首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 591 毫秒
1.
Long-term potentiation (LTP) of synaptic strength, the most established cellular model of information storage in the brain, is expressed by an increase in the number of postsynaptic AMPA receptors. However, the source of AMPA receptors mobilized during LTP is unknown. We report that AMPA receptors are transported from recycling endosomes to the plasma membrane for LTP. Stimuli that triggered LTP promoted not only AMPA receptor insertion but also generalized recycling of cargo and membrane from endocytic compartments. Thus, recycling endosomes supply AMPA receptors for LTP and provide a mechanistic link between synaptic potentiation and membrane remodeling during synapse modification.  相似文献   

2.
Brief repetitive activation of excitatory synapses in the hippocampus leads to an increase in synaptic strength that lasts for many hours. This long-term potentiation (LTP) of synaptic transmission is the most compelling cellular model in the vertebrate brain for learning and memory. The critical role of postsynaptic calcium in triggering LTP has been directly examined using three types of experiment. First, nitr-5, a photolabile nitrobenzhydrol tetracarboxylate calcium chelator, which releases calcium in response to ultraviolet light, was used. Photolysis of nitr-5 injected into hippocampal CA1 pyramidal cells resulted in a large enhancement of synaptic transmission. Second, in agreement with previous results, buffering intracellular calcium at low concentrations blocked LTP. Third, depolarization of the postsynaptic membrane so that calcium entry is suppressed prevented LTP. Taken together, these results demonstrate that an increase in postsynaptic calcium is necessary to induce LTP and sufficient to potentiate synaptic transmission.  相似文献   

3.
Postsynaptic signaling and plasticity mechanisms   总被引:1,自引:0,他引:1  
Sheng M  Kim MJ 《Science (New York, N.Y.)》2002,298(5594):776-780
In excitatory synapses of the brain, specific receptors in the postsynaptic membrane lie ready to respond to the release of the neurotransmitter glutamate from the presynaptic terminal. Upon stimulation, these glutamate receptors activate multiple biochemical pathways that transduce signals into the postsynaptic neuron. Different kinds of synaptic activity elicit different patterns of postsynaptic signals that lead to short- or long-lasting strengthening or weakening of synaptic transmission. The complex molecular mechanisms that underlie postsynaptic signaling and plasticity are beginning to emerge.  相似文献   

4.
Neuroglia: biophysical properties and physiologic function   总被引:8,自引:0,他引:8  
The membrane time constant of neocortical glial cells is abolut 385 microseconds, less than one-twentieth the known value for the Betz cell. Glial membrane specific resistance is low (approximately 200 to 500 ohm centimeters squared. Neuroglial cells are ideally suited to buffer the immediate extraneuronal space at areas of synaptic contact against the increases in external potassium ion concentration that accompany postsynaptic and spike activity and to minimize the spread of potassium ions to other pre- and postsynaptic regions.  相似文献   

5.
Neurotransmitter release is well known to occur at specialized synaptic regions that include presynaptic active zones and postsynaptic densities. At cholinergic synapses in the chick ciliary ganglion, however, membrane formations and physiological measurements suggest that release distant from postsynaptic densities can activate the predominantly extrasynaptic alpha7 nicotinic receptor subtype. We explored such ectopic neurotransmission with a novel model synapse that combines Monte Carlo simulations with high-resolution serial electron microscopic tomography. Simulated synaptic activity is consistent with experimental recordings of miniature excitatory postsynaptic currents only when ectopic transmission is included in the model, broadening the possibilities for mechanisms of neuronal communication.  相似文献   

6.
E Gamble  C Koch 《Science (New York, N.Y.)》1987,236(4806):1311-1315
Increased levels of intracellular calcium at either pre- or postsynaptic sites are thought to precede changes in synaptic strength. Thus, to induce long-term potentiation in the hippocampus, periods of intense synaptic stimulation would have to transiently raise the levels of cytosolic calcium at postsynaptic sites--dendritic spines in the majority of cases. Since direct experimental verification of this hypothesis is not possible at present, calcium levels have been studied by numerically solving the appropriate electro-diffusion equations for two different postsynaptic structures. Under the assumption that voltage-dependent calcium channels are present on dendritic spines, free intracellular calcium in spines can reach micromolar levels after as few as seven spikes in 20 milliseconds. Moreover, a short, but high-frequency, burst of presynaptic activity is more effective in raising levels of calcium and especially of the calcium-calmodulin complex than sustained low-frequency activity. This behavior is different from that seen at the soma of a typical vertebrate neuron.  相似文献   

7.
Neurons encode information and communicate via action potentials, which are generated following the summation of synaptic events. It is commonly assumed that action potentials reset the membrane potential completely, allowing another round of synaptic integration to begin. We show here that the conductances underlying the action potential act instead as a variable reset of synaptic integration. The strength of this reset is cell type-specific and depends on the kinetics, location, and timing of the synaptic input. As a consequence, distal synapses, as well as inputs mediated by N-methyl-d-aspartate receptor activation, can contribute disproportionately to synaptic integration during action potential firing.  相似文献   

8.
Shen K  Meyer T 《Science (New York, N.Y.)》1999,284(5411):162-166
Calcium-calmodulin-dependent protein kinase II (CaMKII) is thought to increase synaptic strength by phosphorylating postsynaptic density (PSD) ion channels and signaling proteins. It is shown that N-methyl-D-aspartate (NMDA) receptor stimulation reversibly translocates green fluorescent protein-tagged CaMKII from an F-actin-bound to a PSD-bound state. The translocation time was controlled by the ratio of expressed beta-CaMKII to alpha-CaMKII isoforms. Although F-actin dissociation into the cytosol required autophosphorylation of or calcium-calmodulin binding to beta-CaMKII, PSD translocation required binding of calcium-calmodulin to either the alpha- or beta-CaMKII subunits. Autophosphorylation of CaMKII indirectly prolongs its PSD localization by increasing the calmodulin-binding affinity.  相似文献   

9.
The distribution of cyclic 3',5'-nucleotide phosphodiesterase activity in rat cerebral cortex was determined by cytochemical methods. The detectable phosphodiesterase activity was localized in postsynaptic (dendritic) nerve endings, most of it immediately adjacent to the synaptic membrane. Most of the postsynaptic nerve endings showed phosphodiesterase activity.  相似文献   

10.
Electrotonic transmission between spinal neurons is correlated with distinctive apposition of cell processes involving membrane fusion. In the same neurons, postsynaptic potentials appear to arise at typical synaptic knobs where there is an intercellular space.  相似文献   

11.
AMPA glutamate receptors (AMPARs) mediate fast excitatory synaptic transmission. Upon fast consecutive synaptic stimulation, transmission can be depressed. Recuperation from fast synaptic depression has been attributed solely to recovery of transmitter release and/or AMPAR desensitization. We show that AMPAR lateral diffusion, observed in both intact hippocampi and cultured neurons, allows fast exchange of desensitized receptors with na?ve functional ones within or near the postsynaptic density. Recovery from depression in the tens of millisecond time range can be explained in part by this fast receptor exchange. Preventing AMPAR surface movements through cross-linking, endogenous clustering, or calcium rise all slow recovery from depression. Physiological regulation of postsynaptic receptor mobility affects the fidelity of synaptic transmission by shaping the frequency dependence of synaptic responses.  相似文献   

12.
In invertebrate nervous systems, some long-lasting increases in synaptic efficacy result from changes in the presynaptic cell. In the vertebrate nervous system, the best understood long-lasting change in synaptic strength is long-term potentiation (LTP) in the CA1 region of the hippocampus. Here the process is initiated postsynaptically, but the site of the persistent change is unresolved. Single CA3 hippocampal pyramidal cells receive excitatory inputs from associational-commissural fibers and from the mossy fibers of dentate granule cells and both pathways exhibit LTP. Although the induction of associational-commissural LTP requires in the postsynaptic cell N-methyl-D-aspartate (NMDA) receptor activation, membrane depolarization, and a rise in calcium, mossy fiber LTP does not. Paired-pulse facilitation, which is an index of increased transmitter release, is unaltered during associational-commissural LTP but is reduced during mossy fiber LTP. Thus, both the induction and the persistent change may be presynaptic in mossy fiber LTP but not in associational-commissural LTP.  相似文献   

13.
Synaptic potentials and changes in resting membrane potentials of superior cervical ganglia of the rabbit were measured in the presence of adenosine 3',5'-monophosphate and agents that affect its metabolism. Adenosine 3',5'-monophosphate and its mono- and dibutyryl derivatives caused a hyperpolarization of the postganglionic neurons. Theophylline potentiated the slow inhibitory postsynaptic potential that follows synaptic transmission, as well as the hyperpolarization of postganglionic neurons caused by exogenous dopamine. Conversely, prostaglandin E(1) inhibited both the slow inhibitory postsynaptic potential and the dopamine-induced hyperpolarization. We hypothesize that the slow inhibitory postsynaptic potential as well as the dopamine-induced hyperpolarization result from increased amounts of adenosine 3'5'-monophosphate in the postganglionic neurons. The dibutyryl derivative of guanosine 3'5'-monophosphate caused a depolarization of the postganglionic neurons, which is consistent with the possibility that guanosine 3'5'-monophosphate mediates synaptic transmission at muscarinic cholinergic synapses.  相似文献   

14.
Synaptic activation of an electrogenic sodium pump   总被引:5,自引:0,他引:5  
An identified molluscan interneuron mediates different cholinergic synaptic actions by increasing the conductance of its follower cells to different ions. We have now found that this interneuron also mediates a new class of synaptic actions which does not involve a conductance change but the activation of an electrogenic sodium pump. This synaptic action results in a prolonged inhibitory synaptic potential which is dependent on metabolism and is selectively blocked by cooling and ouabain. In cells which have this synaptic potential, part of the resting membrane potential is also maintained by an electrogenic sodium pump. The same transmitter, acetylcholine, can independently stimulate both a chloride ion conductance and a sodium pump mechanism in the same follower cell by acting on two different postsynaptic receptors.  相似文献   

15.
Focal electroencephalographic discharges in lesions of cortex induced by freezing are associated with prolonged membrane depolarizations and hyperpolarizations in neurons located at various depths in the lesion sites. Transmembrane potential changes have properties similar to those of postsynaptic potentials. The temporal relationship between intracellular potentials and paroxysmal discharges indicates that the latter are extracellularly recorded summations of synchronously developing depolarizations and hyperpolarizations in complex synaptic organizations of neurons.  相似文献   

16.
Zinc selectively blocks the action of N-methyl-D-aspartate on cortical neurons   总被引:30,自引:0,他引:30  
Large amounts of zinc are present in synaptic vesicles of mammalian central excitatory boutons and may be released during synaptic activity, but the functional significance of the metal for excitatory neurotransmission is currently unknown. Zinc (10 to 1000 micromolar) was found to have little intrinsic membrane effect on cortical neurons, but invariably produced a zinc concentration-dependent, rapid-onset, reversible, and selective attenuation of the membrane responses to N-methyl-D-aspartate, homocysteate, or quinolinate. In contrast, zinc generally potentiated the membrane responses to quisqualate or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate and often did not affect the response to kainate. Zinc also attenuated N-methyl-D-aspartate receptor-mediated neurotoxicity but not quisqualate or kainate neurotoxicity. The ability of zinc to specifically modulate postsynaptic neuronal responses to excitatory amino acid transmitters, reducing N-methyl-to-aspartate receptor-mediated excitation while often increasing quisqualate receptor-mediated excitation, is proposed to underlie its normal function at central excitatory synapses and furthermore could be relevant to neuronal cell loss in certain disease states.  相似文献   

17.
Examination of the synaptic membranes in calyciform endings of the chick ciliary ganglion has shown tight junctions selectively located on axon hillocks of postsynaptic neurons. Observations of similar membrane fusion in other junctions that involve electrotonic transmission suggest the possibility of identifying electrotonic junctions by electron microscopy.  相似文献   

18.
The mechanisms underlying structural changes that accompany learning and memory have been difficult to investigate in the intact nervous system. In order to make these changes more accessible for experimental analysis, dissociated cell culture and low-light-level video microscopy were used to examine Aplysia sensory neurons in the presence or absence of their target cells. Repeated applications of serotonin, a facilitating transmitter important in behavioral dishabituation and sensitization, produced growth of the sensory neurons that paralleled the long-term enhancement of synaptic strength. This growth required the presence of the postsynaptic motor neuron. Thus, both the structural changes and the synaptic facilitation of Aplysia sensorimotor synapses accompanying long-term behavioral sensitization can be produced in vitro by applying a single facilitating transmitter repeatedly. These structural changes depend on an interaction of the presynaptic neuron with an appropriate postsynaptic target.  相似文献   

19.
Pentobarbital: selective depression of excitatory postsynaptic potentials   总被引:4,自引:0,他引:4  
The effects of pentobarbital (Nembutal) on synaptic transmission and postsynaptic potentials were studied by the use of several invertebrate preparations. Pentobarbital selectively and reversibly depressed both excitatory postsynaptic potentials and sodium-dependent postsynaptic responses to putative excitatory transmitters without affecting either inhibitory postsynaptic potentials or chloride- and potassium-dependent postsynaptic responses to putative transmitters. A selective depression of postsynaptic excitatory events was also observed with other central nervous system depressants (ethanol, chloroform, chloralose, diphenylhydantoin, and urethane). The results suggest that central and peripheral depression observed during general anesthesia is due to a selective depression of excitatory synaptic events.  相似文献   

20.
Astrocytes potentiate transmitter release at single hippocampal synapses   总被引:1,自引:0,他引:1  
Perea G  Araque A 《Science (New York, N.Y.)》2007,317(5841):1083-1086
Astrocytes play active roles in brain physiology. They respond to neurotransmitters and modulate neuronal excitability and synaptic function. However, the influence of astrocytes on synaptic transmission and plasticity at the single synapse level is unknown. Ca(2+) elevation in astrocytes transiently increased the probability of transmitter release at hippocampal area CA3-CA1 synapses, without affecting the amplitude of synaptic events. This form of short-term plasticity was due to the release of glutamate from astrocytes, a process that depended on Ca(2+) and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein and that activated metabotropic glutamate receptors (mGluRs). The transient potentiation of transmitter release became persistent when the astrocytic signal was temporally coincident with postsynaptic depolarization. This persistent plasticity was mGluR-mediated but N-methyl-d-aspartate receptor-independent. These results indicate that astrocytes are actively involved in the transfer and storage of synaptic information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号