首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The breeding line UPV 1 developed from the PE-18 accession of Lycopersicon peruvianum collected in Huallanca, Ancash, Peru, shows resistance to TSWV. Mechanical inoculation and thrips transmission were used to study the inheritance of TSWV resistance of this line. UPV 1resistance is controlled by a dominant gene. The penetrance of this resistance gene was complete in mechanical inoculation and incomplete when thrips transmission was used. Linkage tests between the resistance genes of lines UPV 1 and RDD (Sw-5), indicated allelism. A molecular analysis using a SCAR marker tightly linked to Sw-5 also supported this hypothesis. In heterozygotes the level of resistance expressed in UPV 1 is higher than that expressed in RDD (Sw-5), indicating that the resistance from UPV 1 may be of higher value for the development of commercial hybrids. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Summary One hundred eighty-eight accessions of Lycopersicon cheesmanii, L. chilense, L. chmielewskii, L. hirsutum, L. parviflorum, L. pennellii, and L. peruvianum were screened for resistance to three isolates of tomato spotted wilt virus (TSWV). All plants in an accession were initially screened for resistance to TSWV using isolate 85–9 from Arkansas. Visual symptoms were used to cull obviously infected plants, followed by enzyme-linked immunosorbent assay (ELISA) to identify uninfected plants. Cuttings were taken from uninfected plants in the first screening and the resulting plants were inoculated with isolates Glox and T-2 from Texas and Hawaii, respectively. No resistance was identified in L. cheesmanii, L. chmielewskii, L. hirsutum, L. parviflorum, and L. pennellii. However, 33 of 63 L. chilense accession produced 91 of 1268 plants that were uninfected with isolate 85–9 and 20 accessions that produced 40 of 257 plants that were not infected with any of the isolates. After screening with isolate 85–9 9 of 12 L. peruvianum accessions tested had 38 plants uninfected and 8 accessions had 25 plants that were not infected with any of the isolates.  相似文献   

3.
Summary Tomato spotted wilt virus (TSWV) was obtained from infected tomatoes in commercial fields in Arkansas in 1985. A greenhouse screening procedure for identifying tomatoes resistant to TSWV was established using an enzyme-linked immunosorbent assay (ELISA) to detect infected plants. Symptom expression was variable and symptom expression was not reliable for identifying infected plants. Germplasm evaluated for resistance to one typical Arkansas isolate (85–9) of TSWV included: twenty cultivars and breeding lines of Lycopersicon esculentum Mill, 52 accessions of L. pimpinellifolium (Jusl.) Mill and 8 accessions of L. peruvianum (L.) Mill. All cultivated accessions and breeding lines evaluated were susceptible. Some individual plants in several accessions of L. pimpinellifolium were resistant and nearly all plants of the L. peruvianum accessions that were evaluated were resistant to isolate 85–9.Dept. of Plant Pathology  相似文献   

4.
Three lines of Lycopersicon esculentum (RDD, UPV 1 and UPV 32) with resistance to TSWV introgressed from L. peruvianum have been tested. RDD is a carrier of the SW5 gene and the other two lines have been developed at the Universidad Politécnica de Valencia (UPV) from accessions collected in the Andean region. Two methods of artificial inoculation, mechanical and by Frankliniella occidentalis populations, and three highly virulent Spanish isolates of TSWV have been used. Inoculation by populations of thrips proved to be more efficient than mechanical transmission independently of the considered isolate. The three lines were completely resistant when mechanical transmission was used. Also RDD and UPV 1 showed high resistance levels by thrips inoculation method; the isolates had the same effect on these two genotypes. Nevertheless, UPV 32 shows a partial resistance depending on the isolate utilized. The inoculation of virulent isolates by thrips under a high pressure of inoculum caused infection in a few plants of the three genotypes tested. In spite of being the most efficient at present for their unspecificity to isolates (and so the most used by breeders), resistance conferred by SW5 does not guarantee the absence of infection depending on the prevailing crop conditions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Summary Tomato spotted wilt virus (TSWV) causes significant economic losses in the commercial culture of tomato (Lycopersicon esculentum Mill.). Culture practices and introgression of natural sources of resistance to TSWV have only been marginally effective in controlling the TSWV disease. Recently however, high levels of protection against TSWV have been obtained by transforming tobacco with a chimaeric gene cassette comprising the TSWV nucleoprotein gene. This report demonstrates the successful application of this newly-created TSWV resistance gene in cultivated tomato. Transformation of an inbred tomato line with the TSWV nucleoprotein gene cassette resulted in high levels of resistance to TSWV that were maintained in hybrids derived from the parental tomato line. Therefore, transformant lines carrying the synthetic TSWV resistance gene make suitable progenitors for TSWV resistance to be incorporated into the breeding programmes of tomato.  相似文献   

6.
Tomato spotted wilt virus (TSWV) resistance wasidentified in Y118 (Fla 925-2), an F1BC1S6 tomato line(Lycopersicon esculentum Mill.), derived from a crosswith L. chilense Dun. (LA 1938). This line waspreviously selected for tomato mottle virus (ToMoV)resistance in Florida. Progeny from crosses betweenFla 925-2 and three different TSWV susceptible L.esculentum parents were used in TSWV resistancestudies. A total of 75 F1 and 596 F2 plants from allthree crosses were screened for TSWV resistance. ForF2 plants free of TSWV symptoms, evaluations were madeusing enzyme-linked immunosorbent assay (ELISA). TenF3 populations used for further greenhouse and fieldscreenings were selected from F2 plants found to befree of the virus using visual and ELISA criteria ateach evaluation. One F1 and four F3 lines werestudied under field conditions (Stellenbosch, SouthAfrica) in which 100% of the `Flora-Dade' susceptiblecontrols were severely infected with TSWV. Theresults of the field study clearly establish that TSWVfield resistance is present in the Fla 925-2 (Y118)derived lines. Studies conducted on these linesrevealed that this resistance has the distinctcharacteristic of often `recovering' from initiallyhigh levels of virus titer in the tissue to levelsbelow detection with ELISA.  相似文献   

7.
Summary Treatment of Lycopersicon peruvianum stigmas with an artificial medium analogous to stigmatic exudate allowed pollen germination and growth on immature pistils. Growth of Lycopersicon esculentum pollen tubes to L. peruvianum ovules, an otherwise incompatible cross, was achieved following such treated bud-pollinations. No plantlets were recovered, although a few embryos from this cross at the globularity heart stage of development were excised at 22 days after pollination, indicating the presence of crossing failures as severe as in the reciprocal cross. Hybrid plants were obtained from the reciprocal cross, using as pollen parent an L. peruvianum line selected for congruity with L. esculentum. Bud pollinations to L. peruvianum, using these interspecific F1 hybrids as the pollen parent, allowed viable embryo development and plantlet recovery. Resulting backcross plants, which possess approximately 1/4 L. esculentum genome in a L. peruvianum cytoplasm, may facilitate further introgression of the L. esculentum nuclear genes into in foreign cytoplasm.  相似文献   

8.
The genus Tospovirus was considered as monotypic with Tomato spotted wilt virus (TSWV) being the only assigned species. However, extensive studies with worldwide isolates revealed that this genus comprises a number of species with distinct virulence profiles. The Neotropical South America is one center of Tospovirus diversity with many endemic species. Groundnut ringspot virus (GRSV), TSWV, Tomato chlorotic spot virus (TCSV), and Chrysanthemum stem necrosis virus (CSNV) are the predominant tomato-infecting species in Brazil. Sources of resistance were found in Solanum (section Lycopersicon) mainly against TSWV isolates from distinct continents, but there is an overall lack of information about resistance to other viral species. One-hundred and five Solanum (section Lycopersicon: Solanaceae) accessions were initially evaluated for their reaction against a GRSV isolate by analysis of symptom expression and systemic virus accumulation using DAS-ELISA. A subgroup comprising the most resistant accessions was re-evaluated in a second assay with TSWV, TCSV, and GRSV isolates and in a third assay with a CSNV isolate. Seven S. peruvianum accessions displayed a broad-spectrum resistance to all viral species with all plants being free of symptoms and systemic infection. Sources of resistance were also found in tomato cultivars with the Sw-5 gene and also in accessions of S. pimpinellifolium, S. chilense, S. arcanum, S. habrochaites, S. corneliomuelleri, and S. lycopersicum. The introgression/incorporation of these genetic factors into cultivated tomato varieties might allow the development of genetic materials with broad-spectrum resistance, as well as with improved levels of phenotypic expression.  相似文献   

9.
Thrips are damaging pests in pepper worldwide. They can cause damage directly by feeding on leaves, fruits or flowers, and also indirectly by transferring viruses, especially tomato spotted wilt virus (TSWV). Although thrips are among the most damaging pests in pepper, until now there is no commercial variety with a useful level of resistance to thrips. This is at least partly due to the lack of knowledge on resistance levels in pepper germplasm of QTLs and/or genes for resistance, and of information about resistance mechanisms to thrips in pepper. This paper describes our research aimed at developing practical and reliable screening methods for thrips resistance in pepper and at identifying pepper accessions showing a strong resistance to thrips. Thirty-two pepper accessions from four species of pepper (Capsicum annuum, C. baccatum, C. chinense and C. frutescens) and two species of thrips (Frankliniella occidentalis and Thrips parvispinus) were used in this study. Our results indicate that the laboratory based leaf disc test and the detached leaf test can be used as reliable screening methods for thrips resistance in pepper. We observed a large variation for resistance to thrips in Capsicum that can be exploited in breeding programs.  相似文献   

10.
F. Vidavsky    S. Leviatov    J. Milo    H. D. Rabinowitch    N. Kedar  H. Czosnek 《Plant Breeding》1998,117(2):165-169
Selection of tomato plants supposedly tolerant to tomato yellow leaf curl virus (TYLCV), based solely on the absence of symptoms in an infested field can be misleading. An inoculation routine was therefore established to avoid escapes and to overcome difficulties associated with the age of the plant at the time of infection. The inoculation routine was applied to a selection of resistant/tolerant individuals generated through a diallel F1 cross and to F2 segregating populations originating from three wild tomato species described as tolerant to TYLCV: Lycopersicon peruvianum EC 104395, Lycopersicon pimpinellifolium Hirsute and Lycopersicon chilense LA 1969. Clear differences were observed between susceptible symptomatic and tolerant symptomless tomato genotypes, indicating that the uncertainty resulting from escapes, from different levels of inoculum, and from the time of inoculation, can be eliminated. The genes involved in tolerance provided different levels of protection; combinations of various tolerant sources and levels in a single genotype gave a higher level of tolerance. Differences in level of protection were found between genes from the same source and between sources; none of the sources tested had complete dominance. The results obtained with the F2 segregating population showed that tolerance from L. pimpinellifolium is controlled by one major gene, that from L. chilense by two genes, and that from L. peruvianum by three genes with no dominant effect. The combination of sources for resistance can thus have positive or negative synergistic effects, or no effect. We suggest that a maximal level of tolerance can be obtained by the additive effect of the partly dominant genes from L. pimpinellifolium and L. chilense.  相似文献   

11.
Resistance to Tomato yellow leaf curl virus (TYLCV) and Tomato spotted wilt virus (TSWV), among other diseases, has been reported in Solanum peruvianum PI 126944. Introgression lines (ILs) from S. peruvianum PI 126944 into the genetic background of cultivated tomato (S. lycopersicum) are being developed. Several generations were derived from three interspecific hybrids previously obtained. A lot of crosses and embryo rescue were required until the third backcross, due to the high degree of incompatibility existing between tomato and PI 126944. Crosses between F1 plants were made to obtain a pseudo-F2 generation. The same procedure was followed up to the pseudo-F6 generation. Additional crosses between plants of different generations were made in order to increase progeny. Of 263 molecular markers tested, 105 were polymorphic between tomato and PI 126944. This set of polymorphic markers consisted of 90 simple sequence repeats (SSR) and 15 cleaved amplified polymorphic sequences (CAPS). The amount of the S. peruvianum genome was reduced in advancing generations and this was coupled in some cases with a reduction of incompatibility. However, the S. peruvianum genome was almost completely represented among the different plants of the most advanced generations. ILs will be basically developed from them. Some of the generations developed were resistant to TYLCV and TSWV.  相似文献   

12.
H. M. Kamal    T. Takashina    H. Egashira    H. Satoh  S. Imanishi 《Plant Breeding》2001,120(2):179-181
This study was performed to introduce the distinct aromatic fragrance of Lycopersicon peruvianum LA 1554 into the cultivated tomato, Lycopersicon esculentum. The strong breeding barriers existing between these two distantly related species were circumvented by the ovule selection and culture method. A large BC1F1 population was developed and among 127 plants, 36 were self‐compatible and yielded fruits. Fruits of some of these selected plants were found to be enriched with a sweet aromatic flavour. Sensory evaluation of the fruit aroma of these selected plants was performed by a panel of 12 members against one of the best consumer‐rated Japanese commercial tomato cultivars, ‘Momotaro’. Although extensive variation was observed in fruit‐aroma in the BC1F1 population, panel opinion on ‘flavour‐desirability’ significantly favoured the BC1F1 fruits of some selected plants over the cv. ‘Momotaro’. Therefore, it can be concluded that the aromatic fragrance of a ‘L. peruvianum’ accession has successfully been introduced into the cultivated tomato gene pool.  相似文献   

13.
Developing tomato breeding lines resistant to tomato yellow leaf curl virus   总被引:1,自引:0,他引:1  
Using controlled whitefly-mediated inoculation techniques, seven Lycopersicon chilense accessions, highly resistant to isolates of tomato yellow leaf curl virus(TYLCV) from Southern Europe, TYLCV-Sr, were selected. All exhibited similar levels of partial resistance, being symptomless and with low levels of viral DNA accumulation. However, a differential response to infection was found in interspecific hybrids with tomato and inbred lines derived from different L. chilense accessions, allowing a precise discrimination among them. This selection procedure which considers the expression of the resistance genes in the tomato genetic background led to the selection of two highly resistant F1 hybrids derived from L. chilense LA 1932 and LA 1938. A backcrossing programme was initiated, selecting for horticultural characteristics and TYLCV resistance, in field and controlled inoculation conditions. As a result of this programme, six advanced breeding lines (UPV Ty 1, 3, 6, 9, 17 and 53), exhibiting a high level of resistance to TYLCV-Sr, were obtained. Under high inoculum pressure conditions these lines suffered only 30-40% yield loss relative to non-infected control plants, and compared with 90-95% yield loss in susceptible controls. These lines also have horticultural characteristics appropriate for the fresh market tomato cultivation system in this area, and are a good base material for obtaining commercial hybrids highly resistant to different isolates of TYLCV.  相似文献   

14.
Summary The presence of resistance to potato cyst-eelworm in wild Lycopersicon species was confirmed.The resistance of two plant accessions, L. pimpinellifolium, B6173, and L. peruvianum, B6001, was compared in screening tests against three eelworm isolates, using the susceptible L. esculentum Ailsa Craig as a control. Both accessions were shown to possess high levels of resistance to the Wren isolate (pathotype A) of H. rostochiensis, and resistance to the Castle Donington (pathotypes A, B, and E) and Hare Lane (pathotype B) isolates. The level of resistance in L. pimpinellifolium was greater than that in L. peruvianum. Because of its greater resistance, and the ease with which it can be hybridised with tomato cultivars, L. pimpinellifolium was chosen as a donor parent for breeding programmes designed to incorporate potato cyst-eelworm resistance into a commercial tomato variety.The resistance of L. pimpinellifolium, B6173, to the Wren isolate of H. rostochiensis was shown to be controlled by a single dominant gene for which the symbol Hero is proposed.  相似文献   

15.
Summary Various aspects of a microprotoplast fusion technique and the strategies followed for intergeneric partial genome transfer (one or a few chromosomes) and alien genes from sexually-incongruent donor species to recipient species are described. The essential requirements of the microprotoplast fusion technique are the induction of micronuclei at high frequencies, as well as the isolation and enrichment of sub-diploid microprotoplasts in donor species, efficient fusion of the donor microprotoplasts with normal recipient protoplasts and stable regeneration of plants from fusion products. The results on the production of microprotoplast hybrid plants between the transformed donor lines of Solanum tuberosum and Nicotiana Plumbaginifolia carrying various genetic markers, and a recipient line of Lycopersicon peruvianum or Nicotiana tabacum, and on the transfer and expression of alien genes (kanamycin resistance, -glucuronidase) are presented. The data obtained on microprotoplast hybrid plants between S. tuberosum and L. peruvianum showed that many of the hybrids contained one potato chromosome carrying nptII and GUS, and 24 or 48 L. peruvianum chromosomes (monosomic additions), and that they were male-and female-fertile. Various applications of chromosome transfer by this technique, especially for economically-important traits (e.g. disease or stress resistance) from sexually-incompatible wild species, for construction of chromosome-specific DNA libraries through microdissection and microcloning of chromosomes, or by flow-sorting of chromosomes for genome analysis, are discussed.  相似文献   

16.
The Lycopersicon hirsutum var. hirsutum accession PI 127826 is recognized as a good source of resistance to arthropod pests due to the action of the allelochemical zimgiberene, a sesquiterpene present in its glandular trichomes. Five genotypes were selected from the F2 generation of the interspecific cross Lycopersicon esculentum ‘TOM-556’ × Lycopersicon hirsutum var. hirsutum ‘PI 127826’, based on their low levels (BPX-368-clone#56) or high levels(BPX-368-clone#92, BPX-368-clone#105,BPX-368-clone#179, BPX-368-clone#250) of zingiberene. The five F2 genotypes were tested for resistance to the South American tomato pinworm Tuta absolutaalong with accession L. esculentum ‘TOM-556’ (pinworm susceptible), and the accessions L. hirsutum var. hirsutum ‘PI 127826’ and L. pennellii ‘LA716’ (resistant). The F2 clones selected for high foliar zingiberene levels showed lower scores for leaflet lesion type(LLT), percent leaflets attacked (PLA) and overall plant damage (OPD) than the low zingiberene genotypes. The results indicated that zingiberene mediates resistance to the South American pinworm, based on feeding and on ovipositing deterrence, in populations derived from the interspecific cross between Lycopersicon. esculentum and Lycopersicon hirsutum var. hirsutum. Indirect selection for high foliar zingiberene content is suggested as an efficient technique for breeding tomatoes for resistance to the South American tomato pinworm. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Accessions of Lycopersicon peruvianum complex and their F1progenies were screened for genotype specific resistance to Mi-1-avirulent M. incognita and M. javanica biotypes at25 °C and at 32 °C (a temperature at which Mi-1resistance is not expressed), and to Mi-1-virulent M.incognita at 25 °C. All entries of the L. peruvianumChotano-humifusum race accessions LA2157 and LA2334 were resistantto Mi-1-avirulent biotype at 25 °C and at 32 °C,indicating that the accessions are homozygous for the heat-stableresistance. The L. peruvianum Maranon race accessions LA1626,LA1708, LA2172, LA2185, LA2326 and LA2328 segregated for heat-stableresistance to Mi-1-avirulent biotype. The F1 progeny tested ofLA392 × LA2157, LA2334 × LA2157, LA2328 × LA2326,LA2328 × LA2185, LA1708 × LA2328 andLA1626 × LA2172 were resistant to Mi-1-avirulent biotype at32 °C. There were differences in the segregating accessions andF1 hybrids for expression of heat-unstable and heat-stable resistanceto Mi-1-avirulent Meloidogyne spp. The L. peruvianumLA392 and LA2163 and L. chilense LA1968, LA1972, LA2404, LA2405,LA2406, LA2748, LA2930, and the L. peruvianum × L.chilense hybrids were homozygous susceptible with all entries testedsusceptible at 32 °C. Cuttings of these L. peruvianumaccessions and their F1 progenies were susceptible to Mi-1-virulent M. incognita biotype at 25 °C.  相似文献   

18.
Summary Lycopersicon pimpenellifolium L3707, resistant to the late blight oomycete Phytophthora infestans was crossed with the susceptible Lycopersicon pimpenellifolium 14377 or the susceptible Lycopersicon esculentum ZH. Progeny F1 and F2 generations were scored at the 5-leaf stage for resistance against 175 field and recombinant isolates of the pathogen. F1 plants exhibited various levels of moderate resistance and F2 plants segregated 3:6:7 resistant/moderately resistant/susceptible. The data support the hypothesis that race-non-specific resistance in L3707 is controlled by two independent genes: a partially-dominant gene and a dominant epistatic gene.  相似文献   

19.
Summary Inheritance studies were conducted to determine the genetic basis of resistance in pepper against one Tospovirus isolate classified as tomato spotted wilt virus (TSWV). F1, backcrosses and F2 populations were developed using the resistant parent Capsicum chinense PI 159236 (CNPH 679) and the susceptible parent C. annuum Magda (CNPH 192). Segregation ratios strongly indicated that the resistant response (a localization, hypersensitive-like reaction) to TSWV fits a single-dominant gene model. Under our experimental conditions, the penetrance of this gene was very high. This gene (tentatively named Tsw) is highly effective only against TSWV isolates. The resistance governed by the Tsw gene was not effective against isolates belonging to tomato chlorotic spot virus (TCSV) and groundnut ring spot virus (GRSV), two other previously described Tospovirus species.  相似文献   

20.
E. U. Kozik 《Plant Breeding》2002,121(6):526-530
Plants of 17 tomato cultivars and four wild Lycopersicon accessions were evaluated for their reaction to Pseudomonas syringae pv. tomato (Pst) in a greenhouse following a leaf‐spray inoculation. The genotypes exhibited a large amount of variation in response to Pst infection, with disease severity index (DSI) ratings from 0.2 to 3.9. The cultivar ‘Ontario 7710’ and two accessions of Lycopersicon hirsutum (LA 1773 and LA 1775) were the most resistant, with DSI values of 0.2, 0.4 and 0.6, respectively. Three varieties, M 1812, Kujawski and Warszawski, also showed a high level of tolerance. The most susceptible was ‘A 100’(DSI = 3.9). The inheritance of resistance to bacterial speck was investigated by disease tests in segregated populations obtained by hybridizing the tomato cv. Ontario 7710 with the susceptible variety ‘A 100′. Plants were rated for disease severity by inspecting each plant and were then evaluated according to phenotypic similarity to ‘Ontario 7710’ or ‘A 100’ in respect of the number and size of the spots. Genetic analysis in F1, F2 and backcross segregations indicated that resistance of'Ontario 7710’ to Pst is conferred by one incompletely dominant gene, Pto.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号