首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 703 毫秒
1.
水稻开颖半不育突变体的观察、遗传分析和基因定位   总被引:1,自引:0,他引:1  
【目的】通过对一份航天诱变水稻(Oryza sativa L.)开颖半不育突变体ohssopen-hull semi-sterility)进行形态特性调查、遗传分析和基因定位,筛选候选基因,为下一步基因克隆和功能分析奠定基础。【方法】以籼稻品种航恢七号为材料,通过“神舟八号”飞船搭载,诱变获得一份水稻开颖半不育突变体ohss。对其进行形态特征解剖观察,分析颖花器官发育突变特点。调查突变体和野生型的花粉可育率、自然结实率和套袋自交结实率,对其育性进行鉴定。随机选取5个成熟单株,考察穗部谷粒相关性状并进行统计分析。通过覆盖全基因组的SSR分子标记检测,解析空间诱变的分子变异效应。以航恢七号、Francis和02428与突变体ohss配制杂交组合,观察F1和F2植株的花器官表型,进行?2测验,对突变性状进行遗传分析。以02428/ohss的F2分离群体作为目标基因定位群体,同时利用SSR标记以及新开发的多个InDel分子标记开展基因定位研究。利用RAP水稻基因组注释数据库对定位区间的候选基因进行预测,通过序列比对和基因表达分析筛选候选基因。【结果】开颖半不育花器官突变体ohss与野生型相比,抽穗期穗部明显包茎,颖花发育出现异常,内外稃片瘪弱、扭曲变形且开裂不抱合,颖花内部发育类似内稃状的器官,部分颖花没有内稃的分化。ohss发育异常颖花中可育花粉率58.74%,导致单株结实率、穗重、穗实粒数与野生型相比极显著降低。全基因组SSR标记检测表明突变体ohss总变异频率为0.0336,除了第7、12染色体未检测到突变位点,其他染色体上检测到突变频率范围为0.0143-0.0889。遗传分析结果显示ohss的开颖半不育表型受单隐性核基因ohss(t)控制,并将ohss(t)定位在水稻第3染色体上2个InDel标记InDel6043和InDel6070之间约27.6 kb的物理距离内。该区域有3个预测注释基因,序列比对和表达分析表明突变体ohssOsMADS1编码区及启动子序列未发生突变,但是表达模式发生强烈改变。【结论】开颖半不育的花器官发育突变体ohss受单隐性核基因ohss(t)控制,ohss(t)定位在水稻第3染色体上InDel6043和InDel6070标记之间约27.6 kb的物理距离内,其OsMADS1的编码序列及5′UTR区未发生碱基突变但表达受到强烈抑制。  相似文献   

2.
【目的】利用EMS对水稻(Oryza sativa L.)保持系品种宜香1B进行诱变,筛选出3份长护颖突变体。通过基因定位和克隆,探明控制该性状的遗传基础以及分子机理,并在不同器官进行表达分析,了解该基因表达特点。【方法】以3份水稻长护颖突变体Oslg-1Oslg-2Oslg-3为材料,进行表型分析、等位性鉴定、基因定位、生物信息学分析,以及qRT-PCR定量表达分析。【结果】Oslg-1突变体小穗在幼穗发育早期与野生型无明显差异,但在成熟期其护颖的远轴表皮细胞凸起且粗糙,形成的结节轴向对齐排列,且毛状物较多,形成垂直相间的横纵沟,与外稃表皮细胞结构相似。遗传分析表明,该类突变表型受1对隐性基因控制,OsLG定位于第7染色体短臂SSR标记RM5344和RM20934之间,遗传距离分别为1.11和0.82 cM,物理距离为246.3 kb。对该区域候选基因分析和测序,发现LOC_Os07g04670基因在编码区第182位碱基(T→A)改变,导致其编码氨基酸第61位(Leu→His)的改变。等位性分析表明,Oslg-2Oslg-3Oslg-1属等位变异,进而对突变体Oslg-2Oslg-3OsLG测序,突变分别发生在第316位(T→A)和119位(T→C)碱基,导致其编码的氨基酸第106位(Trp→Arg)和第40位(Leu→Pro)突变。对该基因进行同源进化分析和序列比对,表明该基因可能调控水稻护颖伸长。对本突变材料的候选基因和另一控制护颖性状的PAP2进行实时荧光定量PCR(qRT-PCR)分析,结果表明,OsLG在水稻的叶片、穗、叶鞘和根中均有表达,且在穗部表达最高,而PAP2在除穗部以外的其他部位几乎不表达,表明2个控制护颖性状的基因均具有组织特异性,且PAP2的特异性更强;在长护颖突变体中,2个基因表达量均下调,表明其具有协同表达特点。【结论】3份水稻长护颖突变体OsLG与已报道的G1为同一基因,其功能结构域内氨基酸的突变导致长护颖发育;OsLGPAP2在穗部具有协同表达的特点。  相似文献   

3.
【目的】对水稻甲磺酸乙酯(EMS)诱变产生的雄性不育突变体oss125进行遗传分析,并利用改进的MutMap方法克隆突变基因,为进一步探讨该基因功能及在农业生产上的应用奠定基础。【方法】用化学诱变剂EMS处理籼稻品种黄华占,通过观察表型,从突变体库中筛选出一株雄性不育突变体,记为oss125。将oss125与野生型黄华占进行杂交,调查F1的育性和F2群体的育性分离情况。随机挑取F2中30个雄性不育表型的株系,提取DNA后等量混合形成DNA池,采用Illumina Hiseq 2000进行高通量测序。利用改进的MutMap方法分析测序数据获得候选突变位点,并进一步采用高分辨率溶解(HRM)方法确定突变基因与不育表型的连锁关系。对候选基因进行序列分析,同时利用RT-PCR分析该候选基因的表达模式。【结果】oss125突变体在营养生长期表型与野生型黄华占相同,进入生殖生长后,花粉经1% I2-KI染色显示,以碘败为主(85%),15%能正常染色,但植株表现为完全雄性不育。oss125作为花粉受体与野生型黄华占杂交能够正常结实,F1表现为可育,F2群体的可育植株与不育植株分离比为3﹕1,表明雄性不育表型由1对隐性核基因控制。利用改进的MutMap方法分析突变体测序数据,得到4个候选位点,其中3个位于基因间区,1个位于OsRPA1a的第二个外显子区,编码区A663位点突变为C,导致其编码的氨基酸从谷氨酰胺(Q)突变成脯氨酸(P),HRM分析显示该突变与雄性不育性状紧密连锁。【结论】OsRPA1a是控制突变体oss125表型的基因,OsRPA1a编码区A663位点突变为C,导致花粉发育异常,植株表现为雄性全不育,但雌性发育正常。OsRPA1a参与水稻雄配子和雌配子发育过程,为水稻减数分裂和体细胞DNA修复所必需。前人报道OsRPA1a的T-DNA插入突变体表现为雌性全不育而雄性半不育,但oss125突变体表现为雄性全不育而雌性可育,说明该基因控制雄性发育和雌性发育的功能可能分布在蛋白质的不同区域,oss125突变体中的OsRPA1a点突变可能坐落于雄性发育功能区,不影响雌性发育功能。  相似文献   

4.
【目的】通过对一个水稻短穗小粒突变体的鉴定与基因精细定位,为水稻等禾本科作物的籽粒发育及分子改良奠定基础。【方法】在水稻EMS诱变体库中鉴定到一个短穗小粒突变体,暂命名为sps1shorten panicle and seed 1)。成熟期观察野生型和sps1的形态变化,考察株高、节间长、穗实粒数、结实率和千粒重等农艺性状;对野生型和sps1籽粒外稃内外表皮中部进行扫描电镜观察,并利用石蜡切片进一步分析野生型和sps1籽粒的形态变化;配制缙恢10号/sps1杂交组合进行遗传分析,并利用其F2群体进行基因精细定位;对野生型和sps1两叶一心期的叶鞘进行油菜素内酯(brassinolide,BR)敏感性试验;抽穗期分析SPS1在水稻根、茎、叶、鞘和穗中的表达,并对籽粒发育相关基因和BR相关基因进行qPCR分析。【结果】sps1穗和倒1、2、3的节间长度均极显著短于野生型,导致株高半矮化;此外,sps1穗枝梗数、结实率和千粒重也显著降低;扫描电镜观察发现sps1外稃中部内外表皮细胞长度极显著小于野生型,宽度则极显著变大,石蜡切片观察进一步证实了sps1籽粒宽短是由细胞变短、变宽造成的;籽粒发育相关基因qPCR分析发现,部分通过调控细胞分裂和扩展进而影响水稻籽粒发育的基因表达量发生了显著变化,在sps1中,AFD1SLGHGWGS3的表达量显著上调,GW7GID1显著下调;选取符合3﹕1分离比例的F2代分离群体中的突变单株进行基因定位,最终将调控基因精细定位在第7染色体上标记sps1-3和sps1-2之间134 kb的物理范围内,包含19个注释基因;经测序,与野生型相比,发现sps1中的Os07g0616000在编码区有一个A-T的碱基替换,致使编码的赖氨酸变成了终止密码子,导致蛋白翻译提前终止,初步确定为候选基因。qPCR分析发现SPS1在水稻的根、茎、叶、鞘和穗中均有表达,且在茎秆中的表达量最高;生物信息学分析发现,SPS1DEP2的一个新等位基因。sps1对外源BR的敏感性降低,BR钝感基因D1的表达极显著下调;推测SPS1/DEP2可能通过BR信号传导途径调控水稻籽粒和株型的发育。【结论】sps1是一个水稻短穗小粒突变体,SPS1编码一个表达蛋白,是DEP2的新等位基因,通过BR信号传导途径调控水稻籽粒和株型的发育。  相似文献   

5.
【目的】水稻顶部小穗退化减少了单穗的总枝梗数和总粒数,严重影响单株产量,是水稻生产上的一个不利性状。因其遗传基础复杂,受环境影响较大,控制顶部小穗退化的相关基因克隆研究报道极少,该不利性状发生的分子机制及其遗传网络还不得而知。对顶部小穗退化基因进行精细定位,可为穗顶部基因的克隆奠定基础;开发的紧密连锁分子标记,也可以运用于分子育种实践,对这一不利性状进行早期识别和淘汰。【方法】首先对小穗突变体sp进行精细定位。用sp分别与粳稻品种ITA182和籼稻品种J160杂交构建2个遗传定位群体。为了研究不同穗退化突变体之间的关系,再以小穗突变体sp和穗顶部退化材料05261杂交,获得了农艺性状稳定的拟双突变体(表型与sp相似)。通过连续自交,纯合拟双突变体的遗传背景。再以高代的拟双突变体为非轮回亲本,穗顶部正常品种IRAT129为轮回亲本,构建含有双突变体的BC1F2亚群体。其中一个亚群体14C2017既表现单基因的穗退化性状分离,又出现小穗和穗顶部退化的双突变体表型,被用作顶部小穗退化基因的精细定位材料。【结果】水稻小穗性状是由1对隐性基因(sp)控制的。利用混池方法将SP(t)初步定位于第11染色体分子标记RM26281RM7391之间;利用新开发的60对SSR分子标记,将其定位在标记sc50sc66之间。在此区间内设计引物,最终将SP(t)定位在标记sc24sc66之间,物理距离为54.3 kb的范围内。测序结果表明,突变体在该区间内有15.03 kb的大片段缺失,导致基因SP1的编码序列缺失。对拟双突变体的表型分析表明,sp与一个穗顶部退化基因存在互作。利用亚群体14C2017作为克隆与SP1互作基因的遗传分离群体,利用分布于全基因组的239对引物,筛选出在拟双突变体和IRAT129之间有多态的引物114对,将目标基因精细定位于第3染色体SSR标记RM6929RM1319之间,物理距离为97.3 kb范围内,该候选基因属于早先报道的QTL--qPAA3。【结论】水稻sp的小穗性状是由基因SP1引起的缺失突变。与SP1互作的qPAA3定位于第3染色体SSR标记RM6929RM1319之间,物理距离为97.3 kb的范围内。  相似文献   

6.
水稻黄绿叶突变体ygl13的鉴定及候选基因分析   总被引:2,自引:0,他引:2  
【目的】对水稻黄绿叶突变体ygl13 (yellow-green leaf 13 )进行表型鉴定和候选基因检测,以便了解水稻叶色形成和调控的分子机制。【方法】经甲基磺酸乙酯(EMS)诱变籼稻恢复系缙恢10号(Jinhui 10),从中筛选出1份遗传稳定的黄绿叶突变体命名为ygl13,对突变体的表型进行系统观察,调查其成熟期的主要农艺性状,分别测定野生型和突变体苗期和孕穗期的叶片光合色素含量,同时利用透射电镜观察野生型和突变体ygl13的叶肉细胞及叶绿体结构。将表型正常的不育系西农1A与突变体ygl13杂交,根据F1和F2群体的性状表现与分离情况,分析该突变性状的遗传行为,并以F2作为基因定位群体,对突变体ygl13进行候选基因遴选和突变位点测序验证。【结果】突变体ygl13的植株叶片在整个生育期均呈现黄绿色,与野生型缙恢10号相比,突变体ygl13苗期和孕穗期叶片叶绿素a、叶绿素b和类胡萝卜素含量均极显著降低。透射电镜观察结果显示,与野生型相比,突变体ygl13叶绿体结构异常,基质片层减少退化,类囊体片层减少,不规则的散乱分布。农艺性状调查结果表明,突变体ygl13穗总粒数增加了26.06%,株高和结实率分别降低了12.33%和18.82%,但穗长、有效穗、穗实粒数和千粒重无显著差异。F2群体正常叶色的植株数与黄绿叶植株数分离比经χ2测验符合3﹕1分离比例(χ2=2.35<χ20.05=3.84),表明ygl13的黄绿叶性状由1对隐性核基因控制。YGL13被定位于第8染色体短臂InDel标记ID43和ID69之间,遗传距离分别为4.0和0.5 cM,区间物理距离约为318 kb,共有52个基因。经测序比对分析发现,ygl13突变体在OsSIG1编码区的第1 005个碱基G突变为碱基A(位于第三外显子),造成编码色氨酸(Trp或W)的密码子突变为终止密码子,导致蛋白翻译提前终止,则该基因编码520个氨基酸的蛋白质突变为334个氨基酸的截短蛋白。qRT-PCR结果表明,突变体ygl13部分光合色素代谢途径和光系统相关基因表达紊乱。【结论】水稻突变体ygl13的黄绿叶性状由1对隐性核基因控制,该基因与已报道的水稻质体σ因子OsSIG1为等位基因。  相似文献   

7.
【目的】水稻穗顶端退化严重影响产量,鉴定与克隆水稻穗顶端退化相关基因,可以丰富水稻穗发育调控的分子机理,为水稻高产分子设计育种提供理论基础和基因资源。【方法】从粳稻品种武运粳30号EMS突变体库筛选到一份稳定遗传的穗顶端退化突变体panicle apical abortion 21(paa21)。对退化一次枝梗比例、每穗退化粒数占比、每穗粒数、株高、穗长、单株产量等农艺性状进行统计。使用台盼蓝和伊文思蓝染色检测顶端小穗是否发生程序性细胞死亡。测定WT和paa21不同发育时期幼穗和不同穗部位的H2O2含量。paa21分别与籼稻II-32B、9311正反交进行遗传分析。利用paa21与籼稻II-32B杂交构建的F2群体进行基因定位和克隆。使用SWISS-MODEL网站预测野生型和突变体蛋白的三维结构。利用RT-qPCR分析ROS响应标志基因、程序性细胞死亡相关基因、过氧化氢酶相关基因的表达量。【结果】paa21突变体发生严重的穗顶端退化,统计paa21所有一次枝梗退化情况,发现退化小穗主要位于顶端的一次枝梗上。与WT相比,p...  相似文献   

8.
玉米籽粒淀粉粒密度基因tw1的精细定位   总被引:1,自引:1,他引:0  
【目的】淀粉粒密度影响籽粒容重,通过对一个玉米籽粒淀粉粒密度突变体Mrd进行鉴定和精细定位,为容重相关基因的克隆和功能验证奠定基础。【方法】以育种选系过程中发现的一个淀粉粒密度突变体Mrd为材料,利用近红外光谱分析仪检测其籽粒内部化学成分的变化,用扫描电镜观察授粉后18-45 d正常籽粒和突变籽粒中淀粉粒形态的差异;于2014-2016年分别在河南郑州和原阳以及海南三亚种植Mrd与B73的杂交组合及F2和BC1分离群体,并对其进行遗传分析;使用来自maizeGDB(http://www.maizegdb.org)的覆盖全基因组的1 000对SSR引物,通过集团分离分析法(bulked segregation analysis,BSA)筛选与目的基因紧密连锁的标记,实现目的基因的初步定位;并在该定位区间内开发新的标记,对从38 000 BC1分离群体中筛选出的交换单株进行基因型分析,实现目的基因的精细定位;通过候选基因序列分析、功能预测和等位性测验确定首选候选基因。【结果】该突变体籽粒较正常籽粒体积变小,比重增加;细胞学和化学组份分析结果表明,与野生型籽粒相比,突变体籽粒中的粗蛋白含量降低,粗淀粉含量没有显著变化,淀粉粒形状不规则且变小、密度增加,可能是导致籽粒容重变大的原因;对授粉后不同天数籽粒内部淀粉粒结构的观察显示,突变体籽粒淀粉粒的密度比正常籽粒密度大,并随发育进程不断增加;对Mrd与B73的F2及测交后代分离群体的遗传分析结果表明,Mrd籽粒突变是由单隐性基因(命名为tw1)控制的;该基因首先被定位在第6染色体的SSR标记umc1105和bnlg1154之间,物理距离为22 Mb;利用上述2个标记对BC1群体进行交换单株筛选,并开发标记,将该基因定位于SSR标记B3和A47之间,物理距离为0.2 Mb;在该候选区段内有包含su2在内的3个候选基因,等位性测验结果表明,tw1su2不是等位基因;候选基因序列分析和功能预测结果表明GRMZM2G042607编码的蛋白具有碳水化合物识别结构域,在种子中对碳水化合物的储藏起沉积作用,是tw1最可能的候选基因。【结论】实现了籽粒淀粉粒密度突变性状基因tw1的精细定位,并确定了候选基因为编码一种β-1,3半乳糖基转移酶的GRMZM2G042607。  相似文献   

9.
【目的】对一个同时导致营养和生殖器官发育异常的水稻突变体进行表型鉴定、基因定位和候选基因分析,为下一步的基因克隆与功能分析奠定基础。【方法】在水稻籼型恢复系602组织培养后代中,发现一个矮化并花发育异常突变体dwarf and deformed flower 2ddf2)。抽穗期,以野生型为对照,对ddf2株高、主穗长、节间和功能叶的长宽等性状进行统计分析;同时利用冷冻切片等技术对茎、叶和花器官进行详细的形态和组织学分析。分别以西农1A和中花11为母本,以DDF2/ddf2杂合株系为父本构建2个F2群体进行遗传分析和基因定位,并对候选基因进行实时荧光定量PCR(real-time PCR)分析。【结果】相较于野生型,突变体各节间的长和茎粗均极显著降低,叶片极显著变短、变窄,同时花序也极显著变短。组织细胞学分析发现,突变体大叶脉数目和相邻2个大叶脉之间的小叶脉数都没有明显的变化,但相邻2个大叶脉之间的宽度明显减小,进一步比较2个小叶脉之间的叶肉细胞,发现在突变体中细胞数目和尺寸均显著降低;突变体茎秆维管束的数目与野生型相比没有明显的变化,但统计发现2个大维管束之间基本组织细胞的数量和细胞的大小都显著小于野生型,表明ddf2突变体茎、叶细胞分裂和膨胀都受到了抑制;此外,ddf2突变体的花器官特征发育受到了严重干扰:第一轮外稃顶部弯曲、内稃不同程度退化,第三轮雄蕊器官严重退化,部分甚至转化为雌蕊状器官,另外部分ddf2小穗的护颖过度发育,转变成稃片状,一些小穗还表现分生组织确定性的丢失,发育出2个以上的小花。遗传分析表明该突变性状受1对隐性基因控制。利用中花11/ddf2的1 024株F2分离群体,最终将DDF2精细定位在第11染色体短臂近着丝粒位置处,位于insertion/deletion(in/del)标记S-11和S-14之间,遗传距离分别为0.049和0.098 cM,物理距离为90.295 kb,并与标记S-24共分离。分析定位区间的基因,发现共有MSU注释基因12个,其中一个编码Sec3_C蛋白的LOC_Os11g17600内部包含共分离标记S-24,进一步对该基因进行表达分析,发现该基因在突变体的叶、茎和穗中都表现出明显的下调,初步将LOC_Os11g17600作为DDF2候选基因。【结论】DDF2是一个同时控制水稻茎/叶和花器官发育的新基因。  相似文献   

10.
【目的】对甜瓜短蔓突变体Z8进行短蔓基因的精细定位并确定候选基因,为甜瓜株型的分子改良奠定基础。【方法】考察短蔓突变体Z8和野生型B15的主蔓节数、主蔓长度、主蔓节间长度以及侧枝长度等农艺性状。配制Z8/B15杂交组合并进行遗传分析,利用F2群体中的短蔓单株进行基因精细定位。通过对定位区间内注释基因编码区进行测序以确定候选基因。【结果】与野生型B15相比,突变体Z8节间显著变短导致植株矮化,顶端花序紧凑簇生,遗传分析表明其短蔓性状由一对隐性核基因Cmdm1控制。采用基因图位克隆策略,利用780个F2短蔓单株最终将该基因精细定位于第7染色体短臂标记c7-112和s2之间约56 kb的区间内,并与标记dm-1共分离,区间内共包含4个注释基因。经测序鉴定,发现Z8中与拟南芥ERECTA同源的MELO3C016916 ATG下游第1 995位碱基由T突变为G而产生终止密码子,导致蛋白翻译提前终止,致使后面激酶结构域完全缺失,推测MELO3C016916即为控制蔓长的Cmdm1。【结论】Z8短蔓性状受隐性核基因Cmdm1控制,利用分子标记最终将该基因定位于7号染色体短臂标记c7-112和s2之间约56 kb区间内,推测MELO3C016916为最有可能的候选基因。  相似文献   

11.
华北夏谷区2001—2015年谷子育种变化   总被引:4,自引:1,他引:3  
【目的】对华北夏谷区近15年谷子区域试验数据进行分析,探讨谷子育种变化趋势,为谷子品种改良提供参考。【方法】利用2001—2015年华北夏谷区参试品种的主要农艺性状数据,研究其变化规律;以通过鉴定的51个育成品种为材料进行分析,并与15年间华北地区谷子生长季6—9月份气候因素进行相关分析,梳理通过鉴定的51个品种的类型。【结果】2001—2015年华北夏谷区区域试验参试品种各农艺性状在年度间变异较大,随着年份的推移,产量、生育期、株高、穗长、单穗重和穗粒重持续增加,千粒重基本不变,公顷穗数略有下降。51个通过鉴定品种的整体变化趋势与所有参试品种的变化趋势基本一致。51个通过鉴定品种间产量、生育期、株高、穗长、千粒重和公顷穗数差异极显著,单穗重、穗粒重和出谷率差异不显著。华北夏谷区谷子生育期气候趋向于暖湿的变化趋势。通过鉴定的品种产量和生育期、单穗重、穗粒重呈极显著正相关,与最低温、降水量呈极显著负相关。最低温、最高温、降水量、生育期、穗粒重、出谷率决定谷子产量85.17%的变异。对产量贡献较大且为负效应的是最低温,为正效应的是最高温。近几年谷子育种水平有所提高,品种类型较丰富多样,抗除草剂品种和优质米类型逐渐增多,反映了轻简栽培和优质是目前的主要育种方向。但是以冀谷19、豫谷1、冀谷25等3个主干品种为亲本来源的品种数为26个,占杂交选育品种的57.8%,育成品种亲本范围相对较窄的问题越来越严重。【结论】2001—2015年华北夏谷区区域试验育成品种产量有所提高,品种类型较丰富多样,育种水平取得一定的进步。然而,造成产量显著差异的原因主要取决于气候因素,而且品种培育的亲本选择狭窄可能是育种突破的关键瓶颈。在今后的育种过程中,要从亲本创制和选择着手,丰富亲本类型;提高品种穗粒重和出谷率,以适应气候变化,提高夏谷产量。  相似文献   

12.
播期对夏谷幼穗分化及叶龄指数的影响   总被引:1,自引:1,他引:0  
【目的】研究不同播期条件下,夏谷品种幼穗分化进程及各分化阶段与叶龄指数之间的关联,为谷子生产调控和生长模拟提供依据。【方法】在山东省农业科学院作物研究所济南试验基地,以抗拿捕净除草剂夏谷品种济谷16和糯性新品种济谷18为材料,于2015年4月29日至7月8日设置8个播期处理,处理间隔为10 d。60万株/hm2大田生产条件下按播期顺序种植试验小区。在5叶期,每个小区内标记生长均匀一致的谷子植株120株,之后到抽穗每隔1—2 d选取有代表性的植株3—5株,在OLYMPUS SZX16数显体视显微镜下剥去样品苞叶至露出完整幼穗,进行系统观察与拍照,并详细记载不同播期条件下2个品种在各幼穗分化阶段的叶龄以及成熟期植株的总叶片数。【结果】播期和品种对夏谷幼穗分化的方式及形态特征没有影响,依据营养生长期、生长锥伸长期、枝梗分化期、小穗刚毛分化期和雌雄蕊分化期等5个幼穗分化阶段的特点,以济谷16的系列穗发育图片为例,清晰完整的描述了夏谷幼穗发育过程。播期对谷子生育期的影响主要是由于幼穗分化时期的起始时间和持续天数的变化引起。随着播期的推迟,幼穗分化时期的起始时间提前,由出苗后32 d变为22 d左右;幼穗分化过程的持续时间缩短,由28 d变为19 d左右;谷子生育期缩短,由109 d变为83 d左右。在不同的幼穗分化时期,叶龄和叶龄指数随播期的推迟变化趋势不同,而叶龄指数与幼穗分化时期在不同播期间保持着更为稳定的对应关系。2个品种在不同播期条件下,幼穗分化阶段与叶龄指数均符合直线回归关系,R2值在0.977—0.997,表现为极显著正相关,幼穗分化期Y依叶龄指数X的直线回归方程通式为:Y=b X+a,且不同品种在不同播期条件下对应的直线回归方程之间的差异达到极显著水平,济谷16、济谷18在不同播期条件下幼穗分化时期与叶龄指数的直线回归关系不可以用共用的直线回归方程来表示。【结论】2个夏谷品种幼穗分化发育形态基本一致,但播期对2品种幼穗分化的影响有所不同。播期造成的幼穗分化时间的差异是影响谷子生育期的主要原因。根据植株外部叶龄状态判断谷子幼穗分化时期是可行的。  相似文献   

13.
【目的】株高和穗部性状是影响谷子产量的关键性状。探究谷子株高及穗部性状表型变异的遗传规律,为相关性状的遗传改良与基因定位提供参考依据。【方法】以谷子优质品种豫谷18为共同父本,分别与黄软谷和红酒谷杂交,构建2个分别包含250个家系的重组自交系F7群体(YYRIL和YRRIL)。采用主基因+多基因混合遗传模型,对YYRIL和YRRIL群体在2个环境下的株高、穗长、穗下节间长、穗码数、穗粒重等5个农艺性状的表型数据进行遗传分析。【结果】5个性状在所有环境中均表现连续变异且存在超亲分离现象,峰度和偏度绝对值小于1,近似正态分布,呈现数量性状的典型遗传特点。性状间相关性分析表明株高与穗长、穗下节间长在所有环境中均呈极显著正相关,穗码数与穗粒重呈极显著正相关。遗传模型分析显示YYRIL和YRRIL群体株高的最适遗传模型分别为PG-AI和PG-A多基因模型,多基因遗传率分别为95.15%和91.27%。2个群体穗码数的最适模型均为PG-AI,多基因遗传率为70.07%—71.58%。穗下节间长在2个群体的最适遗传模型分别为4MG-CEA和3MG-CEA,均为等加性主基因模型。穗下节间长在YYRIL群体的主基因遗传率为9.69%,4对主基因加性效应值相等,均为-0.34,具有负向效应;穗下节间长在YRRIL群体的主基因遗传率为45.78%,3对主基因加性效应值相等,均为1.17,具有正向效应。穗长在YYRIL群体的最适模型为MX2-ED-A,即2对显性上位主基因+加性多基因模型,主基因遗传率为43.56%,多基因遗传率为50.56%。控制穗长的2对主基因加性效应值分别为-1.21、1.68,多基因加性效应较小,为-0.0017;穗长在YRRIL群体的最适模型为MX2-AE-A,即2对累加作用主基因,加性多基因混合遗传模型;穗长的主基因遗传率为46.40%,多基因遗传率为46.91%。控制穗长的第1对主基因加性效应值为1.53,具有正向效应,第1对主基因加性×第2对主基因加性上位性互作效应值是0.60,多基因加性效应值为-0.47,表现为较低的负向遗传效应。穗粒重在YYRIL群体的最适遗传模型为MX2-ED-A;符合2对显性上位主基因+加性多基因模型,主基因遗传率为69.09%,多基因遗传率为12.08%;控制穗粒重的2对主基因加性效应值分别为0.58、5.82,以第2对主基因的加性效应为主,多基因加性效应值为-3.81。穗粒重在YRRIL群体的最适遗传模型为3MG-PEA,即3对部分等加性主基因遗传模型;穗粒重的主基因遗传率为81.10%,3对主基因加性效应值分别为-2.68、-2.68和2.66,前2对主基因的加性效应值相同,且均为负向效应。【结论】谷子株高、穗码数的最适遗传模型相似,均服从多基因遗传,遗传率较高,受环境影响较小;穗下节间长的遗传受主基因控制,主基因遗传率偏低,受环境影响较大,在栽培中应充分考虑环境因素;穗长遗传受主基因和多基因共同控制;穗粒重在2个群体均服从主基因遗传,主基因遗传率较高,可能存在主效QTL。  相似文献   

14.
【目的】从谷子中分离受激素诱导表达、参与器官大小控制的拟南芥ARGOS(Auxin-regulated gene involved in organ size)基因家族的同源基因,进行生物信息学分析,明确其在不同组织器官及其受植物激素诱导的表达模式,分析基因编码区及其启动子序列差异,开发功能标记,为谷子产量性状相关基因的改良提供依据。【方法】通过对已有ARGOS蛋白保守结构域进行BLAST,明确谷子ARGOS家族成员数目并进行蛋白序列分析,采用同源克隆方法获得谷子ARGOS家族成员之一——SiARGOS1编码区及其启动子序列,用生物信息学方法分析SiARGOS1启动子的顺式作用元件,通过实时荧光定量PCR分析该基因在谷子各器官中以及不同植物激素条件下的诱导表达模式,利用基因编码区及启动子序列的SNP和插入缺失序列开发分子标记,同时利用85份谷子品种的穗重(panicle weight,PW)、穗粒重(grain weight,GW)和千粒重(thousand-grain weight,TGW)等产量性状数据进行基因型间的差异显著性分析,挖掘用于检测该基因与谷子产量性状相关优异等位变异的功能标记。【结果】获得6个谷子ARGOS家族成员,均具有典型的保守OSR(organ size related)结构域,包含2个跨膜螺旋结构和1个高度保守富含亮氨酸区域,克隆了与拟南芥AtARGOS同源的家族成员之一——SiARGOS1编码区及其启动子序列,该基因位于谷子第8染色体上,开放阅读框为342 bp,无内含子,编码113个氨基酸,启动子区域为2 109 bp,含有与生长素、乙烯、茉莉酸和赤霉素等多种植物激素调控有关的元件。表达分析发现,SiARGOS1在谷子根、茎、叶和穗等器官中均有表达,在根中表达量最高,其次为茎和叶,穗中表达量最低。SiARGOS1对生长素吲哚乙酸(indole-3-acetic acid,IAA)不敏感,但受乙烯利(ethephon,ETH)上调表达。不同基因型谷子SiARGOS1序列分析发现,SiARGOS1编码区151 bp(起始密码子83 bp)处存在1个SNP(C/G),导致该基因第28个氨基酸发生突变(Ala/Gly),据此设计一个CAPS-AccⅡ标记;另外,启动子区存在19个SNP和2个In Del,根据-1 652—-1 651处(TA)_(2/3)和-1 165—-1 163处(TCA)_(1/2)的序列差异分别设计SSR引物AP-1和AP-2。同时,用这些标记对85份谷子品种进行检测,CPAS-AccⅡ和AP-1检测到不同基因型的穗重、穗粒重和千粒重的差异均不显著,而AP-2检测的2种基因型间除千粒重差异不显著外,穗重和穗粒重在2015和2016两年间差异均达到显著水平。【结论】在谷子中发现6个ARGOS家族成员,均具有保守OSR结构域,其中,谷子SiARGOS1开放阅读框为342 bp,无内含子,与拟南芥AtARGOS同源,该基因对生长素不敏感,但受乙烯利上调表达。在该基因启动子区开发的SSR标记AP-2可作为功能标记,用于谷子穗重和穗粒重等产量性状相关优异等位变异的鉴定和筛选。  相似文献   

15.
一个谷子新抗锈基因的AFLP标记   总被引:2,自引:1,他引:1  
【目的】研究谷子抗源的抗锈遗传规律,寻找和定位与谷子抗锈基因连锁的分子标记,为谷子抗锈病基因的定位、克隆和抗病育种等研究奠定基础。【方法】用谷子锈菌单胞菌系93-5接种十里香和豫谷1号及杂交后代F1、F2进行抗锈鉴定,并根据鉴定结果构建抗、感基因池;利用AFLP技术筛选128对EcoRⅠ/MseⅠ引物组合,从中寻找和定位与谷子抗锈基因连锁的分子标记;根据AFLP分析结果进行抗锈基因连锁分析并进行SCAR标记转化。【结果】根据十里香×豫谷1号杂交后代F2群体(131株)抗感谷锈病分离比例,确定十里香抗锈性由显性单基因控制。筛选获得3个与谷子抗锈基因Rusi1(暂命名)连锁的AFLP分子标记,经计算标记与该抗锈基因的遗传距离分别为7.4、9.2和27.4cM。将3个标记片段回收、克隆和测序,成功地将AFLP标记E+CTT/M+TAC-256转化为SCAR标记。初步构建了谷子抗锈基因Rusi1的遗传连锁图谱。【结论】谷子十里香抗锈性由显性单基因控制,Rusi1是一个新发现的谷子抗锈基因。  相似文献   

16.
【目的】谷子生育期及穗部性状是影响谷子品种适应性及产量的关键因素。通过对相关性状进行QTL定位分析,为探明谷子复杂产量性状的分子遗传机制奠定基础。【方法】以优良品种豫谷18和冀谷19为亲本构建的包含400个家系的RIL群体为试验材料,于2018—2019年分别在4个不同环境下调查谷子抽穗期、抽穗-成熟天数、全生育期及穗长、穗粗和单穗重等穗相关性状的表型值。同时,利用已构建的由1 304个bin标记组成的全长为2 196 cM,标记间平均距离为1.68 cM的高密度遗传连锁图谱。采用复合区间作图法(composite interval mapping,CIM)对生育期及穗部性状进行QTL定位分析,并对所获得的QTL置信区间进行候选基因的预测。【结果】重组自交系群体生育期及穗部性状在4个环境中均表现为连续分布且存在双向超亲分离现象,符合数量性状的遗传特征,适宜进行QTL分析。相关分析表明,谷子抽穗期与全生育期呈极显著正相关,与抽穗-成熟天数呈显著负相关,穗长与穗粗呈显著正相关。共检测到88个与谷子生育期及穗部性状相关的QTL,分布在第1、3、5、6、8和9染色体上。其中45个QTL与抽穗期相关,单个QTL能够解释表型变异的1.61%—27.60%;7个QTL与抽穗-成熟天数相关,单个QTL能够解释表型变异的2.65%—12.14%;20个QTL与全生育期相关,单个QTL能够解释表型变异的1.98%—16.97%;9个QTL与穗长相关,单个QTL能够解释表型变异的3.51%—11.65%;5个QTL与穗粗相关,单个QTL能够解释表型变异的3.74%—8.34%;2个QTL与单穗重相关,单个QTL能够解释表型变异的5.16%—5.20%。本研究共检测到12个主效QTL,其中,qEHD-9-1qEHD-9-2qHMD-9-2qGRP-9-2qPL-5-1在至少2个环境和BLUP值中被重复检测到。控制生育期的主效QTL(qEHD-9-1qHMD-9-1qGRP-9-1)与控制穗长的主效QTL(qPL-9-1)在第9染色体重叠;qEHD-9-2qHMD-9-3qGRP-9-2qPL-9-3也在第9染色体重叠;控制穗长的主效QTL(qPL-5-1)和控制穗粗的QTL(qPD-5-1)在第5染色体重叠。对3个QTL簇的置信区间进行基因注释,筛选出5个与生育期及穗部性状相关的候选基因,其中,2个候选基因在谷子生育期调控和穗部性状发育中均发挥重要作用。【结论】共检测到88个与谷子生育期及穗部性状相关的QTL,12个为主效QTL,其中5个主效QTL在多个环境被重复检测到,且成簇分布。基于基因注释,共筛选了5个与谷子生育期和穗部性状相关的候选基因。  相似文献   

17.
【目的】谷子是C4模式植物,其叶色突变体是研究C4光合途径的良好材料。通过研究谷子条纹叶突变体A36-S的细胞学特性并对突变基因进行定位,为克隆突变基因、解析谷子叶绿体合成及发育机理、进一步理解C4光合调控机制奠定基础。【方法】谷子条纹叶突变体A36-S是由育种创制的中间材料A36自然变异而来。对比A36-S及其正常表型等基因系A36-N的表型特征,调查二者的株高、叶宽、叶长、穗重、千粒重、结实率等农艺性状指标;测定A36-SA36-N的叶绿素含量、净光合速率、胞间CO2浓度、气孔导度、蒸腾速率等光合指标,分析A36-S的光合特性;观察A36-S和对照品种豫谷1号的叶片半薄横截切片和超薄切片,分析A36-S叶片解剖结构特征,分别统计叶肉细胞和维管束鞘细胞中叶绿体的数量和面积,从而分析叶绿体合成及发育情况;构建A36-S×SSR41的F2分离群体,统计群体中正常表型单株与条纹叶单株的数量,进行遗传分析;分别构建F2分离群体正常单株与条纹叶单株的DNA混池,采用集团分离分析法(BSA法)进行突变基因的定位;筛选、开发多个SSR标记及In-Del标记,扫描F2群体中条纹叶单株,进行进一步基因定位。【结果】谷子条纹叶突变体A36-S在全生育期表现出叶片不规则白色条纹的表型。农艺性状分析表明,相比其近等基因系A36-N,A36-S在株高、叶宽、穗重、千粒重、结实率等表型上均显著下降。光合指标测定表明A36-S叶片中叶绿素含量明显降低,尤其是叶绿素b含量下降更为严重,同时净光合速率也明显下降。叶片解剖结构观察发现,与对照豫谷1号相比,A36-S的Kranz结构变化并不明显,但叶绿体数量和大小都显著低于对照。观察叶绿体超微结构,发现A36-S的不同细胞间叶绿体发育状况差异较大,依据叶绿体发育情况可将叶片细胞可分为3类:Ⅰ类细胞具有正常发育的叶绿体;Ⅱ类细胞叶绿体基粒及片层结构减少;Ⅲ类细胞则叶绿体结构严重异常甚至不含有叶绿体。遗传分析表明A36-S表型受隐性单基因控制,利用F2分离群体将突变基因定位在第4染色体7.66—27.90 Mb区间内。【结论】谷子A36-S条纹叶突变体表现为农艺性状及光合能力下降,叶片细胞叶绿体的数量、大小及结构均表现出显著异常。条纹叶性状受隐性单基因控制,利用分子标记将候选基因定位于第4染色体7.66—27.90 Mb区间内。  相似文献   

18.
【目的】谷子适应性强,抗旱耐瘠,是起源于中国的重要作物。通过转录组测序技术分析谷子萌发不同吸水期的转录组差异,以期获得谷子萌发过程中的差异表达基因,寻找调控谷子萌发的重要代谢途径和代谢物。【方法】以晋谷20为材料,构建谷子萌发过程中开始快速吸水期、滞缓吸水期和重新大量吸水期的cDNA文库,进行转录组分析;采用K-Means开展基因表达聚类分析;利用DESeq筛选差异表达基因;通过COG、GO、KEGG等对差异表达基因进行功能注释;利用KEGG富集挖掘不同吸水期调控种子萌发的关键代谢途径和关键基因;并采用qRT-PCR验证其可靠性;用HPLC分析关键代谢物含量。【结果】转录物测序分析获得谷子萌发开始快速吸水期、滞缓吸水期和重新大量吸水期覆盖整个基因组的基因表达谱,共获得33 643个基因,识别9个具有不同表达模式的共表达基因簇。比较种子萌发的开始快速吸水期与滞缓吸水期、滞缓吸水期与重新大量吸水期、开始快速吸水期与重新大量吸水期,分别筛选出3 893、4 612和8 472个差异表达基因。KEGG富集分析表明,3个比较的差异表达基因都显著富集到phenylpropanoid biosynthesis、phenylalanine metabolism、starch and sucrose metabolism代谢途径;开始快速吸水期与滞缓吸水期、开始快速吸水期与重新大量吸水期的差异表达基因还显著富集到plant hormone signal transduction途径。并且3个比较中富集到phenylpropanoid biosynthesis和phenylalanine metabolism代谢途径的差异表达基因数都最多,其中过氧化物酶基因(peroxidase)比例最高。通过qRT-PCR对4个苯丙烷生物合成途径相关基因的分析表明,其表达趋势与转录组分析结果基本一致,其中,4-香豆酸-CoA连接酶3(4-coumarate-CoA ligase 3)在谷子种子中存在已形成mRNA,萌发吸水过程中呈先下调后上调再下调的表达趋势。苯丙烷类相关代谢物含量分析显示,芥子酸在种子中大量储备,在萌发过程中呈下调趋势;阿魏酸、对香豆酸和咖啡酸呈先上调后下调趋势。【结论】谷子萌发过程中,不同吸水期的差异表达基因显著与苯丙烷生物合成途径和苯丙氨酸代谢途径相关;其上游基因4-香豆酰-辅酶A连接酶和下游基因过氧化物酶家族成员在谷子萌发响应水分过程中发挥调控作用;中间产物芥子酸可能参与种子的休眠与萌发。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号