首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A field experimental study was performed during the growing season of 2001 to evaluate water and nutrient balances in paddy rice culture. Three plots of standard fertilization (SF), excessive fertilization (EF, 150% of SF), and reduced fertilization (RF, 70% of SF) were used and the size of treatment plot was 3,000 m2, respectively. The hydrologic and water quality was field monitored throughout the crop stages. The water balance analyses indicated that approximately half (47–54%) of the total outflow was lost through surface drainage, with the remainder consumed by evapotranspiration. Statistical analysis showed that there was no significant effect of fertilization rates on nutrient outflow through the surface drainage or rice yield. Reducing fertilization of rice paddy may not work well to mitigate the non-point source nutrient loading in the range of normal farming practices. Instead, the reduction in surface drainage could be important to controlling the loading. Suggestive measures that may be applicable to reduce surface drainage and nutrient losses include water-saving irrigation by reducing ponded water depth, raising the weir height in diked rice fields, and minimizing forced surface drainage as recommended by other researchers. The suggested practices can cause some deviations from conventional farming practices, and further investigations are recommended.  相似文献   

2.
This paper introduces an irrigation system developed in the floodplain of a lake and studies the water management technique of the irrigation system by estimating the total water balance of the whole system. The system is characterized by a reservoir combined with a dike system in the floodplain of the Tonle Sap Great Lake and an irrigation system. Two main models are used for calculating the total water balance. The first model is the water balance of the reservoir. The inputs to the model are water level of the reservoir, precipitation, lake evaporation, infiltration, and area–volume curve of the reservoir. The outputs are inflow and outflow of the reservoir. The supply from the reservoir to paddy fields is computed from the outflow. The second model is the water balance of paddy fields, based on which the water requirement in paddy fields is derived. The reference evapotranspiration needed to calculate the water requirement is simulated for monthly time series using the FAO Penman–Monteith model. Since there is no drainage network in the irrigation system, surface drainage and runoff are not included in the calculation of the water balance, and seepage is considered negligible in the flat floodplain area. The evapotranspiration, rice variety, soil type and irrigated area are used to simulate water consumption in paddy fields. Finally, the two models are connected to produce the total water balance from the reservoir to paddy fields. The total outflow from the reservoir is estimated and the total water consumption for dry season cultivation is also determined. Finally, the efficiency of the whole system is examined.  相似文献   

3.
Curbing nutrient loads from rice cultivation has been an issue for the water quality management of surface water bodies in the Asian monsoon region. The objectives of this study were to develop paddy BMP scenarios and to evaluate their effectiveness on nutrient loads reduction using long-term model simulation. Totally five BMP scenarios were developed based on the three paddy farming factors of drainage outlet height, fertilizer type, and application amount and were compared with conventional practices. CREAMS-PADDY model was chosen for the paddy nutrient simulation, and two-year field experimental data were used for the model calibration and validation. The validated model was used to evaluate the developed BMP scenarios for the 46 years of simulation period. The observed nutrient loads were 15.2 and 1.45 kg/ha for nitrogen and phosphorus, respectively, and mainly occurred by early season drainage and rainfall runoff in summer. The long-term simulation showed that the soil test-based fertilization and drainage outlet raising practice were the two most effective methods in nutrient loads reduction. The combination of these two resulted in the greatest loads reduction by 29 and 37 % for T-N and T-P, respectively (p value < 0.001). Overall the effectiveness of the BMP scenarios was decreased in the wet season. As the conclusion, outlet height control and soil nutrient-based fertilization were suggested as the effective practices in paddy loads reduction and their combination can be a practicable BMP scenario for the paddy nutrient management.  相似文献   

4.
Promoting biomass utilization, the objectives of this study were to clarify the spatial distribution of nitrogen, one of the most important fertilizer components in the methane fermentation digested slurry (i.e., the digested slurry), and to establish an effective method to apply spatial-uniformly digested slurry with irrigation water in the rice paddy field. A numerical model describing the unsteady two-dimensional flow and solution transport of paddy irrigation water was introduced. The accuracy of this model was verified with a field observation. The tendencies of the TN simulated in inlet and outlet portions had good agreement with the measured data and the accuracy of the numerical model could be verified. Using the numerical model, scenario analyses were conducted to determine the method for spatial-uniform application of the digested slurry with irrigation water. The simulated results indicated that drainage of the surface water and trenches at the soil surface were effective for spatial-uniform application of the digested slurry with irrigation water in the rice paddy fields. The effect of the trenches was maximized when the surface water of the rice paddy field was drained adequately.  相似文献   

5.
This study aims to assess the nitrogen contamination of groundwater in paddy and upland fields. A reactive chemical transport model PHREEQC and a variable saturated groundwater flow and transport model FEMWATER were used to evaluate the vertical transport of nitrogen compound in various soil types of paddy and upland. The shallow groundwater quality monitoring data of 2003, 2006, 2009 in the Choushui river alluvial fan, the major agriculture production area in Taiwan, were applied to support the validity of the numerical simulation findings. Results from PHREEQC and FEMWATER simulations showed that the organic-rich impermeable plow sole layer underneath the muddy layer of rice paddy can effectively reduce NO3 and N2 to NH4 + and retard the movement of NH4 +. However, in the upland field which has no plow sole layer, the NH4 + can move easily to the shallow aquifer and contaminate the groundwater. The spatiotemporal distribution of NO3 –N and NH4 +–N in the Choushui river alluvial fan revealed that high nitrate–N contamination areas were located mainly in the upland field of the proximal fan, where the granular unconfined aquifer was vulnerable to surface contaminants. Moreover, the unconfined nature of the aquifer allows the oxidization of NH4 + to NO3 and accelerates the plume movement. High ammonium–N concentration areas were mostly dispersed in the distal-fan area where upland planting and aquacultural farming were prevailed. The high NH4 +–N found in the northern Choushui river alluvial fan was attributed to the alternative planting of rice and upland crops, and the plow sole layer was broken to maintain the quick drainage upland crop needs.  相似文献   

6.
Concentrations of several pesticides were monitored in a paddy block and in the Kose river, which drains a paddy catchment in Fukuoka prefecture, Japan. Detailed water management in the block was also monitored to evaluate its effect on the pesticide contamination. The concentrations of applied pesticides in both block irrigation channel and drainage canal increased to tens of μg/L shortly after their applications. The increase in pesticide concentrations was well correlated with the open of irrigation and drainage gates in the pesticide-applied paddy plots only 1–3 days after pesticide application. High concentration of other pesticides, mainly herbicides, was also observed in the inflow irrigation and drainage waters, confirming the popularity of early irrigation and drainage after pesticide application in the area. The requirement of holding water after pesticide application (as a best management practice) issued by the authority was thus not properly followed. In a larger scale of the paddy catchment, the concentration of pesticides also increased significantly to several μg/L in the water of the Kose river shortly after the start of the pesticide application period either in downstream or mid–upstream areas, confirming the effect of current water management to the water quality. More extension and enforcement on water management should be done in order to control pesticide pollution from rice cultivation in Japan.  相似文献   

7.
The present study was carried out to evaluate nutrient losses that occur during the course of agricultural activity from rice paddy fields of reclaimed tidal flat. For this study, we chose a salt-affected rice paddy field located in the Saemangeum reclaimed tidal area, which is located on the western South Korean coasts. The plot size was 1,000 m2 (40 m × 25 m) with three replicates. The soil belonged to the Gwanghwal series, i.e., it was of the coarse silty, mixed, mesic type of Typic Haplaquents (saline alluvial soil). The input quantities of nitrogen and phosphorus (as chemical fertilizer) into the experimental rice paddy field were 200 kg N ha−1 and 51 kg P2O5 ha−1 per annum, and the respective input quantities of each due to precipitation were 9.3–12.9 kg N ha−1 and 0.4–0.7 kg P ha−1 per annum. In terms of irrigation water, these input quantities were 4.5–8.2 kg N ha−1 and 0.3–0.9 kg P ha−1 per annum, respectively. Losses of these nutrients due to surface runoff were 22.5–38.1 kg N ha−1 and 0.7–2.2 kg P ha−1 for the year 2003, and 26.8–29.6 kg N ha−1 and 1.6–1.9 kg P ha−1 for the year 2004, respectively. Losses of these nutrients due to subsurface infiltration during the irrigation period were 0.44–0.67 kg N ha−1 and 0.03–0.04 kg P ha−1 for the year 2003, and 0.15–0.16 kg N ha−1 and 0.05–0.06 kg P ha−1 for 2004. When losses of nitrogen and phosphorus were compared to the amount of nutrients supplied by chemical fertilizers, it was found that 11.3–19.1% of nitrogen and 0.5–1.7% of phosphorus were lost via surface runoff, whereas subsurface losses accounted to 0.2–0.8% for nitrogen and only 0.02–0.04% for phosphorus during the 2-year study period.  相似文献   

8.
Pesticides are very important in European rice production. For appropriate environmental protection, it is useful to predict the potential impact of pesticides after application, in paddy fields, in paddy runoff, and in the surrounding water, by calculating predicted environmental concentrations (PECs). In this paper, a joint simulation is described, coupling a field-scale pesticide fate model (RICEWQ) and a transportation model (RIVWQ) to evaluate the potential for predicting environmental concentrations of pesticides in the paddy field and adjacent surface water bodies and comparing the predicted values with the monitoring data. The results demonstrate that the application of the calibrated field-scale RICEWQ model is a conservative method to predict the PEC at the watershed level, overestimating the observed data; the coupled RICEWQ and RIVWQ models could be adequately used to predict PECs in the surrounding water at watershed level and in the higher tier risk assessment procedure.  相似文献   

9.
Water shortage has become an important issue for Korean agriculture. Korea suffers from a limited agricultural water supply, and wastewater reuse has been recommended as an alternative solution. This study examined the concentrations of toxic heavy metals and Escherichia coli in a paddy rice field irrigated with reclaimed wastewater to evaluate the risk to farmers. Most epidemiological studies have been based on upland fields, and therefore may not be directly applicable to paddy fields. In this study, a Beta-Poisson model was used to estimate the microbial risk of pathogen ingestion. The risk value increased significantly after irrigation and precipitation. The results of the microbial risk assessment showed that risk values of groundwater and reclaimed wastewater irrigation were lower than the values of effluent directly from wastewater treatment plants. The monitoring results of heavy metals for each irrigated paddy fields did not show specific tendency. A risk assessment for toxic heavy metals was performed according to various exposure pathways; however, the results of the carcinogenic and noncarcinogenic risk estimation showed that the risk from reclaimed wastewater-irrigated paddy fields was the lowest.  相似文献   

10.
All of steady and non-steady subsurface drainage equations were developed mostly based on water flow pattern in an ordinary field conditions. However, subsurface drainage in a paddy field is quite different from subsurface drainage in an ordinary field. Thus, it is necessary to develop new equations and mathematical models to design subsurface drainage system in a paddy field. The objective of this study was to apply the HYDRUS-2D model, based on the Richard’s equation, to simulate water flow under subsurface drainage in a paddy field for various drain depths (0.5, 0.75 and 1.0 m) and spacings (7.5 and 15.0 m), surface soil textures (clay loam and silty clay loam) and crack conditions. Simulation results were compared with two well-known drainage equations. The maximum drainage rate was obtained under 7.5-m spacings and 1-m depth. With increasing drain spacings, the drainage rate decreased. Drain spacings had more effect on drainage rate and water pressure head as compared to drain depth. Drainage rates calculated by the Hooghoudt’s and Murashima and Ogino’s equations were much lower than those calculated by the Richard’s equation. The Hooghoudt’s equation, developed for ordinary fields, did not perform well for paddy fields. This study also proved the importance of cracks in subsurface drainage system of paddy fields. HYDRUS-2D stands as a robust tool for designing subsurface drainage in a paddy field.  相似文献   

11.
In northeast Thailand, the rapid expansion of rainfed paddy fields has decreased the stability of rice production. This paper describes a model that computes rice production on the basis of the hydrologic conditions of rainfed paddy fields on hill slopes. The model well expressed the hydrologic processes, rice yield, and production at the study site. We simulated rice production as uphill paddy plots are abandoned, increasing catchment area, under various rainfall conditions. The simulation showed that rice yield and stability increase as uphill plots are abandoned, although the total rice production decreases. Thus, the effect of catchment size on rice production in each plot was quantified. The model proved to be useful for analyzing rainfed rice production under various land and water conditions.  相似文献   

12.
Two water management practices, an intermittent irrigation scheme using automatic irrigation system (AI) and a spillover-irrigation scheme (SI), were compared for the fate and transport of commonly used herbicides, mefenacet (MF) and bensulfuron-methyl (BSM) in experimental paddy plots. Maximum mefenacet concentrations in paddy water were 660 and 540 μg L−1 for AI and SI plot, respectively. The corresponding values for bensulfuron-methyl were 46.0 and 42.0 μg L−1. Dissipation of the herbicides in paddy water appeared to follow the first-order kinetics with half-lives (DT50) of 1.9–4.5 days and DT90 (90% mass dissipation) of 7.8–11.3 days. The AI plot had no surface drainage, hence no herbicide was lost through paddy-water discharge. However, SI plot lost about 38 and 49% of applied mefenacet and bensulfuron-methyl, respectively. The intermittent irrigation scheme using automatic irrigation system with a high drainage gate was recommended to be a best management practice for controlling the herbicide losses from paddy fields. The paddy field managed by spillover-irrigation scheme may cause significant water and herbicide losses depending on the volume of irrigation and precipitation. The water holding period after herbicide application was suggested to be at least 10 days according to the DT90 index.  相似文献   

13.
A water and nitrogen balance model for the surface ponded water compartment of rice fields was developed. The model estimates the daily ponded water depth and the daily losses and the uses of NH4–N and NO3–N in their transformation processes. The model was applied with data obtained from two rice fields during 2005 at Thessaloniki plain in northern Greece. Significant amounts of applied irrigation water were lost with the surface runoff and deep percolation to groundwater. The gaseous losses of nitrogen (volatilization and denitrification) and nitrogen uptake by algae were the main processes of nitrogen reduction in the ponded water of rice fields. The study showed that the system of a rice field is a natural system where an important amount of influent nitrogen applied by irrigation water can be reduced. These processes decrease the possibilities of water resources contamination.  相似文献   

14.
A distributed hydro-environmental model is developed that achieves detailed analysis of the movement of water at a field-plot-scale resolution in a mesoscale watershed including lowland areas where, especially for agricultures, it is an essential need to get rid of redundant groundwater by drainage facilities such as rivers, canals and/or underdrains. For this, the problem geometry is meshed with unstructured cells of triangular shape. Profile of a column cell is zoned into two: surface zone and groundwater zone in which water movement is represented by combined tank and soil moisture sub-models, and well-defined two-dimensional unconfined shallow groundwater flow sub-model, respectively. The top-two sub-models serve to evaluate evapotranspiration, infiltration, soil water content, lateral surface water flow, and vertical percolation. The vertical percolation so evaluated is given as longitudinal recharge to the bottom sub-model for computing groundwater flow. Surface water–groundwater interactions through beds and stream-banks of perennial and ephemeral canals are considered by treating the canal courses as internal boundaries in the groundwater flow model. The finite volume method (FVM) that allows of unstructured mesh and produces conservative solutions is employed for groundwater flow computation. The model developed is applied to an actual watershed which includes a low-lying paddy area to quantify the hydrological impact of land-use management practices over a period of 29 years in which the farmland consolidation project was implemented and part of the paddy fields were converted to upland crop fields and housing lands. From the results obtained, it is concluded that the model presently developed lends itself to water—as well as land-use management practices.  相似文献   

15.
Increasing water scarcity has necessitated the development of irrigated rice systems that require less water than the traditional flooded rice. The cultivation of aerobic rice is an effort to save water in response to growing worldwide water scarcity with the pressure to reduce water use and increase water productivity. An accurate estimation of different water balance components at the aerobic rice fields is essential to achieve effective use of limited water supplies. Some field water balance components, such as percolation, capillary rise and evapotranspiration, can not be easily measured; therefore a soil water balance model is required to develop and to test water management strategies. This paper presents results of a study to quantify time varying water balance under a critical soil water tension based irrigation criteria for the cultivation of non-ponded “aerobic rice” fields along the lower parts of the Yellow River. Based on the analysis and integration of existing field information on the hydrologic processes in an aerobic rice field, this paper outlines the general components of the water balance using a conceptual model approach. The time varying water balance is then analyzed using the feedback relations among the hydrologic processes in a commercial dynamic modeling environment, Vensim. The model simulates various water balance components such as actual evapotranspiration, deep percolation, surface runoff, and capillary rise in the aerobic rice field on a daily basis. The model parameters are validated with the observed experimental field data from the Huibei Irrigation Experiment Station, Kaifeng, China. The validated model is used to analyze irrigation application soil water tension trigger under wet, dry and average climate conditions using daily time steps. The scenario analysis show that to conserve scarce water resources during the average climate years the irrigation scheduling criteria can be set as −30 kPa average root zone soil water tension; whereas it can be set at −70 kPa during the dry years, however, the associated yields may reduce. Compared with the flooded lowland rice and other upland crops, with these two alternatives irrigation event triggers, aerobic rice cultivation can lead to significant water savings.  相似文献   

16.
An experiment was conducted in three fallow paddy fields situated on the mid-tropical plain zone of a northeastern Indian state(Tripura) to provide rice fallow management options using leftover soil moisture and nutrients. The three experimental fields were managed by growing rice under the system of rice intensification as the rainy season crop and then groundnut, lentil, rapeseed and potato as the post-rainy season crops. Fertilization under the integrated nutrient management system and lifesaving irrigation at critical stages of each post-rainy season crop were provided. Results showed that the field water use efficiency values were 5.93, 2.39, 2.37 and 59.76 kg/(hm2·mm) and that the yield of these crops increased by approximately 20%, 34%, 40% and 20% after applying two lifesaving irrigations in groundnut, lentil, rapeseed and potato, respectively. Therefore, fallow paddy field can provide possible profitable crops during the post-rainy season by utilizing the residual moisture and minimum supplemental irrigation under improved nutrient management practices.  相似文献   

17.
Chiyoda basin is located in Saga Prefecture in Kyushu Island, Japan, and lies next to the tidal compartment of the Chikugo River to which the excess water in the basin is drained away. Chiyoda basin has a total area of about 1,100 ha and is a typical flat and low-lying paddy-cultivated area. The main environmental issue in this basin is total nitrogen (TN) and total phosphorus (TP) load management because TN and TP, which loaded from farmlands, degrade surface water as a result of anthropogenic eutrophication. This paper presents a mathematical model of TN and TP runoff during an irrigation period in Chiyoda basin in order to elucidate the pollutant fluxes that accompany water transportation in paddy fields and drainage canals, and to evaluate pollutant removal from the study area to the Chikugo River. First, the water flow and the algorithm of gate operation were simulated by a continuous tank model and the accuracy of the model was then evaluated by comparing the simulated water levels with observed ones during an irrigation period. The observed and simulated water levels were in good agreement, indicating that the proposed model is applicable for drainage and water supply analyses in flat, low-lying paddy-cultivated areas. Second, the TN and TP runoff during an irrigation period was simulated based on the TN and TP loads that were determined by observed data in paddy fields. For TN runoff, the simulated results and observed data were in good agreement whereas for TP runoff, the simulated results were higher than the observed data. However, if the settled TP within the paddy tank was calculated as 6%, then the simulated results and the observed data were in good agreement. We concluded that TN runoff from paddy field to the drainage canal system was not affected much by the sediment related process. The present study could provide farmers and managers with a useful tool for controlling the water distribution in an irrigation period, and the TN and TP loads in the downstream area as well as the Chikugo River.  相似文献   

18.
《Plant Production Science》2013,16(2):166-170
Abstract

Radionuclides were released into the environment as a consequence of the Fukushima Daiichi Nuclear Power Plant accident that occurred on 11 March 2011. Radiocesium at an abnormal concentration was detected in brown rice produced in paddy fields located in northern part of Fukushima Prefecture. We examined several hypotheses that could potentially explain the excessive radiocesium level in brown rice in some of the paddy fields, including (i) low exchangeable potassium content of the soil, (ii) low sorption sites for cesium (Cs) in the soil, and (iii) radiocesium enrichment of water that is flowing into the paddy fields from surrounding forests. The results of experiments using pots with contaminated soil indicated that the concentration of radiocesium in rice plants was decreased by applying potassium or clay minerals such as zeolite and vermiculite. The obtained results indicated that high concentrations of radiocesium in rice are potentially a result of the low exchangeable potassium and sorption sites for Cs in the soils. Application of potassium fertilizer and clay minerals should provide an effective countermeasure for reducing radiocesium uptake by plants. Radiocesium-enriched water produced by leaching contaminated leaf litter was used to irrigate rice plants in the cultivation experiments. The results indicated that the radiocesium concentrations in rice plants increased when the radiocesium-enriched water was applied to the potted rice plants. This indicated the possibility that the radiocesium levels in brown rice will increase if the nuclide is transported with water into the rice paddy fields from surrounding forests.  相似文献   

19.
This paper introduces the Agriculture, Forestry and Fisheries Research Council of Japan (AFFRC) model, an integrated model that predicts future rice production in the Mekong River basin by taking into account the effect of global warming on both the water cycle and the rice economy. The model focuses especially on the water balance of paddy fields for different farmland water use systems. We defined six categories of irrigated paddies and three categories of rain-fed paddies on the basis of their systems of water usage. We included a process-based model to predict future rice production, accounting for daily changes in available water resources such as precipitation. Many models of crop production treat rice in the same way as other crops; the particular characteristics of rice farming are considered in more detail in our model. Our results show that it is possible to estimate future rice production in the Mekong River basin by taking into account changes in available water, and to model the resultant effects on the grain market.  相似文献   

20.
稻田田埂植物的生物多样性   总被引:11,自引:1,他引:10  
 在浙江安吉两个村对利用不同污染程度水源进行灌溉的稻田田埂植物进行了调查。利用未受工业污染的水灌溉的禹山坞稻田田埂植物种数高于受工业废水污染的城北村。在相同类型植物群落中, 禹山坞稻田田埂的植物种总重要值Iv(t)显著高于城北村,两村的田埂植物生物多样性指数也存在类似的变化趋势。不同类型植物群落的生物多样性参数差异极为显著, 矮秆植物占优势群落的植物种数、植物种总重要值和生物多样性指数(H')显著高于高秆植物占优势群落和外来植物占优势群落。应重视防除外来植物空心莲子草, 控制高秆植物和保护矮秆植物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号