °C were too high, reaching 1218.3 and 1202.1 mg g?1 for CAC-500 and MAC-980, respectively. The mechanism of adsorption was proposed in this work, and it was suggested that donor–acceptor complex and ππ interactions play major roles in the adsorption process. The adsorbents were also tested on simulated effluents. The two ACs displayed good efficiency for the treatment of industrial simulated effluents.  相似文献   

18.
Assessment of surface water quality in the Mississippi Delta is essential to quantify the eutrophication of the Gulf of Mexico. This study estimated the characteristics and variations of surface water quality at three study sites in the Big Sunflower River Watershed (BSRW) within the Mississippi Delta using Kruskal-Wallis, Dunn, Mann-Kendall, and Pettitt tests. In general, contents of some water quality constituents such as nitrate-nitrogen (NO3???N) and total phosphorus (TP) in the BSRW varied from site to site each year, whereas variations of other constituents such as pH and dissolved oxygen (DO) each year were basically not significant. The highest median concentrations were found in spring for NO3???N and total nitrogen (TN); in summer for specific conductance (SC), Na, and Cl; and in winter for DO. Mann-Kendall trend analysis revealed that there was an increasing annual trend at Leland but a decreasing annual trend at Merigold for NO3???concentrations even though such changes were very small, whereas there was no annual trend for TP at any of the three study sites. Pettitt’s test further identified that the NO3???N concentrations had an abrupt increase in February 2009 at the median value of 0.44 mg L?1 in Leland and an abrupt decrease in June 2012 at the median value of 3.65 mg L?1 in Merigold. A very good linear correlation existed between total dissolved solid (TDS) and magnesium (Mg) in the BSRW, which could be used to estimate TDS from Mg concentrations for this watershed when the data for TDS are absent.  相似文献   

19.
Bio-fertilizer application has been proposed as a strategy for enhancing soil fertility, regulating soil microflora composition, and improving crop yields, and it has been widely applied in the agricultural yields. However, the application of bio-fertilizer in grassland has been poorly studied. We conducted in situ and pot experiments to investigate the practical effects of different fertilization regimes on Leymus chinensis growth, with a focus on the potential microecological mechanisms underlying the responses of soil microbial composition. L. chinensis biomass was significantly (P?<?0.05) increased by treatment with 6000 kg ha?1 of Trichoderma bio-fertilizer compared with other treatments. We found a positive (R2 =?0.6274, P <?0.001) correlation between bacterial alpha diversity and L. chinensis biomass. Hierarchical cluster analysis and nonmetric multidimensional scaling (NMDS) revealed that soil bacterial and fungal community compositions were all separated according to the fertilization regime used. The relative abundance of the most beneficial genera in bio-fertilizer (BOF) (6000 kg ha?1Trichoderma bio-fertilizer) was significantly higher than in organic fertilizer (OF) (6000 kg ha?1 organic fertilizer) or in CK (non-amend fertilizer), there the potential pathogenic genera were reduced. There were significant negative (P?<?0.05) correlations between L. chinensis biomass and the relative abundance of several potential pathogenic genera. However, the relative abundance of most beneficial genera were significantly (P?<?0.05) positively correlated with L. chinensis biomass. Soil properties had different effects on these beneficial and on these pathogenic genera, further influencing L. chinensis biomass.  相似文献   

20.
The establishment of a complementary grass cover on vineyard soils can promote sustainability of the affected environment. In this work, we used an acid vineyard soil with total Cu concentration 188 mg kg?1 to study the influence of pine bark amendment on Lolium perenne growth and Cu uptake. The results indicate that the pine bark amendment did not cause a significant increase in the mass of the shoots of Lolium perenne, but favored the root biomass: 0.034 g for control and 0.061 g for soil samples amended with 48 g kg?1 of pine bark. Moreover, the pine bark amendment decreased Cu concentration in both, shoots (50 mg kg?1 for control soil and 29 mg kg?1 for soil amended with 48 g kg?1 pine bark) and roots (250 mg kg?1 for control soil and 64 mg kg?1 for soil amended with 48 g kg?1 pine bark). The main factor responsible for these results was a significant decrease of the most mobile fractions of Cu in the soil. Those fractions were extracted using ammonium acetate, ammonium chloride, sodium salt of ethylene-diamine-tetraacetic acid (EDTA-Na), and diethylene-triamine-pentaacetic acid (DTPA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号