首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Improvements in yield and productivity in lactic acid fermentation by Lactobaccilus brevis cells immobilized on delignified cellulosic (DC) material are reported. The system proved to be more efficient in comparison with the work reported by other workers. Yields of 80 and 100% conversion using glucose were obtained at 30 degrees C in 1 day of fermentation time. Lactic acid fermentation using whey as substrate was obtained at 30 degrees C in 1-1.5 days, resulting in 70% yield, whereas the remaining lactose in whey was converted to alcohol byproduct, leading to a 90% lactose exploitation and 100% conversion. Cell immobilization of L. brevis on DC material was proved by its reuses in repeated batch fermentations and through electron microscopy. A series of 10 repeated batch fermentations without any loss in cell activity showed a tendency for high operational stability. The presence of DC material resulted in a drastic drop of the fermentation time from 48 to 13 h.  相似文献   

2.
A biocatalyst, prepared by the immobilization of a cryotolerant strain of Saccharomyces cerevisiae on gluten pellets, was freeze-dried without any protecting medium and used for repeated batch fermentations of wort for each of the temperatures 15, 10, 5, and 0 degrees C. The fermentation time for freeze-dried immobilized cells was about 2-fold that of the corresponding time for wet immobilized cells on gluten pellets, and lower than the corresponding time for freeze-dried free cells, especially at 5 and 0 degrees C. Beers produced by freeze-dried immobilized cells contained alcohol levels in the range of 5.0-5.5% v/v, diacetyl concentrations lower than 0.5 mg/L, polyphenol concentrations lower than 145.5 mg/L, and free cell concentrations lower than 3 g/L. As a result, they had a very good clarity after the end of primary fermentation. The amounts of amyl alcohols were lower than 129.1 mg/L and reduced as the temperature was decreased. Ethyl acetate concentrations were found in the range of 22.1-29.2 mg/L, giving a very good aroma and taste in the produced beers.  相似文献   

3.
The aim of the present study was to evaluate the impact of thermal drying of immobilized Lactobacillus delbrueckii subsp. bulgaricus on apple pieces on the use of the derived biocatalyst in whey fermentation. The thermally dried immobilized biocatalyst was compared to wet and freeze-dried immobilized cells, in respect to maintenance of cell viability and fermentation efficiency. The thermal drying process appeared to be more efficient on survival rate as an 84% of the cells used for immobilization survived the process, while the freeze-drying process led to a 78% rate. The thermally dried immobilized biocatalyst was used in 12 repeated batch fermentations of synthetic lactose medium and whey at 37, 45, and 50 degrees C in order to evaluate its metabolic activity. The high number of repeated batch fermentations showed a tendency for high operational stability. Fermentations continued for up to 2 months without any significant loss of metabolic activity. SPME GC/MS analysis of aroma-related compounds revealed the distinctive character of fermented whey produced by the thermally dried immobilized bacterium cells. The effect of storage at 4-6 degrees C for up to 165 days of the biocatalyst, held directly after drying and after repeated batch fermentations, on fermentation activity was also studied. After storage, reactivation in whey was immediate, and the immobilized biocatalyst was able to produce up to 51.7 g/L lactic acid at 37 degrees C. The potential of thermally dried immobilized L. delbrueckii as a starter culture for food production was subsequently evaluated.  相似文献   

4.
Delignified cellulosic-supported biocatalyst, prepared by immobilization of kefir yeast on delignified cellulosic material (DCM), was found to be suitable for continuous, modified whey fermentation. The modified whey contained 1% raisin extract and molasses. Ethanol productivities ranged from 3.6 to 8.3 g L(-1)day(-1), whereas parameters such as ethanol concentration, residual sugars, and daily fermented whey productivity were acceptable for the production of potable alcohol and alcoholic drinks in industrial fermentations. The continuous fermentation bioreactor was operated for 39 days, stored for 18 days at 4 degrees C, and operated again for another 15 days without any diminution of the ethanol productivity. The concentrations of higher alcohols (propanol-1, isobutyl alcohol, and amyl alcohols) were low. The main volatile byproducts formed in the continuous process were similar to those observed in alcoholic beverages, and the fermented whey had a good aroma. The concentrations of higher alcohols were very low when compared to that of ethyl acetate, therefore resulting in a quality product. The possibility of using such a process for the production of potable alcohol or a novel, low-alcohol content drink is proposed.  相似文献   

5.
A novel system for low-temperature alcoholic fermentation of glucose is described. This system consists of kefir yeast immobilized on delignified cellulosic materials. Batch fermentations were carried out at various pH values, and the effect of temperature on kinetic parameters, in the range of 5-30 degrees C, was examined. At pH 4.7 the shortest fermentation time was obtained. The formation of volatiles indicates that the concentration of amyl alcohols (total content of 2-methylbutanol-1 and 3-methylbutanol-1) is reduced as the temperature becomes lower. Propanol-1 and isobutyl alcohol formation drops significantly below 15 degrees C. The percentage of ethyl acetate increases as the temperature is diminished. At 5 degrees C the content of total volatiles in the product was only 38% of the volatiles formed during fermentation at 30 degrees C.  相似文献   

6.
Freeze-dried delignified cellulosic (DC) material supported biocatalyst is proposed as a suitable form of biocatalyst to be preserved. The alcoholic fermentation of glucose using freeze-dried immobilized cells is reported. Freeze-dried immobilized baker's yeast cells on DC material do not need any protective medium during freeze-drying. The effect of initial glucose concentration and temperature on the alcoholic fermentation kinetic parameters is reported in the present study. It was found that the freeze-dried immobilized cells ferment more quickly than free freeze-dried cells and have a lower fermentation rate as compared with wet immobilized cells. However, repeated batch fermentations showed freeze-dried immobilized cells to ferment at about the same fermentation rate as wet immobilized cells. The results indicate that the freeze-dried immobilized cells must be further studied to establish a process for the preservation of immobilized cells.  相似文献   

7.
This investigation announces the use of potato pieces as a suitable support for cell immobilization resulting in extremely low temperature wine making. The results showed an increase of the total esters by immobilized cells and reduction of higher alcohols. Likewise, percentages of total esters on total volatiles were increased by the drop in temperature, while percentages of higher alcohols were reduced in wines. Kinetics experiments at different temperatures allowed the calculation of activation energy (Ea) and showed reduction in the case of immobilized cells as compared with free cells. These results may lead to the conclusion that the increased productivities that are obtained by immobilized cells, can be attributed to the catalytic activity by the support to enzymes, which are involved in the process. Biocatalysts were prepared by immobilization of Saccharomyces cerevisiae, strain AXAZ-1, on whole potatoes and potato pieces, and their efficiency for alcoholic repeated batch fermentations of glucose and grape must in the range 2-30 degrees C was examined. To study the operational stability of biocatalyst, 35 repeated batch fermentations of grape must were performed without any significant reduction of the fermentation activity. Wines were analyzed for volatile byproducts determination by GC and GC-MS.  相似文献   

8.
Dried figs, following exhaustive extraction of their residual sugars with water, were used for immobilization of Saccharomyces cerevisiae AXAZ-1. The immobilized biocatalyst was used in repeated batch fermentations of glucose at 30 degrees C, where significant reduction of the fermentation time was observed, falling from 65 h in the first batch to 7 h after the sixth batch. Repeated fermentations of wort at room and low temperatures resulted in fermentation times that fell from 26 to 20 h and from 27 to 24 days at 18 and 3 degrees C, respectively. Ethanol and beer productivities were high, showing suitability of the biocatalyst for low-temperature brewing. Diacetyl concentrations were low (0.3-0.5 mg/L), and polyphenols were lower than in commercial products and decreased as the fermentation temperature was decreased (126-50 mg/L). Ethyl acetate concentrations increased from 53 to 88 mg/L as the temperature was decreased, while the concentration of amyl alcohols at 3 degrees C (58 mg/L) was lower than half of that at 18 degrees C (125 mg/L). The beers produced at the end of the main fermentation had a fine clarity and a special fruity figlike aroma and taste, distinct from commercial products and more intense than beers produced by cells immobilized on other food-grade supports (gluten pellets or delignified cellulosic materials). GC-MS analysis did not show significant differences in the qualitative composition of the aroma compounds of the beers produced by immobilized and free cells.  相似文献   

9.
Phanerochaete chrysosporium (ATCC 24725) produced lignin peroxidase (LiP) and manganese peroxidase (MnP) in defined medium in plastic composite support (PCS) biofilm stirred tank reactors. Laccase was not detected. The formation of the Ph. chrysosporium biofilm on the PCS was essential for the production of MnP and LiP. The bioreactor was operated as a repeat batch, and no reinoculation was required between batches. Peroxidase production was influenced by 5 min purging of the bioreactor with pure oxygen or continuous aerating with a mixture of air and oxygen at a flow rate of 0.005 vvm. Continuous aeration and 300 rpm agitation with 3 mM veratryl alcohol addition on days 0 and 3 demonstrated the highest lignin peroxidase production on day 6 with means of 50.0 and 47.0 U/L. Addition of veratryl alcohol and MnSO(4) on day 0 with 300 rpm agitation and continuous aeration at 0.005 vvm (air flow rate in L/min divided by the reactor working volume in liters) hastens the production of MnP with final yield of 63.0 U/L after 3 days. Fourteen repeated batches fermentation were performed without contamination due to low pH (4.5) and aseptic techniques employed.  相似文献   

10.
采用正交试验设计开展了三亚乙基四胺(TTA)和戊二醛(GLU)的浓度和处理时间对海藻酸钙固定化酵母粒子的化学强度影响的试验研究,并以甜高粱茎秆汁液为原料,在5 L的反应器中进行乙醇发酵试验,考察强化后的固定化酵母粒子对乙醇发酵的影响。结果表明,最优的固定酵母粒子强化处理的方案为:TTA浓度为0.5%,处理时间为120 min;GLU浓度为0.5%,处理时间为8 min。连续8批次的甜高粱茎秆汁液乙醇发酵试验结果表明,最优组合强化后固定化酵母粒子用于乙醇发酵时,平均乙醇得率和变异系数(CV%)分别为84.78%和8.08%,而未强化的固定化酵母籽子为84.32%和9.68%,可见,最优组合强化后的固定化酵母粒子的发酵性能略优于未强化的固定化酵母籽子。该文为固定化酵母发酵甜高粱茎秆汁液制取生物乙醇技术的研究提供了参考。  相似文献   

11.
采用正交试验设计开展了三亚乙基四胺(TTA)和戊二醛(GLU)的浓度和处理时间对海藻酸钙固定化酵母粒子的化学强度影响的试验研究,并以甜高粱茎秆汁液为原料,在5 L的反应器中进行乙醇发酵试验,考察强化后的固定化酵母粒子对乙醇发酵的影响.结果表明,最优的固定酵母粒子强化处理的方案为TTA浓度为0.5%,处理时间为120 min;GLU浓度为0.5%,处理时间为8 min.连续8批次的甜高粱茎秆汁液乙醇发酵试验结果表明,最优组合强化后固定化酵母粒子用于乙醇发酵时,平均乙醇得率和变异系数(CV%)分别为84.78%和8.08%,而未强化的固定化酵母籽子为84.32%和9.68%,可见,最优组合强化后的固定化酵母粒子的发酵性能略优于未强化的固定化酵母籽子.该文为固定化酵母发酵甜高粱茎秆汁液制取生物乙醇技术的研究提供了参考.  相似文献   

12.
An immobilized whole cell system was successfully performed to produce the most powerful antioxidant, hydroxytyrosol. Bioconversion of tyrosol into hydroxytyrosol was achieved via the immobilization of Pseudomonas aeruginosa resting cells in calcium alginate beads. Immobilization was advantageous as it allows immobilized cells to tolerate a greater tyrosol concentration than free cells. The bioconversion yield reached 86% in the presence of 5 g L-1 of tyrosol when cells immobilized in alginate beads were carried out in single batches. Evaluation of kinetic parameters showed the maintenance of the same catalytic efficiency expressed as Kcat/Km for both free and immobilized cells. The use of immobilized cells in repeated batches demonstrated a notable activity stabilization since the biocatalyst reusability was extended for at least four batches with a molar yield greater than 85%.  相似文献   

13.
A biocatalyst was prepared by immobilization of Saccharomyces cerevisiae cells on grape skins. Repeated batch fermentations were conducted using this biocatalyst as well as free cells, at 25, 20, 15, and 10 degrees C. Solid phase microextraction (SPME) was used in monitoring the evolution of volatile byproducts. The effect of immobilization and temperature on evolution patterns of volatiles was obvious. The major part of esters was formed after consumption of 40-50% of the sugars. Similar processes were observed for amyl alcohols and 2-phenylethanol, whereas 1-propanol and 2-methyl-1-propanol were formed during the whole alcoholic fermentation period at an almost constant formation rate. Acetaldehyde and acetoin were synthesized in the early stages of fermentation. Afterward, their amount decreased. In most cases, immobilized cells exhibited higher formation rates of volatiles than free cells. The final concentration of esters was higher in wines produced by immobilized biocatalyst. Their amount increased with temperature decrease. The opposite was observed for higher alcohols.  相似文献   

14.
Red wine making using yeast cells immobilized in two types of raisin berries, at various temperatures (6-30 degrees C), was studied. A modification of the batch bioreactor was used to separate the grape skins used for color extraction from the biocatalyst and the fermenting grape must. The evaluation of the immobilized biocatalysts was made on terms of productivity and organoleptic quality, including color intensity and formation of volatiles. The immobilized cells were found capable of low-temperature wine making, producing red wines containing more than 11% v/v alcohol in 8 days at 6 degrees C. The quality of wines was examined by gas chromatography (GC) and GC-MS analysis and sensory evaluation. Higher alcohol concentrations were decreased, and ethyl acetate concentrations increased by the drop of temperature. Many esters, alcohols, carbonyls, and miscellaneous compounds were identified in wines produced by immobilized cells, revealing no significant qualitative differences as compared to wines produced by free cells. The sensory evaluation showed that the best red wine was produced at 6 degrees C.  相似文献   

15.
A comparative study of the storage and reuse of immobilized yeast cells on apple pieces, kissiris, and gamma-alumina was carried out. The immobilized biocatalysts were allowed to remain in the fermented alcoholic liquid after the end of each fermentation batch for extended periods at 30 degrees C before reactivation in batch fermentation for wine-making. The results showed that the biocatalysts were able to reactivate and ferment after successively increased periods of storage compared to free cell systems both on glucose medium and on grape must. In glucose medium, apple-, kissiris-, and gamma-alumina-supported biocatalysts reactivated after 120, 80, and 83 days, respectively. Possible storage periods for grape must were lower but remained high. Immobilized yeast biocatalyst on apple pieces produced wines with an improved volatiles composition compared to kissiris- and gamma-alumina-supported biocatalysts. There were no significant negative effects on the fermentation activity and volatile byproduct composition.  相似文献   

16.
A biocatalyst was prepared by immobilization of Saccharomyces cerevisiae strain AXAZ-1 on apple pieces. It was examined by electron microscope and studied during the fermentation of grape must for batch wine-making. The immobilized yeast showed an important operational stability without any decrease of its activity even at low temperatures (1-12 degrees C). Specifically, at 6 degrees C the biocatalyst favored wine production within 8 days, which is less time than is required for the natural fermentation of grape must. At 1 degrees C wine production was effected in 1 month. This speeding up of the fermentation could be accepted and adopted by the industry for scaling up the wine-making process. Total and volatile acidities were similar to those found in dry wines. The concentrations of higher alcohols (propanol-1 and isobutyl alcohol) were low. The presence of amyl alcohols proved to be temperature dependent and decreased with the temperature decrease. The values of ethyl acetate concentrations were relatively high, up to 154 mg/L. This probably contributes to the fruity aroma and excellent taste of the produced wines. There was no indication of vinegar odor in the product given that the volatile acidity was <0.47 g of acetic acid/L. From the GC-MS analysis it was concluded that cell immobilization did not create serious changes in the product (wine) with regard to the qualitative composition of the aroma compounds.  相似文献   

17.
Lactobacillus species present high nutritional requirements, so it is necessary to find new low-cost nutrient components for fermentation media. This work compares the utilization of vinification lees (an important residue of wineries) from red and white winemaking technology, distilled or not. An amount of 20 g of lees/L was used as the unique nutrient to obtain lactic acid from glucose using Lactobacillus strains with different properties: L. plantarum CECT-221, L. pentosus CECT-4023, L. casei CECT-5275, and L. coryniformis subsp. torquens CECT-25600. Only L. casei using distilled lees showed values (Pmax = 92.1 g/L and Y(P/S) = 1.05 g/g) similar to those obtained with the MRS broth. The UV spectra of white and red lees, distilled or not, allowed an interpretation of the different phenolic compounds present and their influence on the fermentation. Their detoxification by extraction with organic compounds and fermentation with L. pentosus was also considered. Time courses of glucose and lactic acid were modeled according to reported models to obtain more information about the process.  相似文献   

18.
The suitability of delignified cellulosic (DC) material supported kefir yeast to ferment raw materials that contain various single carbohydrates, for the production of potable alcohol and alcoholic drinks, is examined in this investigation. Results are reported of fermentations carried out with sucrose, fructose, and glucose in synthetic media. Repeated batch fermentations at various initial sugar concentrations of sucrose, fructose, and glucose were performed at 30 degrees C in the presence of the aforementioned biocatalyst. The results clearly show feasible yields in the range of 0.38-0.41 g/g, alcohol concentrations of 7.6-8.2% v/v, fermentation time of 90-115 h, and conversion of 92-96%. DC material supported kefir fermented 11-fold more rapidly than free cells and 9-fold more rapidly in comparison to kissiris supported kefir. The main volatile byproducts such as amyl alcohols (mixture of 2-methyl-1-butanol and 3-methyl-1-butanol), ethanal, and ethyl acetate were formed in all sugar fermentation products. The formation of 65-110 ppm of ethyl acetate is as high and even higher than that obtained with traditional wine yeasts. The increase of the initial concentration of sugar in the fermentation media resulted in an increase in contents of volatiles. The fine aroma that was obtained in the product of fructose could be attributed to the high percentage of ethyl acetate on total volatiles. The efficiency of DC material supported kefir was the same for the fermentations of individual sugars or a mixture of fructose, sucrose, and glucose. When whey with raisin extracts was fermented, lower yields were obtained but the aroma of the product was even better.  相似文献   

19.
为了探讨电导率在酒精发酵过程在线监测的适用性,对酒精发酵过程中电导率与还原糖、酒精度、pH值的变化规律以及氯化钙和硫酸铵2种盐类对电导率的影响进行了研究。结果表明:电导率与还原糖和酒精度之间存在着一定的逻辑关系,即在电导率下降阶段,电导率随着还原糖的降低而下降,随着酒精度的增加而上升。利用电导率的测量值间接地反映还原糖和酒精度的变化;同时,电导率达到最低点时,酒精度和还原糖均符合酒精发酵终点的参数指标,可以据此确定酒精发酵的终点。pH值与电导率之间存在着一定的线性关系(发酵60 h前变化规律相同);氯化钙和硫酸铵2种盐类在一定范围内对电导率的变化不产生影响。因此,试验成果可用于酒精发酵过程的在线监测和发酵终点的判定。  相似文献   

20.
The effects of malolactic fermentation (MLF) on the concentration of volatile compounds released by yeasts during the production of red wine were investigated by inoculation with four commercial starters of Oenococcus oeni. Volatile compounds in wine at the end of MLF were extracted, analyzed by GC-MS and GC, and compared with those extracted form a noninoculated reference sample. Several esters known to play a role in the aroma profile of red wine, such as C4-C8 ethyl fatty acid esters and 3-methylbutyl acetate, were found to increase with MLF, and their final concentration was dependent on the bacterial starter employed for the induction of MLF. The overall increase of ethyl fatty acid esters was generally larger than the one observed for acetate esters. Ethyl lactate, 3-hydroxybutanoate, 2-phenylethanol, methionol, and gamma-butyrolactone were also increased by bacterial metabolism. The impact of MLF on other volatiles or red wine, including several higher alcohols, fatty acids, and nitrogen compounds, was generally negligible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号