首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
肥液浓度对单膜孔入渗NO-3-N运移特性影响的室内试验研究   总被引:2,自引:1,他引:2  
该文通过室内入渗试验,研究了不同浓度的单膜孔肥液入渗NO-3-N的分布特性.研究表明:不同浓度的膜孔肥液入渗土壤NO-3-N浓度的湿润锋运移距离与土壤水分运动的湿润锋一致;肥液浓度越大,相同入渗时间的NO-3-N浓度锋运移距离越大,土壤剖面NO3--N浓度最大值越大,相同深度处土壤NO3--N浓度也越大.肥液入渗土壤NO-3-N浓度分布特征与湿润体深度符合分段函数模型.供水入渗过程中,NO-3-N浓度锋运移距离和浓度最大值均随时间的延长而增大;再分布过程中,NO-3-N浓度锋运移距离继续增大,而NO-3-N浓度最大值逐渐减小.  相似文献   

2.
单膜孔点源肥液入渗水氮分布特性试验研究   总被引:2,自引:1,他引:2  
该文通过室内试验,研究了膜孔灌肥液单点源自由入渗湿润体内水分和NO3-N浓度的分布特性,提出了膜孔肥液自由入渗湿润体内水分和NO3-N浓度分布的数学模型。研究结果表明:水分和NO3-N浓度分布模型计算精度较高,并符合点源湿润体内土壤含水率和NO3-N的分布规律;根据湿润体内水分和NO3-N浓度分布模型,推求得到了湿润体中土壤含水率、NO3-N浓度和湿润半径三者之间的关系。以上成果为进一步研究膜孔肥液入渗的影响因素和灌水技术提供了理论基础。  相似文献   

3.
不同施肥条件下农田硝态氮迁移的试验研究   总被引:22,自引:5,他引:22  
NO-3-N的淋失是旱地农田氮素损失的重要途径之一,也是引起地下水污染的一个主要原因。在黄土高原地区,夏玉米生长正逢雨季,是NO-3-N淋失的主要时期。该研究基于阻水层理论和黄土高原地区传统的垄作习惯,在手工模拟机具成垄压实施肥的基础上研究了该施肥法与传统的平地施肥、垄沟施肥(成垄不压实)条件下土壤NO-3-N的迁移动态,结果表明,在供水量相同条件下,由于平地和垄沟条件下水分分布的差异,导致平地土壤中的NO-3-N较垄沟耕作易于迁移。在生育前期,由于作物根系对NO-3-N的吸收和拦截,成垄压实与成垄不压实施肥对阻止NO-3-N随水下移差异不大;生育后期,当作物需肥量减小时,成垄压实施肥能够阻止NO-3-N向深层土壤迁移累积。玉米收获后,3种施肥方式下土壤NO-3-N迁移深度为平地(>60 cm)>垄沟施肥(>45 cm)>成垄压实施肥(<35 cm)。  相似文献   

4.
宁夏引黄灌区稻田氮素浓度变化与迁移特征   总被引:3,自引:0,他引:3  
过量施氮与不合理灌水是农田面源污染加剧的主要原因。为了寻求较优的水氮管理模式以促进农业生产和减少农田退水对黄河水体的污染, 在宁夏引黄灌区典型稻田中开展了不同水氮条件下稻田氮素迁移转化规律研究。结果表明: 不同水氮条件下稻田田面水NH4+-N 与NO3--N 浓度伴随施肥出现明显峰值, NO3--N 峰值出现时间较NH4+-N 晚, 且变化较平缓。3 次追肥时期和整个生育期田面水NH4+-N 平均浓度与施氮量和灌水量都呈显著相关, 田面水NO3--N 平均浓度与施氮量呈显著正相关, 与灌水量相关性不显著。稻田30 cm与60 cm 深度的直渗水NH4+-N 浓度受施肥影响较大, 与田面水NH4+-N 浓度变化规律相似, 90 cm 处直渗水NH4+-N 浓度峰值出现较为滞后, 且浓度较上层土体低, 120 cm 处直渗水NH4+-N 浓度大体呈现持续上升趋势,整个生育期直渗水NH4+-N 平均浓度与施氮量呈显著相关, 仅30 cm 处NH4+-N 平均浓度与灌水量呈负相关, 其他土层深度不显著。30 cm 与60 cm 直渗水NO3--N 浓度在首次灌水后急剧下降, 在施肥后有较小幅度上升, 90 cm 与120 cm 直渗水NO3--N 浓度下降缓慢, 仅30 cm 处NO3--N 平均浓度与施肥量显著正相关。总的结果表明减少施肥或灌水均可达到减少农田氮素淋失的目的。  相似文献   

5.
通过水培试验探讨了NO-3胁迫下K+、Ca2+对黄瓜幼苗膜质过氧化及活性氧清除酶系统的影响。结果表明,在相同NO-3浓度胁迫7d后, Ca2+浓度越大,膜脂过氧化产物丙二醛(MDA)含量越高,而K+浓度越大,电解质相对渗透率越高,由此说明K+、Ca2+对细胞膜造成伤害的机理不同。黄瓜幼苗活性氧清除酶系统对K+、Ca2+的响应亦不同,在一定程度上,K+和Ca2+ 可提高SOD、POD和CAT活性,保护植物免受自由基伤害,继而可增强植物对逆境的适应能力。  相似文献   

6.
通过连续7 年的定位试验, 研究了日光温室生产中不同施肥模式(常规模式、无公害模式和有机模式)对土壤NO3--N 时空分布及累积的影响。结果表明, 随着种植年限的增加, 3 种施肥模式土壤剖面各层次NO3--N含量均呈上升趋势, 年增加量顺序为常规施肥模式>无公害施肥模式>有机施肥模式。受氮素输入量(施肥)的影响, NO3--N 主要分布在0~40 cm 土层, 0~60 cm 土层NO3--N 含量总体呈作物生长前期低、中期高、后期低的趋势; 与上层土壤相比, 100 cm 以下土层NO3--N 含量有不同程度的增加。0~200 cm 土体NO3--N 平均累积量有机施肥模式比无公害施肥模式低33.8%, 比常规施肥模式低45.9%; 无公害施肥模式比常规施肥模式低18.3%。3 种施肥模式下, NO3--N 都有向2 m 以下土体淋洗的趋势。与施用化学肥料相比, 施用有机肥能明显降低土壤剖面NO3--N 含量, 控制其累积峰的下移, 但不合理施用有机肥也会产生NO3--N 淋洗而污染环境。  相似文献   

7.
膜孔直径对浑水膜孔灌土壤水氮运移特性的影响   总被引:7,自引:5,他引:2  
通过对西安粉壤土进行4种膜孔直径(6,8,10,12cm)的浑水膜孔肥液自由入渗室内试验,观测并分析了湿润锋运移距离、累积入渗量、湿润体内水分分布以及NO_3~--N和NH_4~+-N运移特性的变化规律。结果表明:膜孔直径对浑水膜孔灌土壤水氮运移特性具有较为显著的影响。不同膜孔直径的浑水膜孔灌肥液自由入渗累积入渗量符合Philip入渗模型;湿润锋运移距离与入渗时间呈极显著的幂函数关系;在相同的入渗时间内,膜孔直径越大,湿润锋运移距离越大,单位膜孔面积累积入渗量越小,同一位置处土壤NO_3~--N和NH_4~+-N含量越大。入渗400min内,在膜孔中心附近区域NO_3~--N和NH_4~+-N含量较高,湿润体内土壤NO_3~--N主要集中分布在距膜孔中心15cm范围内,而NH_4~+-N主要集中分布在距膜孔中心8cm范围内。  相似文献   

8.
升高CO2浓度能够促进作物的光合作用,提高作物的生物量和产量,但关于CO2与NH+4/NO-3比及其交互作用对作物影响的研究较少,为探索番茄幼苗生长发育对CO2浓度升高的响应是否对NH+4/NO-3配比有较强的依赖关系,本试验在营养液栽培条件下,以番茄(Lycopersicun esculentum Mill)为试材,研究正常大气CO2浓度(360 μL/L)和倍增CO2浓度(720 μL/L)与不同NH+4/NO-3配比的交互作用对番茄幼苗生长的影响。结果表明:CO2浓度升高提高了低NH+4/NO-3比例处理中番茄叶片的光合速率和水分利用率,提高幅度随NH+4/NO-3比例的降低而增强,光合速率增强最大达55%。在同一CO2浓度处理下净光合速率与水分利用率均随NH+4/NO-3比例的增加而显著降低。这说明CO2浓度升高对番茄幼苗生长发育的促进作用随NH+4/NO-3比例的降低而提高,但并没有减弱全NH+4-N处理中番茄幼苗的受毒害作用。综上所述,CO2浓度升高能提高植物生产的节水能力和水分生产力;水培条件下,NO-3-N是最适合番茄幼苗生长发育的氮源,其它NH+4/NO-3比例对番茄幼苗的生长发育有一定的抑制作用,仅以NH+4-N作氮源则番茄幼苗很难生长。  相似文献   

9.
灌溉对大麦/玉米带田土壤硝态氮累积和淋失的影响   总被引:7,自引:3,他引:7  
以甘肃省河西走廊灌区为试验地点,分别在0、150、300 kg/hm2氮水平和816、1632 m3/hm2灌水量下,对3次灌水前、后大麦/玉米带田0~200 cm土壤NO-3-N含量变化和灌水后135 cm处渗漏液NO-3-N浓度进行了测定。结果表明:灌水明显影响土壤硝态氮累积量,随灌水次数增加,土壤硝态氮累积量降低,而且在高灌水条件下土壤硝态氮累积量变化比低灌水量时大。从渗漏液硝态氮浓度来看,大麦带和玉米带都是以第1次灌水最高,浓度分别为8.04~17.21和3.30~14.57 mg/L。3次灌水土壤硝态氮淋失量,玉米带以N 150 kg/hm2和灌水量1632 m3/hm2最高,平均为4.31 kg/hm2;大麦带以N 150 kg/hm2及灌水量1632 m3/hm2和N 150 kg/hm2及灌水量816 m3/hm2比较高,平均为6.82 kg/hm2。  相似文献   

10.
浑水含沙率对膜孔灌肥液入渗土壤水氮运移特性的影响   总被引:8,自引:2,他引:6  
为研究浑水膜孔灌条件下含沙率对膜孔灌肥液入渗土壤水氮运移特性的影响,通过室内膜孔入渗试验,设5个含沙率水平(0、3%、6%、9%、12%),观测累积入渗量、湿润锋运移距离、湿润体内水分以及NO-3-N和NH4+-N运移变化特性。结果表明:浑水含沙率越大,湿润锋运移距离越小,相同入渗历时内湿润体体积和高含水率区域越小,湿润体内同一位置处土壤含水率越小。单位膜孔面积累积入渗量与入渗时间符合Kostiakov模型(R2>0.9,P<0.01);随着浑水含沙率的逐渐增大,入渗系数逐渐减小,而入渗指数基本不变。垂直湿润锋运移距离和减渗率均与入渗时间呈极显著的幂函数关系,含沙率对减渗率的影响主要是通过对减渗系数的影响来实现。湿润体土壤NO-3-N和NH4+-N含量随着浑水含沙率的增大而减小,且在膜孔中心附近区域其含量均较高。土壤NO-3-N主要集中分布在湿润半径10 cm范围内,湿润体水平方向及膜孔垂向土壤NO-3-N含量均随着距膜孔中心距离的增加而降低;而土壤NH4+-N主要集中分布在湿润半径5 cm范围内,湿润半径5~10 cm范围内的土壤NH4+-N含量随着土壤深度的增加而降低。研究结果可为进一步深入研究浑水膜孔灌肥液入渗提供理论依据。  相似文献   

11.
肥液浓度对不同形态氮素在土壤中运移转化特性的影响   总被引:1,自引:1,他引:0  
为揭示肥液(尿素)浓度影响下土壤湿润体中不同形态氮素的运移转化规律,选取黏壤土和砂壤土作为肥液入渗试验供试土壤,量化分析肥液浓度对土壤累积入渗量和不同形态氮素在分布和再分布过程中运移转化特性的影响。结果表明:相同入渗时间内土壤累积入渗量随肥液浓度的增大而增加,Kostiakov公式的入渗系数与肥液浓度呈现线性关系,建立并验证了考虑肥液浓度影响的土壤累积入渗量估算公式,模拟值与实测值具有较高的一致性,两者间的相对误差绝对值均值均8.0%;入渗结束时,土壤湿润体相同位置处的尿素态氮、铵态氮(NH_4~+-N)和硝态氮(NO_3~--N)含量均随肥液浓度的增大而增加;NH_4~+-N主要分布在土壤湿润体深度20 cm以上,尿素态氮和NO_3~--N含量随着湿润体深度的增大呈现下降趋势;再分布过程中,土壤湿润体中尿素态氮含量随再分布时间的增加整体呈现减小趋势,且黏壤土和砂壤土湿润体中的尿素态氮分别在再分布5,3天时基本水解完成;NH_4~+-N含量呈现先增加后减小的趋势,黏壤土湿润体中的峰值约出现在再分布3~5天,而砂壤土约在再分布3天;黏壤土湿润体中NO_3~--N含量呈现先增加后减小的趋势,其峰值约在5~10天,而砂壤土中NO_3~--N含量在再分布10天时,始终保持在较高水平。研究结果为农田灌溉施肥系统的设计和管理提供理论基础和技术支撑。  相似文献   

12.
肥液浓度对浑水膜孔灌多点源入渗水氮运移的影响   总被引:3,自引:3,他引:0  
为了探究浑水膜孔灌多点源入渗多向交汇下水氮运移特性,利用浑水膜孔灌入渗装置进行了室内试验,研究了不同肥液浓度(0,1,2,3,4 g/L)的硝酸铵钙溶液对浑水膜孔灌多向交汇入渗规律、单向交汇和多向交汇发生时间、膜孔中心和各交汇点(植株交汇中心、行间交汇中心和4点源交汇中心)垂直方向的含水率和NO_3~-—N的分布规律等的影响。结果表明:各肥液浓度下膜孔单位面积累积入渗量与入渗时间呈幂函数关系,入渗参数a随肥液浓度的增大而减小,入渗参数b随肥液浓度的增大而增大;随着肥液浓度的增加,单向交汇和多向交汇发生时间均提前;10 cm土层深度处,肥液入渗各中心含水率较0 g/L处理分别增加10.42%,13.94%,16.38%,24.74%;各中心垂直方向含水率随土壤深度呈现不同的变化规律;NO_3~-—N在土壤上层分布均匀,而在湿润锋处出现峰值;4点源交汇中心处NO_3~-—N含量高于其他3个中心。研究结果可为浑水膜孔灌的技术研究奠定科学基础。  相似文献   

13.
残膜量对膜孔灌土壤水氮运移特性的影响   总被引:1,自引:0,他引:1  
为探究土壤残膜量对膜孔灌肥液入渗土壤水氮运移特性的影响,通过室内土箱模拟试验设置0,90,180,360,720 kg/hm~2的5个残膜量水平,分析不同残膜量下膜孔灌肥液入渗累积入渗量、湿润锋运移距离、湿润体特征和水氮分布规律。结果表明:残膜对膜孔灌肥液入渗具有阻渗作用,残膜土累积入渗量较无残膜土减少10.63%~30.77%,Kostiakov模型对残膜土单位膜孔面积累积入渗量与入渗时间有较好地拟合效果;入渗前30 min,不同残膜量的垂直湿润锋运移距离差异不显著,随着入渗时间推进,残膜量与湿润锋运移距离、湿润体体积呈负相关关系。入渗结束时,含残膜土湿润体体积减小18.09%~41.96%。垂直湿润锋距离、湿润体体积与入渗时间均呈显著的幂函数关系,R~2均0.98;除膜孔中心处,相同位置含残膜的土壤含水率低于无残膜,30%高含水率区域减小。湿润体内同一深度土壤NO_3~--N和NH_4~+-N含量随残膜量增加而减小,减小幅度为4.20%~16.27%。研究结果可为残膜土下膜孔灌技术提供理论参考。  相似文献   

14.
肥液浓度对涌泉根灌土壤水氮运移特性的影响   总被引:5,自引:3,他引:2  
为了提高涌泉根灌水肥的利用效率,采用室内土箱入渗试验,探究了不同肥液浓度(0,15,30,60g/L)条件下湿润锋运移、土壤水分及氮素分布的规律。结果表明:入渗相同时间时,随着肥液浓度的增大,湿润锋运移距离、湿润体内相同节点处的土壤含水率、铵态氮及硝态氮质量分数均增大;湿润锋运移距离与入渗时间具有显著的幂函数关系,其决定系数均达到0.99;随着肥液入渗再分布的进行,湿润体内含水率分布更加均匀,最大含水率位置下移,铵态氮量逐渐减小,再分布5d湿润体内硝态氮量达到最大值;硝态氮运移规律和水分相似,易随水分流失。该研究成果为进一步研究涌泉根灌水氮高效利用技术奠定了基础。  相似文献   

15.
针对蔬菜灌溉水肥渗漏问题,采用田间试验和室内分析相结合,研究了番茄膜下沟灌灌水量与土壤硝态氮的根层外渗漏关系,分析了灌水量与不同根层土壤硝态氮的淋溶和保蓄特征,结果表明:灌溉不施肥条件下灌水量与土壤硝态氮淋溶量和淋溶率、灌溉施肥条件下灌水量与土壤施入硝态氮的保蓄率和渗漏率均呈直线关系;灌溉均会引起浅根层(0—20 cm)硝态氮淋溶,灌溉施肥条件下7.5~15 mm灌水量范围硝态氮积累有一个峰值,而22.5~45 mm范围则有两个峰值;灌水量在7.5~15mm之间,灌溉不施肥条件下根层土壤硝态氮淋溶率为0,灌溉施肥条件下土壤硝态氮渗漏率为0~5.19%;灌水量在22.5~45 mm之间,灌溉不施肥土壤硝态氮淋溶率为5.38%~19.08%,灌溉施肥条件下根层土壤硝态氮渗漏率为21.91%~61.96%。日光温室番茄膜下沟灌能减少肥料淋溶与渗漏的节水灌水量为15 mm。  相似文献   

16.
[目的]探讨不同生物质炭施用量条件下旱地红壤中NO-3-N的含量及水平运移规律,为该地区的农田水分管理和环境保护提供科学依据。[方法]采用室内水平扩散率仪测定不同生物质炭施用量[C0(0t/hm~2,不施用生物质炭),C1(2.5t/hm~2),C2(5t/hm~2),C3(10t/hm~2),C4(20t/hm~2),C5(30t/hm~2)和C6(40t/hm~2)]条件下土壤中硝态氮水平运移速率和运移浓度。[结果]生物质炭施用对土壤中硝态氮的水平运移速率和水平运移浓度影响显著。随着生物质炭施用量的增加,硝态氮的水平运移速率和水平运移浓度呈先增加后降低的趋势,而土壤水扩散率呈逐渐降低趋势。C5(30t/hm~2)处理下硝态氮的水平运移速率和水平运移浓度均出现最大值,分别为0.67cm/min,165.52mg/kg。随着生物质炭施用量的继续增加,C6(40t/hm~2)处理的硝态氮的水平运移速率和水平运移浓度较C5(30t/hm~2)处理有所降低,硝态氮浓度最大值均出现在湿润峰峰面上。分析影响硝态氮水平运移规律的因素表明,生物质炭降低了土壤的容重、增加了土壤有机碳和孔隙度,从而导致了各处理硝态氮的水平运移规律发生了变化。[结论]生物质炭可以改善土壤的理化性状,促进硝态氮的水平运移,在利用生物质炭改良旱地红壤理化性状的同时,也要注意防止氮素流失对环境的影响,降低其对地表水的潜在污染风险。  相似文献   

17.
为提高红壤区涌泉根灌水氮利用效率,通过室内肥液入渗试验,研究了不同肥液浓度(0,10,20,35,60 g/L)条件下涌泉根灌土壤的入渗能力、湿润锋运移距离、土壤水分分布以及铵态氮和硝态氮的运移特性,并建立了红壤涌泉根灌土壤累计入渗量及湿润锋在竖直向上、竖直向下和水平方向的运移距离与肥液浓度的关系模型。结果表明:土壤累计入渗量、湿润锋运移距离以及湿润体内水分和氮素的分布均受到肥液浓度的影响。在同一入渗时刻,土壤累计入渗量及湿润锋运移距离随肥液浓度的增大而增大,且与入渗历时均呈幂函数关系;在灌水结束时,相同土层深度内,肥液浓度越大,土壤含水率就越大,土壤中铵态氮和硝态氮的浓度也越大,且与铵态氮相比,硝态氮的分布范围更广。随着肥液再分布的进行,土层内最大含水率位置逐渐下移,且土壤含水率的分布也更加均匀;土壤中铵态氮和硝态氮浓度的变化趋势不同,浅层中铵态氮的浓度逐渐降低,而硝态氮的浓度先降低后增加;深层中铵态氮的浓度先增加后降低,而硝态氮的浓度逐渐增加。该研究成果可为进一步研究红壤区涌泉根灌肥液入渗氮素运移及转化提供理论参考。  相似文献   

18.
为揭示不同施肥时机(全过程、前1/2和后1/2入渗水量施肥)下土壤水氮运移转化规律,以砂壤土和黏壤土质地的一维垂直肥液(尿素)入渗试验为基础,重点分析不同施肥时机下土壤水氮分布与再分布过程中的运移转化规律,并量化比较其对土壤中氮素含量的影响。结果表明,施肥时机对土壤累积入渗量和湿润体中水分分布影响微小,但对不同形态氮素运移转化影响显著;砂壤土和黏壤土入渗结束时刻,全过程和后1/2入渗水量施肥时,其尿素态氮、铵态氮(NH4+—N)和硝态氮(NO3-—N)含量均随土层深度增大而减小;前1/2入渗水量施肥时,尿素态氮和NO3-—N含量在湿润体边缘累积,NH4+—N呈先增大后减小趋势,且主要分布在5—25 cm土层;再分布阶段,全过程和后1/2入渗水量施肥时,砂壤土和黏壤土中尿素态氮分别在再分布3天和5天时基本水解完成,同时NH4+—N含量达到峰值,NO3-—N含量再分布10天内未出现下降趋势;前1/2入渗水量施肥时,尿素态氮再分布10天时基本水解完成,NH4+—N含量再分布5~10天达到峰值,NO3-—N含量则呈先增加后减小趋势;后1/2入渗水量和全过程施肥条件下,砂壤土和黏壤土再分布10天时0—40 cm土层中NH4+—N和NO3-—N含量均大于前1/2入渗水量施肥,说明其氮素潜在利用效率高,故推荐畦(沟)灌合理施肥时机为后1/2入渗水量或全过程施肥。研究结果可为农田畦(沟)灌施肥系统的设计和管理提供理论基础和技术支撑。  相似文献   

19.
涌泉根灌不同浓度肥液入渗特性及土壤湿润体模型研究   总被引:6,自引:2,他引:4  
为了研究涌泉根灌肥液入渗特性及湿润体水氮运移的变化规律,在陕北米脂山地微灌枣树示范基地原状土上进行了涌泉根灌肥液入渗试验。结果表明:累积入渗量与入渗时间之间符合Kostiakov幂函数关系(R20.9,P0.01);涌泉根灌入渗能力与增渗效果均随肥液浓度增大而增大;水平湿润锋与竖直湿润锋运移距离均随肥液浓度增大而增大,且均与入渗时间呈显著的幂函数关系,水平方向和竖直方向的湿润锋运移距离的拟合值与实测值的相对误差在–3.84%~5.20%以内。肥液浓度的不同对于湿润体大小略有影响。提出了涌泉根灌肥液入渗湿润体内土壤含水率和NH_4~+-N浓度分布的数学模型,即在一定浓度范围内,单位含水率的变化可引起的肥液浓度变化,且模型的计算精度较高(模拟值与实测值相对误差在10%以内),并符合湿润体内土壤含水率和NH_4~+-N分布规律,可对不同位置处土壤含水率及NH_4~+-N含量进行估算。水分分布情况对肥液浓度条件敏感性较低,NH_4~+-N分布情况对肥液浓度条件敏感性较高。研究可为涌泉根灌水肥高效利用提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号