首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在大蒜播种过程中,为了保证播种质量和大蒜产量,要求蒜瓣入土后鳞芽朝上。目前,我国机械化大蒜播种技术很难满足该项要求,许多蒜农仍一直采用手工种植的方式完成大蒜播种作业,播种效率较低。为解决上述问题,提出了一种大蒜精准播种机构,通过多层矫正装置实现蒜瓣垂直入土鳞芽朝上。首先测量获得大蒜蒜瓣的外形尺寸,通过试验设计确定取种勺和校正装置等关键零部件的尺寸,运用三维软件Solid Works对该机构进行建模,并基于ADAMS软件对主要矫正部件进行运动仿真获得大蒜播种过程中的蒜瓣运动轨迹曲线,分析结果表明:该机构能够满足大蒜种植的农艺要求,达到了机械化播种中蒜瓣入土鳞芽朝上的目的。  相似文献   

2.
在大蒜种植过程中,为了保证出苗率和提高大蒜产量,蒜种入土后必须鳞芽向上,这在机械化播种技术实现上难度较大,针对这一问题提出了可保持式大蒜种带播种机的设计。可通过大蒜种带播种机构实现和保持大蒜种带上的蒜瓣鳞芽向上入土,用可降解种带膜定向包裹和固定蒜种,使蒜种间距一致,姿态一致。包裹蒜种的种带缠绕成种带卷放置在播种机种带盘上,播种时通过可保持式定向播种装置使大蒜种带按照各滚轮所设定的轨道运动,实现定向和精量播种。基于动力学仿真软件对主要播种机构和种带方向保持机构进行运动分析,获得种带播种过程中蒜瓣的运动轨迹曲线。分析结果表明,该种带播种机能够满足大蒜种植的农艺要求,实现播种过程中保持蒜种鳞芽直立向上入土的功能。  相似文献   

3.
大蒜种植时要求鳞芽朝上,直立播种,但这种农艺种植特点制约了大蒜机械化的发展。为此,文章设计了带有矫正机构的新型大蒜直立播种机。该机器主要由机架、槽轮机构、传动装置、取蒜装置、矫正装置、种植装置和播蒜爪等零部件组成,利用排种机构通过非平行式取蒜爪取出蒜种箱中的蒜种,落入矫正漏斗。通过管道落入种植机机构,种植机构顶部带有凸轮机构可以将连接种植斗的管道和种植爪都同时压入土里,从而实现蒜瓣的机械化种植,解决种蒜的难题。  相似文献   

4.
大蒜种植时要求鳞芽朝上,直立播种,但这种农艺种植特点制约了大蒜机械化的发展,为此,本文设计了带有矫正机构的新型大蒜直立播种机。该机器主要由机架、槽轮机构、传动装置、取蒜装置、矫正装置、种植装置和播蒜爪等零部件组成,利用排种机构通过非平行式取蒜爪取出蒜种箱中的蒜种,落入矫正漏斗。通过管道落入种植机机构,种植机构顶部带有凸轮机构可以将连接种植斗的管道和种植爪都同时压入土里,从而实现蒜瓣的种植,解决种蒜的难题。  相似文献   

5.
信息超市     
《山西农机》2010,(11):62-63
单县研制成功大蒜播种机械 最近,山东省单县张集镇王楼行政村王迪福研制的大蒜播种机试播成功,并获得国家发明专利。经过多年的艰苦实验,王迪福于今年研制出了以四轮拖拉机为动力的大蒜播种机。该播种机保证了蒜瓣的蒜尖向上,行进方向正。播种均匀,深浅一致,自动掩埋,压平地面。该机播种速度要比纯人工快10倍以上,全天可种蒜1.33~2hm^2,而且播种质量好于人工播种,产量能够增加30%以上。  相似文献   

6.
1.选料。选用收获时叶黄秸枯、头大、瓣肉洁白、无病虫害、无机械破损的大蒜。 2.浸泡。将大蒜用冷水洗净,剥开分瓣,在冷水中浸泡1小时左右,剔去皮衣,捞起蒜瓣,再除去带斑、病污的杂瓣蒜。要求皮衣去净,蒜瓣一色,沥干余水。 3.粉碎。将蒜瓣放在打浆机中或打粉机中打浆。打浆时蒜瓣加1/3净水,然后将蒜浆过滤(一般粗纱布即可),除去残余皮衣等杂物。  相似文献   

7.
为提高大蒜播种机对杂交蒜的播种正芽率,提出串联使用大蒜种子重心靠下和大蒜种子芽尖细长特征进行种子方向控制的方法,即在排种器运种阶段设计分段式护种槽,利用大蒜种子重心靠下特征提高种子直立进入定向器的概率,在换向阶段设计弧形开口定向器,使大蒜种子芽尖尽可能露出定向器,提高短芽尖大蒜鳞芽的正芽率。以定向速度和种子芽尖长度为试验因素,正芽率为试验指标,进行台架试验,结果表明,蒜瓣芽尖长度对播种机正芽率影响较为明显,正芽率随定向速度的增加而降低。以金乡杂交蒜为试验对象,对定向系统进行田间播种性能试验,试验结果表明:行走速度为0.14~0.19 m/s时,金乡杂交蒜的正芽率达85%,整体满足大蒜播种农艺要求。串联使用大蒜种子两种物理特征从作业原理上可提高大蒜种子定向稳定性,为大蒜播种机械化发展提供参考。  相似文献   

8.
大蒜种植机械蒜瓣方向识别算法与控制系统设计   总被引:1,自引:0,他引:1  
依据小波算法理论和PLC控制技术,设计了大蒜蒜瓣方向的自动图像采集算法,并在PLC控制过程中设置了PID控制器,开发出了一种新的大蒜种植机械蒜瓣方向识别的PLC控制系统。该系统的硬件系统采用西门子S7-300系列产品,并利用Step7进行软件编程控制。为了验证该系统的有效性和可靠性,选择了158瓣形状规则和不规则的蒜瓣进行方向调整测试。通过测试发现,该系统对形状不规则和蒜尾被遮住的蒜瓣图像也能进行自动化调整,且蒜瓣方向调整准确率都在90%以上,可以满足大蒜自动化种植的需要,为大蒜种植技术的研究提供了一种新的自动化控制方法。  相似文献   

9.
大蒜播种时要求"根下尖上、直立栽种",在我国大蒜产业中,播种环节的机械化程度远远低于耕整地、收获、深加工等环节,蒜种定向技术发展不成熟成为制约大蒜机械化播种的关键因素。概述国内外蒜种定向装置及其技术的研究现状,总结当前蒜种定向主要类型、特点及应用,提出蒜种定向装置发展过程中存在的问题,为大蒜播种机械研制和优化提供参考。  相似文献   

10.
大蒜脯的加工技术1.原料做蒜脯的大蒜要成熟、干燥,并带有完整的外衣;蒜头无虫蛀、霉烂、发热、变质现象;蒜肉洁白,辛辣味足。2.加工技术要点(1)切蒂、分瓣、剥内衣。切蒂后剥除内衣,在切蒂剥皮过程中若发现蒜瓣有伤斑、虫蛀及霉点的要修除。所得蒜瓣要放在透...  相似文献   

11.
大蒜种子的外形尺寸特征、悬浮特性,是播种机械实现单粒播种的重要依据,蒜种破碎是机械对蒜种的严重损伤,导致不能发芽。为此,对大蒜种子的外形尺寸和悬浮特性及破碎力进行试验研究,为大蒜种子机械化清选和播种提供数据。选择大瓣种苍山大蒜、小瓣种金乡大蒜及杞县大蒜为研究对象,使用统计学方法,以大蒜种子的长、宽、厚、悬浮速度及压碎力为指标,研究蒜种大小尺寸的分布、含水率对大蒜种子悬浮速度及大蒜种子抗破坏能力的影响。结果表明:大蒜种子厚度方向的尺寸差异最大;大蒜种子的悬浮速度随含水率的上升而增加,同一含水率下,大瓣种子的悬浮速度大于小瓣种子;压碎力与含水率呈反比,且大瓣种子弧面更易受到破坏。  相似文献   

12.
倾斜圆盘式大蒜播种试验装置的设计与试验   总被引:1,自引:0,他引:1  
翟殿波  张祖立 《农机化研究》2012,34(9):143-145,149
针对目前我国大蒜播种机的研究现状,在对现有的大蒜播种装置深入研究的基础上,设计了倾斜圆盘式大蒜播种机的排种装置,重点阐述了大蒜播种机排种试验台的结构和工作原理,对关键的部件进行计算设计,研制了形状类似蒜种的取种窝。通过采用转盘倾斜取种,反复试验,利用正交试验来确定落种时取种盘倾斜的最优角度和最优工作转速,使得蒜种在自身重力的作用下,能够更好地通过导种管下种,实现蒜种的种植要求,为研究大蒜播种机械提供理论依据。  相似文献   

13.
双鸭嘴式大蒜正头装置调头机理分析与试验   总被引:7,自引:0,他引:7  
针对当前大蒜机械化播种鳞芽正头率较低的问题,测定了苍山大蒜的物理属性参数及几何参数,采用离散元技术,建立双鸭嘴式大蒜正头机构播种动力学模型;仿真研究了蒜种在3种正头机构中的运动规律,分析了不同接种鸭嘴曲线形状、蒜种重心、插播转速及蒜种二次弹跳对正头率的影响规律,明确了蒜种正头机理。试制了室内播种试验台及大田样机,开展了播种试验,采用可视化方法提取了试验过程中蒜种运动动态图像,结果证明与仿真过程基本一致,试验正头率与仿真正头率的误差在5%以内,表明采用离散元法对播种过程中蒜种的运动规律进行分析是可行的;田间试验蒜种正头率最高可达95.67%,提高了4.67个百分点。  相似文献   

14.
大蒜播种机装盘系统蒜瓣定向识别算法的研究   总被引:3,自引:0,他引:3  
利用数字图像处理技术,研究适合于大蒜蒜瓣定向识别的专用算法,并通过MATLAB编程实现对大蒜蒜瓣的定位和识别.结果表明,该程序能够很好地识别出大蒜蒜瓣朝向,解决大蒜自动播种机无法自主识别蒜瓣朝向的问题.  相似文献   

15.
为解决大蒜正芽播种问题,设计了弧形鸭嘴式型大蒜正芽播种机,主要由单粒取种装置、鳞芽方向控制装置、直立下栽装置、传动系统以及机架、地轮等部分组成,可一次完成取种、换向、直立栽种和镇压作业。根据大蒜鳞芽外形尺寸参数,对播种机关键零部件进行了优化设计,设计了符合大蒜鳞芽外形尺寸分布的大、中、小3级取种勺;设计了弧形开口换向器,使芽尖弯曲大蒜鳞芽芽尖尽可能露出换向器;设计了中间轴随驱动圆盘同时旋转的直立下栽机构,实现11行下栽鸭嘴同时稳定作业,与弧形换向器配合实现芽尖不小于6mm大蒜鳞芽的正芽。以苍山四六瓣蒜和金乡杂交蒜为试验对象,进行田间播种性能试验,结果表明:行走速度在0.14~0.19m/s范围内,金乡杂交蒜的正芽率达到85%左右,苍山四六瓣蒜的正芽率达到90%左右,单粒率均达到93%以上,整体满足大蒜播种农艺要求。  相似文献   

16.
大蒜制种和深加工都需先对大蒜进行破瓣,目前大蒜机械化破瓣技术主要有胶辊式和锥盘式破瓣技术,为提高大蒜机械化破瓣效率、降低破损率,本文对胶辊式和锥盘式破瓣技术的性能以及破瓣后蒜瓣的状态进行了对比分析。胶辊式大蒜破瓣装置对大蒜破瓣率为91.6%,破损率为1.6%。锥盘式大蒜破瓣装置对大蒜的破瓣率为95.3%,破损率为3.3%。结果表明,锥盘式大蒜破瓣装置比胶辊式大蒜破瓣装置的破瓣率高,但胶辊式大蒜破瓣技术易于实现多级破瓣,通过添加多级胶辊可以有效的提高破瓣率;利用胶辊式大蒜破瓣装置进行破瓣后的大蒜,蒜皮保存较为完整,对牙尖部位的损伤较小,蒜瓣适合大蒜种植;利用锥盘式大蒜破瓣装置破瓣后的大蒜,蒜瓣脱皮现象较多,且蒜瓣的损伤主要以牙尖部位损伤和蒜瓣缺失为主,蒜瓣更适合应用于深加工。分析结果为大蒜机械化技术的应用和机具开发设计提供参考依据。  相似文献   

17.
为解决去皮率低、蒜仁易损伤等问题,设计了一款组合式大蒜柔性去皮装置。通过浮动搓擦单元分离蒜皮,振动机构完成输送,蒜瓣经过浮动搓擦、振动梳刷及气吹等组合作用完成柔性去皮。结合大蒜的物理机械特性,设计了搓擦机构、振动机构、梳刷机构、气吹机构等关键部件;通过对蒜瓣在浮动搓擦单元和振动筛内的动力学分析,确定了影响去皮性能试验的主要因素和取值范围。以搓擦筒轴转速、梳刷间距和曲柄转速为试验因素,以去皮率和损伤率为试验指标,进行三因素三水平响应面试验,求得搓擦筒轴转速、梳刷间距和曲柄转速的最优参数组合并进行了试验验证。试验结果表明最优参数组合为:搓擦辊轴转速70.73 r/min、振动频率6.68 Hz、梳刷间隙18.00 mm;最优参数组合下,蒜瓣去皮率为93.68%、损伤率4.40%,试验验证结果与优化结果相对误差均小于5%,满足大蒜去皮要求。  相似文献   

18.
韩杰  朱代根 《南方农机》2023,(4):66-68+83
大蒜播种以及大蒜产业化加工都需要先将大蒜分瓣,因大蒜品种不同,机械分瓣效率也存在差异性,研究小组通过对云南当地几种常见大蒜的几何特性进行相关性分析,分析其几何特性的差异性和对分瓣效果的影响。试验以普洱孟连紫皮香蒜和大理弥渡紫皮蒜两个云南主产大蒜品种为材料,测量出两种大蒜的鳞茎高度、横径及鳞芽背宽、高度等几何特征。分析以上两种大蒜鳞茎高、鳞茎横径及鳞芽背宽、高度等对应的集中分布范围及峰值可以看出,两个品种紫皮蒜鳞茎横径、鳞茎质量差异较大,普洱孟连紫皮香蒜的几何特性较优,具体表现为鳞茎外形较规则,鳞芽横径分布更集中。分析以上两种大蒜鳞茎高度和横径、鳞芽高度和背宽对应的回归曲线方程,发现鳞茎横径的方程拟合度最大,对大蒜进行分瓣时,理论上优先以鳞茎横径作为主要影响因素,在相同分瓣装置下,普洱孟连紫皮香蒜更容易分瓣。  相似文献   

19.
我国大蒜种植机械化与产量不成正比,大蒜播种机械化程度落后于小麦、玉米。蒜种定向技术、直立下栽技术落后于其它国家,本文概述了国内外大蒜播种机械化技术的研究现状,总结当前大蒜播种机具主要类型、特点及应用情况,提出大蒜播种机在使用过程中存在的问题,为大蒜播种机的设计和优化提供参考。  相似文献   

20.
插穴式自动定向大蒜播种机的设计研究   总被引:1,自引:0,他引:1  
为了提高大蒜播种机在播种过程中蒜瓣的直立度及鳞芽向上的概率,保证株距均匀,设计了一种新型的大蒜播种机。通过对关键部件的结构设计与参数分析,确定了主要部件结构。经过试验验证,此大蒜播种机的锥形螺旋导种管能够使大蒜落土后鳞芽向上的合格率达到96%,压穴锥能够使直立度达到98%,并能保证株距均匀。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号