首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anion-molecule nucleophilic substitution (S(N)2) reactions are known for their rich reaction dynamics, caused by a complex potential energy surface with a submerged barrier and by weak coupling of the relevant rotational-vibrational quantum states. The dynamics of the S(N)2 reaction of Cl- + CH3I were uncovered in detail by using crossed molecular beam imaging. As a function of the collision energy, the transition from a complex-mediated reaction mechanism to direct backward scattering of the I- product was observed experimentally. Chemical dynamics calculations were performed that explain the observed energy transfer and reveal an indirect roundabout reaction mechanism involving CH3 rotation.  相似文献   

2.
3.
The van der Waals forces in the entrance valley of the Cl + HD reaction are shown here to play a decisive role in the reaction's dynamics. Exact quantum mechanical calculations of reactive scattering on a potential energy surface without Cl-HD van der Waals forces predict that the HCl and DCl products will be produced almost equally, whereas the same calculations on a new ab initio potential energy surface with van der Waals forces show a strong preference for the production of DCl. This preference is also seen in crossed molecular beam experiments on the reaction. The study of chemical reaction dynamics has now advanced to the stage where even comparatively weak van der Waals interactions can no longer be neglected in calculations of the potential energy surfaces of chemical reactions.  相似文献   

4.
The transition state region of the F + H(2) reaction has been studied by photoelectron spectroscopy of FH(2)(-). New para and normal FH(2)(-)photoelectron spectra have been measured in refined experiments and are compared here with exact three-dimensional quantum reactive scattering simulations that use an accurate new ab initio potential energy surface for F + H(2). The detailed agreement that is obtained between this fully ab initio theory and experiment is unprecedented for the F + H(2) reaction and suggests that the transition state region of the F + H(2) potential energy surface has finally been understood quantitatively.  相似文献   

5.
Concentrations of the halocrbons CCl(3)F (F-11), CCl(2)F(2) (F-12), CCl(4), and CH(3)CCl(3), methane (CH(4)), and nitrous oxide (N(2)O) over the decade between 1975 and 1985 are reported, based on measurements taken every January at the South Pole and in the Pacific Northwest. The concentrations of F-11, F-12, and CH(3)CCl(3) in both hemispheres are now more than twice their concentrations 10 years ago. However, the annual rates of increase of F-11, F-12, and CH(3)CC1(3) are now considerably slower than earlier in the decade, reflecting in part the effects of a ban on their nonessential uses. Continued increases in these trace gas concentrations may warm the earth and deplete the stratospheric ozone layer, which may cause widespread climatic changes and affect global habitability.  相似文献   

6.
Flynn GW 《Science (New York, N.Y.)》1989,246(4933):1009-1015
Very high resolution lasers allow spectroscopic pictures to be taken following a collision between two molecular reactants. The features of these "pictures" are the electronic, vibrational, rotational, and translational motions of the atomic particles, which relate the quantum states of the reactants to the quantum states of the products. Such state-to-state kinetic information can be used to test the shape and nature of the interaction potential that controls the collision process. The potential itself is akin to a map of the terrain through mountains and valleys where elevation is a measure of energy instead of height. Accurate mapping of this potential surface leads to an understanding of the forces which control rates and mechanisms of chemical reactions. The application of four different advanced laser techniques to the study of collisions between "hot" hydrogen(H) atoms and carbon dioxide(CO(2)) molecules has provided a wealth of information about both reactive and nonreactive collisions for this system. The availability of data for rotationally, vibrationally, and translationally inelastic excitation of CO(2) by H atoms, when compared with data for reactive events producing OH + CO, provides insights into the dynamics of collisions between H and CO(2), and illustrates the future promise of these powerful techniques for elucidating features of potential energy surfaces.  相似文献   

7.
Liu X  Lin JJ  Harich S  Schatz GC  Yang X 《Science (New York, N.Y.)》2000,289(5484):1536-1538
The O((1)D) + H(2) --> OH + H reaction, which proceeds mainly as an insertion reaction at a collisional energy of 1.3 kilocalories per mole, has been investigated with the high-resolution H atom Rydberg "tagging" time-of-flight technique and the quasiclassical trajectory (QCT) method. Quantum state-resolved differential cross sections were measured for this prototype reaction. Different rotationally-vibrationally excited OH products have markedly different angular distributions, whereas the total reaction products are roughly forward and backward symmetric. Theoretical results obtained from QCT calculations indicate that this reaction is dominated by the insertion mechanism, with a small contribution from the collinear abstraction mechanism through quantum tunneling.  相似文献   

8.
We report a synthetic material, [Co2(bipy)3(SO4)2(H2O)2](bipy) (CH3OH), (1, where bipy = 4,4'-bipyridyl) that contains discrete reactive and inert structural motifs that undergo a reversible substitution reaction involving the concerted and spatially controlled introduction of bipyridine and methanol molecules at the reactive sites. This reaction defines the pore geometry of the resulting open-framework structure and controls the manner in which this structure sorbs small molecules. The molecules involved in the reaction are positioned by an array of well-defined interactions during their path to binding to the metal centers.  相似文献   

9.
Because of its high resistivity and subsequent low electroactivity, sulfur is not normally considered a room-temperature battery cathode. An elemental sulfur cathode has been made with a measured capacity of over 900 ampere.hours per kilogram, more than 90 percent of the theoretical storage capacity of solid sulfur at room temperature, accessed by means of a lightweight, highly conductive, aqueous polysulfide interface through the electrocatalyzed reaction S + H(2)O + 2e(-) --> HS(-) + OH(-). This solid sulfur cathode was first used in a battery with an aluminum anode for an overall discharge reaction 2Al + 3S + 3OH(-) + 3H(2)O --> 2Al(OH)(3) + 3HS(-), giving a cell potential of 1.3 volts. The theoretical specific energy of the aluminum-sulfur battery (based on potassium salts) is 910 watt.hours per kilogram with an experimental specific energy of up to 220 watt.hours per kilogram.  相似文献   

10.
Ultrafast spectroscopy was used to study vibrational energy transfer between vibrational reporter groups on different parts of a molecule in a liquid. When OH stretching vibrations of different alcohols were excited by mid-infrared laser pulses, vibrational energy was observed to move through intervening CH2 or CH groups, taking steps up and down in energy, ending up at terminal CH3 groups. For each additional CH2 group in the path between OH and CH3, the time for vibrational energy transfer increased by about 0.4 picosecond.  相似文献   

11.
Reaction resonances, or transiently stabilized transition-state structures, have proven highly challenging to capture experimentally. Here, we used the highly sensitive H atom Rydberg tagging time-of-flight method to conduct a crossed molecular beam scattering study of the F + H2 --> HF + H reaction with full quantum-state resolution. Pronounced forward-scattered HF products in the v' = 2 vibrational state were clearly observed at a collision energy of 0.52 kcal/mol; this was attributed to both the ground and the first excited Feshbach resonances trapped in the peculiar HF(v' = 3)-H' vibrationally adiabatic potential, with substantial enhancement by constructive interference between the two resonances.  相似文献   

12.
A fully quantal wavepacket approach to reactive scattering in which the best available H(3) potential energy surface was used enabled a comparison with experimentally determined rates for the D + H(2)(v = 1, j = 1) --> HD(v' = 0, 1, 2; j') + H reaction at significantly higher total energies (1.4 to 2.25 electron volts) than previously possible. The theoretical results are obtained over a sufficient range of conditions that a detailed simulation of the experiment was possible, thus making this a definitive comparison of experiment and theory. Good to excellent agreement is found for the vibrational branching ratios and for the rotational distributions within each product vibrational level. However, the calculated rotational distributions are slightly hotter than the experimentally measured ones. This small discrepancy is more marked for products for which a larger fraction of the total energy appears in translation. The most likely explanation for this behavior is that refinements are needed in the potential energy surface.  相似文献   

13.
The reaction K + NaBr --> KBr + Na is probed during the reactive collision by a continuous wave laser tuned to frequencies not resonant with excitation in either reagents or products. Transient [K..Br..Na] absorbs a laser photon giving [K..Br..Na](*), which can decompose to Na(*) + KBr. Emission from excited Na(*) at the sodium D lines provides direct evidence of laser absorption during the reaction. Different excitation spectra were observed, depending on which sodium D line was monitored. This difference is explicable if, in the absence of the laser, the reaction flux partially bifurcates to a second potential energy surface during the reaction.  相似文献   

14.
Trace gases have been measured, by electron-capture gas chromatography and gas chromatography-mass spectrometry techniques, at the South Pole (SP) in Antarctica and in the U.S. Pacific Northwest (PNW) ( approximately 45 degrees N) during January of each year from 1975 to 1980. These measurements show that the concentrations of CCl(3)F, CCl(2)F(2), and CH(3)CCl(3) have increased exponentially at substantial rates. The concentration of CCl(3)F increased at 12 percent per year at the SP and at 8 percent per year in the PNW; CCl(2)F(2) increased at about 9 percent per year at both locations, and CH(3)CCl(3) increased at 17 percent per year at the SP and 11.6 percent per year at the PNW site. There is some evidence that CCl(4) ( approximately 3 percent per year) and N(2)O (0.1 to 0.5 percent per year) may also have increased. Concentrations of nine other trace gases of importance in atmospheric chemistry are also being measured at these two locations. Results of the measurements of CHClF(2)(F-22), C(2)Cl(3)F(3)(F-113), SF(6), C(2)-hydrocarbons, and CH(3)Cl are reported here.  相似文献   

15.
以壳聚糖(CTS)和活性艳蓝KN-R染料为原材料,通过两步反应法制备新型N,O-羧甲基壳聚糖染料,用红外光谱(FTIR)、X射线衍射(XRD)、元素分析仪分析其结构和化学基团,并用紫外可见分光光度计对其水溶性进行检测;采用常压浸渍法制备N,O-羧甲基壳聚糖染料染色薄木,用光谱光度仪进行表面颜色及日晒和水洗色差测量;用菌落计数法定量表征其抗菌性能。结果表明:CTS分子中大量—OH、少量—NH2基团被—CH2COOH基团取代,染料中的—SO-3和N,O-羧甲基壳聚糖中质子化的—NH+3发生反应;羧甲基化和染料接枝反应使得CTS结晶度下降;N,O-羧甲基壳聚糖染料的水溶性得到显著改善;N,O-羧甲基壳聚糖染料可明显改善薄木的染色效果,且染色薄木的耐日晒和耐水洗牢度均提高;N,O-羧甲基壳聚糖染料染色薄木的抗菌性能优于活性艳蓝KN-R染色薄木。   相似文献   

16.
The reaction of F with H2 and its isotopomers is the paradigm for an exothermic triatomic abstraction reaction. In a crossed-beam scattering experiment, we determined relative integral and differential cross sections for reaction of the ground F(2P(3/2)) and excited F*(2P(1/2)) spin-orbit states with D2 for collision energies of 0.25 to 1.2 kilocalorie/mole. At the lowest collision energy, F* is approximately 1.6 times more reactive than F, although reaction of F* is forbidden within the Born-Oppenheimer (BO) approximation. As the collision energy increases, the BO-allowed reaction rapidly dominates. We found excellent agreement between multistate, quantum reactive scattering calculations and both the measured energy dependence of the F*/F reactivity ratio and the differential cross sections. This agreement confirms the fundamental understanding of the factors controlling electronic nonadiabaticity in abstraction reactions.  相似文献   

17.
The reaction of the chlorine atom with methane has been the focus of numerous studies that aim to test, extend, and/or modify our understanding of mode-selective reactivity in polyatomic systems. To this point, theory has largely been unable to provide accurate results in comparison with experiments. Here, we report an accurate global potential energy surface for this reaction. Quasi-classical trajectory calculations using this surface achieve excellent agreement with experiment on the rotational distributions of the hydrogen chloride (HCl) product. For the Cl + CHD(3) → HCl + CD(3) reaction at low collision energies, we confirm the unexpected experimental finding that CH-stretch excitation is no more effective in activating this late-barrier reaction than is the translational energy, which is in contradiction to expectations based on results for many atom-diatom reactions.  相似文献   

18.
Another criterion for the presence of the agent (F) promoting genetic exchange in Escherichia coli was found. It involves a staining reaction of Hfr and F+ coli, but not F- coli, when mixed with strains of Salmonella typhimurium. This reaction was used as a guide in following the transfer of the F agent to Salmonella and back to E. coli. The F agent in Salmonella seems to promote the same kinds of events that it promotes in E. coli.  相似文献   

19.
DC Clary 《Science (New York, N.Y.)》1998,279(5358):1879-1882
It is now possible to use rigorous quantum scattering theory to perform accurate calculations on the detailed state-to-state dynamics of chemical reactions in the gas phase. Calculations on simple reactions, such as H + D2 --> HD + D and F + H2 --> HF + H, compete with experiment in their accuracy. Recent advances in theory promise to extend such accurate predictions to more complicated reactions, such as OH + H2 --> H2O + H, and even to reactions of molecules on solid surfaces. New experimental techniques for probing reaction transition states, such as negative-ion photodetachment spectroscopy and pump-probe femtosecond spectroscopy, are stimulating the development of new theories.  相似文献   

20.
基于第一性原理计算,详细研究了完美的金红石型TiO2(110)面上CH3 OH转化为HCOOCH3的氧化机制.计算所得的基元反应的能垒证实了CH3 OH在TiO2 (110)表面上经过脱氢和耦合反应生成了中间物CH3OC(=O) H2,然后经过脱氢生成了最终的产物HCOOCH3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号