首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Verticillium wilt is a fungal disease of potato caused by two species of Verticillium, V. dahliae and V. albo atrum. The pathogen infects the vascular tissue of potato plants through roots, interfering with the transport of water and nutrition, and reducing both the yield and quality of tubers. We have evaluated the reaction of 283 potato clones (274 cultivars and nine breeding selections) to inoculation with V. dahliae under greenhouse conditions. A significant linear correlation (r = 0.4, p < 0.0001) was detected between plant maturity and partial resistance to the pathogen, with late maturing clones being generally more resistant. Maturity-adjusted resistance, that takes into consideration both plant maturity and resistance, was calculated from residuals of the linear regression between the two traits. Even after adjusting for maturity, the difference in the resistance of clones was still highly significant, indicating that a substantial part of resistance cannot be explained by the effect of maturity. The highest maturity-adjusted resistance was found in the cv. Navajo, while the most susceptible clone was the cv. Pungo. We hope that the present abundance of data about the resistance and maturity of 283 clones will help potato breeders to develop cultivars with improved resistance to V. dahliae.  相似文献   

2.
The precise level of environmental control in vitro may aid in identifying genetically superior plant germplasm for rooting characteristics (RC) linked to increased foraging for plant nitrogen (N). The objectives of this research were to determine the phenotypic variation in root morphological responses of 49 Solanum chacoense (chc), 30 Solanum tuberosum Group Phureja – Solanum tuberosum Group Stenotomum (phu-stn), and three Solanum tuberosum (tbr) genotypes to 1.0 and 0.5 N rate in vitro for 28 d, and identify genotypes with superior RC. The 0.5 N significantly increased density of root length, surface area, and tips. All RC were significantly greater in chc than in either phu-stn or tbr. Based upon clustering on root length, surface area, and volume, the cluster with the greatest rooting values consisted of eight chc genotypes that may be utilized to initiate a breeding program to improve RC in potato.  相似文献   

3.
4.
Powdery scab caused by Spongospora subterranea f. sp. subterranea (Sss) causes extensive losses in potato production systems globally. Two pot experiments were established in the greenhouse in summer 2013 and winter 2014 to evaluate the effectiveness of different soil chemicals, fumigant, amendments and biological control agents (BCAs) against Sss in the rhizospheric soil, potato roots and tubers. The study used visual assessment methods to assess the effect of treatments on root galling and zoosporangia production, and qPCR to measure Sss concentration in the soil and in the potato roots and tubers. All six soil treatments, namely metam sodium, fluazinam, ZincMax, calcium cyanamide, Biocult and a combination of Bacillus subtilis and Trichoderma asperellum recorded significantly (P < 0.05) lower numbers of zoosporangia in the roots compared to the untreated control. The same effect was observed on the concentration of Sss DNA in the roots at tuber initiation. A more diverse picture was obtained when root gall scores at tuber initiation and Sss DNA in the rhizospheric soil at tuber initiation and harvesting were compared. Significant differences (P < 0.05) were also noted in disease severity, disease incidence, and tuber yield between metam sodium, fluazinam, ZincMax, calcium cyanamide and the untreated control. Calcium cyanamide gave the highest tuber yield. The study demonstrated the potential of soil treatments such as metam sodium, fluazinam, ZincMax and calcium cyanamide in managing Sss in potatoes by reducing the pathogen both in the rhizospheric soil and the roots of the potato plant.  相似文献   

5.
Phthorimaea operculella (Zeller) is one of the most common insect pests of cultivated potato in tropical and subtropical regions. In this research, a potential strategy to improve the insecticidal activity of plant essential oils for the effective management of P. operculella was studied. The insecticidal and residual effects of nanofiber oil (NFO) and pure essential oil (PEO) of Cinnamomum zeylanicum were assessed on PTM under laboratory conditions. The nanofibers were made by the electrospinning method using polyvinyl alcohol (PVA) polymer. The morphological characteristics of the nanofibers were evaluated by scanning electron microscopy and Fourier transform infrared spectroscopy. The chemical constituents of cinnamon essential oil (EO) were detected by GC/MS. Fumigant toxicity of NFO and PEO were evaluated on different growth stages (egg, male and female adults) of P. operculella. SEM and FTIR analyses confirmed the presence of EO on the nanofiber structure. The yield of the EO from C. zelanicum on the nanofibers was 1.86%. GC/MS analysis showed that cinnamaldehyde was the primary constituent (69.88%) of cinnamon EO. LC50 values of C. zelanicum EO and NFO were 4.92 and 1.76 μl/l air for eggs, 0.444 and 0.212 μl/l air for female adults, and 0.424 and 0.192 μl/l air for male adults, respectively. Fumigant bioassays revealed that NFO was more toxic than C. zeylanicum oil against at all stages of P. operculella. The residual effect of PEO and NFO was evaluated against the egg stage of the P. operculella. NFO lost insecticidal effectiveness 47 days after application, while the efficacy of PEO decreased 15 days after application. Our results suggest that NFO of C. zeylanicum can be used as an effective new tool for the management of P. operculella.  相似文献   

6.
The effect of essential oil (EO) from anise (Pimpinellia anisum) on the mortality of young larvae of Colorado potato beetles has been studied. In our bioassays, P. anisum EO significantly increased the mortality of the second instar larvae of L. decemlineata. Significantly different values of LD50 and LD90 were established for acute (LD50 = 1.76, and LD90 = 8.29) as well as chronic toxicity (LD50 = 0.45, and LD90 = 1.01). Decrease of both values over experimental period was evident, which showed that the larval mortality was slow and cumulative. The composition of EO used for biological experiments was also assessed. The main component detected in EO from P. anisum was anethole (79.87%), followed by anisaldehyde (7.74%), estragole (5.88%) and β-linalool (1.07%). Within five days, residual concentration of EO decreased from 3.87 mg/g of dry weight immediately after foliar applications to 0.9 mg per g of dry weight. The effect of this slow evaporation could be explained by dominant presence of anethole or by the type of formulation and the addition of oil and tween. Results of our study demonstrate that EO from P. anisum has insecticidal properties that may lead to the development of new organic products for the control of Colorado potato beetles.  相似文献   

7.

Background

The brown planthopper (BPH) has become the most destructive and a serious threat to the rice production in Asia. Breeding the resistant varieties with improved host resistance is the most effective and ecosystem-friendly strategy of BPH biological management. As host resistance was always broken down by the presence of the upgrading BPH biotype, the more resistant varieties with novel resistance genes or pyramiding known identified BPH resistance genes would be needed urgently for higher resistant level and more durability of resistance.

Results

Here, we developed near isogenic lines of Bph9 (NIL-Bph9) by backcrossing elite cultivar 93–11 with Pokkali (harboring Bph9) using marker-assisted selection (MAS). Subsequently, we pyramided Bph6 and Bph9 in 93–11 genetic background through MAS. The resulting Bph6 and Bph9 pyramided line LuoYang69 had stronger antixenotic and antibiosis effects on BPH and exhibited significantly enhanced resistance to BPH than near isogenic lines NIL-Bph6 and NIL-Bph9. LuoYang69 derived hybrids, harboring heterozygous Bph6 and Bph9 genes, also conferred high level of resistance to BPH. Furthermore, LuoYang69 did not affect the elite agronomic traits and rice grain quality of 93–11. The current study also developed functional markers for Bph9. Using functional dominant marker, we screened and evaluated worldwide accessions of rice germplasm. Of the 673 varieties tested, 8 cultivars were identified to harbor functional Bph9 gene.

Conclusion

The development of Bph6 and Bph9 pyramided line LuoYang69 provides valuable resource to develop hybrid rice with highly and durable BPH resistance. The development of functional markers will promote MAS of Bph9. The identified Bph9 containing cultivars can be used as new sources for BPH resistance breeding programs.
  相似文献   

8.

Background

Rice plays an extremely important role in food safety because it feeds more than half of the world’s population. Rice grain yield depends on biomass and the harvest index. An important strategy to break through the rice grain yield ceiling is to increase the biological yield. Therefore, genes associated with organ size are important targets for rice breeding.

Results

We characterized a rice mutant gns4 (grain number and size on chromosome 4) with reduced organ size, fewer grains per panicle, and smaller grains compared with those of WT. Map-based cloning indicated that the GNS4 gene, encoding a cytochrome P450 protein, is a novel allele of DWARF11 (D11). A single nucleotide polymorphism (deletion) in the promoter region of GNS4 reduced its expression level in the mutant, leading to reduced grain number and smaller grains. Morphological and cellular analyses suggested that GNS4 positively regulates grain size by promoting cell elongation. Overexpression of GNS4 significantly increased organ size, 1000-grain weight, and panicle size, and subsequently enhanced grain yields in both the Nipponbare and Wuyunjing7 (a high-yielding cultivar) backgrounds. These results suggest that GNS4 is key target gene with possible applications in rice yield breeding.

Conclusion

GNS4 was identified as a positive regulator of grain number and grain size in rice. Increasing the expression level of this gene in a high-yielding rice variety enhanced grain yield. GNS4 can be targeted in breeding programs to increase yields.
  相似文献   

9.
Fusarium sambucinum is one of the most important causal agents that not only cause the dry rot disease of potato tubers in fields and stores worldwide but also capable of producing secondary metabolites toxic for people and animals. Here we present the first draft genome sequence of the strain (F-4) estimated to be around appx. 42.0 Mb. The genome has 12,845 protein coding genes with more than 35,900 exons and gene density of 3.13 per 10Kb. F. sambucinum is evolutionary more close to the F. graminearum among the Fusarium species complex. The genome sequence represents a valuable resource for understanding the pathogenecity and virulence factors, and their evolution within the complex and highly plastic genus Fusarium.  相似文献   

10.
Late blight, caused by the oomycete Phytophthora infestans (Mont.) de Bary, is a devastating disease in potato and tomato and causes yield and quality losses worldwide. The disease first emerged in central America and has since spread in North America including the United States and Canada. Several new genotypes of P. infestans have recently emerged, including US-22, US-23 and US-24. Due to significant economic and environmental impacts, there has been an increasing interest in the rapid identification of P. infestans genotypes. In addition to providing details regarding the various phenotypic characteristics such as fungicide resistance, host preference, and pathogenicity associated with various P. infestans genotypes, information related to pathogen movement and potential recombination may also be determined from the genetic analyses. Restriction fragment length polymorphism (RFLP) analysis with the RG57 loci is one of the most reliable procedures used to genotype P. infestans. However, the RFLP procedure requires propagation and isolation of the pathogen and relatively large amounts of DNA. Isolation of the late blight pathogen is sometimes impossible due to the poor condition of the infected tissues or the presence of fungicide residues. In this study, we describe a procedure to identify P. infestans at the molecular level in planta using terminal restriction fragment length polymorphism (T-RFLP) of the RG57 loci. This T-RFLP assay is sufficiently sensitive to detect and differentiate P. infestans genotypes directly in planta without propagation and isolation of the pathogen, to facilitate the timely implementation of best management practices.  相似文献   

11.
Removal of diseased plants (roguing) is commonly practiced in seed potato production. Diseased plants left to desiccate in fields could possibly serve as sources of Potato virus Y (PVY). PVY acquisition by three aphid species (Myzus persicae, Rhopalosiphum padi, Aphis fabae) was evaluated with leaflets from rogued plants for seven days. Results showed greater PVY acquisition rates in non-colonizing aphids species compared to colonizing ones. The proportion of aphids leaving leaflets increased with time (i.e. days after plants were uprooted) and some aphids were carrying PVY in their stylets on each of the seven days of the experiment, suggesting that aphids were able to probe and acquire PVY even when plants wilted. These results confirmed that diseased plants left in fields can serve as a source of PVY for aphids even after they wilted and emphasises that proper actions must be taken to efficiently remove diseased plants from fields.  相似文献   

12.
Potato mop top virus (PMTV) induced necrosis can cause tuber quality loss at harvest and storage. Stored potatoes help maintain a constant supply of potatoes to the market and processing industry. PMTV-induced necrosis continues to develop during storage and appropriate timelines are needed for growers to make marketing decisions of their potatoes before incurring any significant quality losses. Survival analysis was used to estimate the time to event occurrence (PMTV-induced necrosis) in four (red-, russet-, white-, and yellow-skinned) potato market types across six post-harvest assessments conducted over two years. At each assessment the presence and absence of PMTV-induced necrosis was recorded and probability of tuber survival was estimated. Survival curves were significantly different among the four market type potato cultivars (Log-Rank test, P < 0.0005). Red- and russet-market type cultivars showed low and high survival probability, respectively, demonstrating that red cultivars need priority marketing. The survival probabilities decreased with increased storage time during both years, indicating that PMTV-induced necrosis development is dependent on potato cultivar and post-harvest storage. The median (50% of tubers with symptoms) survival times were estimated as 167 and 214 days for red- and other market type potato cultivars. The information from this study could potentially help growers regulate storage times for their cultivars to minimize tuber quality loss due to PMTV-induced tuber necrosis.  相似文献   

13.
Causing potato brown rot, Ralstonia solanacearum (R. solanacearum) strains are reported as one of the most destructive bacteria to potato (Solanum tuberosum L.) in China. In this study, 113 strains were isolated from potato, collected in the four major agroecological zones in China. The study showed that 102 strains belonged to the phylotype IIB sequevar 1 (race 3 biovar 2). The 11 remaining strains belonged to the phylotype I, sequevar 13, 17, 18, 16 or 14 M, a new sequevar closely related to sequevar 14. Thirty-four strains were further characterized according to their virulence at low temperature on three wild potato species. IIB-1 strains all belonged to high and moderate virulence, while others belonged to the low virulence group, which had limited pathogenicity.  相似文献   

14.
Lupinus albus seeds contain conglutin gamma (Cγ) protein, which exerts a hypoglycemic effect and positively modifies proteins involved in glucose homeostasis. Cγ could potentially be used to manage patients with impaired glucose metabolism, but there remains a need to evaluate its effects on hepatic glucose production. The present study aimed to analyze G6pc, Fbp1, and Pck1 gene expressions in two experimental animal models of impaired glucose metabolism. We also evaluated hepatic and renal tissue integrity following Cγ treatment. To generate an insulin resistance model, male Wistar rats were provided 30% sucrose solution ad libitum for 20 weeks. To generate a type 2 diabetes model (STZ), five-day-old rats were intraperitoneally injected with streptozotocin (150 mg/kg). Each animal model was randomized into three subgroups that received the following oral treatments daily for one week: 0.9% w/v NaCl (vehicle; IR-Ctrl and STZ-Ctrl); metformin 300 mg/kg (IR-Met and STZ-Met); and Cγ 150 mg/kg (IR-Cγ and STZ-Cγ). Biochemical parameters were assessed pre- and post-treatment using colorimetric or enzymatic methods. We also performed histological analysis of hepatic and renal tissue. G6pc, Fbp1, and Pck1 gene expressions were quantified using real-time PCR. No histological changes were observed in any group. Post-treatment G6pc gene expression was decreased in the IR-Cγ and STZ-Cγ groups. Post-treatment Fbp1 and Pck1 gene expressions were reduced in the IR-Cγ group but increased in STZ-Cγ animals. Overall, these findings suggest that Cγ is involved in reducing hepatic glucose production, mainly through G6pc inhibition in impaired glucose metabolism disorders.  相似文献   

15.

Background

Male fertility is crucial for rice yield, and the improvement of rice yield requires hybrid production that depends on male sterile lines. Although recent studies have revealed several important genes in male reproductive development, our understanding of the mechanisms of rice pollen development remains unclear.

Results

We identified a rice mutant oslap6 with complete male sterile phenotype caused by defects in pollen exine formation. By using the MutMap method, we found that a single nucleotide polymorphism (SNP) variation located in the second exon of OsLAP6/OsPKS1 was responsible for the mutant phenotype. OsLAP6/OsPKS1 is an orthologous gene of Arabidopsis PKSA/LAP6, which functions in sporopollenin metabolism. Several other loss-of-function mutants of OsLAP6/OsPKS1 generated by the CRISPR/Cas9 genomic editing tool also exhibited the same phenotype of male sterility. Our cellular analysis suggested that OsLAP6/OsPKS1 might regulate pollen exine formation by affecting bacula elongation. Expression examination indicated that OsLAP6/OsPKS1 is specifically expressed in tapetum, and its product is localized to the endoplasmic reticulum (ER). Protein sequence analysis indicated that OsLAP6/OsPKS1 is conserved in land plants.

Conclusions

OsLAP6/OsPKS1 is a critical molecular switch for rice male fertility by participating in a conserved sporopollenin precursor biosynthetic pathway in land plants. Manipulation of OsLAP6/OsPKS1 has potential for application in hybrid rice breeding.
  相似文献   

16.
Consistent and effective methods for early discrimination of pathogen resistance, and selection of times for tissue sampling, are important for experiments using global gene expression and metabolomics. Assays for resistance to the vascular pathogen Verticillium dahliae (Vd), the causal agent of Verticillium wilt (VW), are particularly difficult because escapes are common in field assays. Seedling dip assays offer a potential solution, but homogeneous populations are not typically available. As an alternative strategy, we have developed a protocol for studying spatiotemporal infection dynamics of Vd using potato stem cuttings. The protocol was validated using genotypes varying in resistance/susceptibility to Vd. Although there were no visual symptoms in the plants, stem sections were infested with Vd as early as 7 dpi. Symptoms were first observed in the most susceptible genotype at 10 dpi and became apparent on all test subjects at 14 dpi. The protocol has potential applications in resistance breeding and ‘omics’ studies where populations derived from true seeds are not available.  相似文献   

17.

Background

The DEFECTIVE IN OUTER CELL LAYER SPECIFICATION 1 (DOCS1) gene belongs to the Leucine-Rich Repeat Receptor-Like Kinase (LRR-RLK) subfamily. It has been discovered few years ago in Oryza sativa (rice) in a screen to isolate mutants with defects in sensitivity to aluminum. The c68 (docs1–1) mutant possessed a nonsense mutation in the C-terminal part of the DOCS1 kinase domain.

Findings

We have generated a new loss-of-function mutation in the DOCS1 gene (docs1–2) using the CRISPR-Cas9 technology. This new loss-of-function mutant and docs1–1 present similar phenotypes suggesting the original docs1–1 was a null allele. Besides the aluminum sensitivity phenotype, both docs1 mutants shared also several root phenotypes described previously: less root hairs and mixed identities of the outer cell layers. Moreover, our new results suggest that DOCS1 could also play a role in root cap development. We hypothesized these docs1 root phenotypes may affect gravity responses. As expected, in seedlings, the early gravitropic response was delayed. Furthermore, at adult stage, the root gravitropic set angle of docs1 mutants was also affected since docs1 mutant plants displayed larger root cone angles.

Conclusions

All these observations add new insights into the DOCS1 gene function in gravitropic responses at several stages of plant development.
  相似文献   

18.
Alternaria species, including A. solani and A. alternata, are a serious threat to potato cultivation and cause necrotic leaf spots, leading to premature defoliation and yield losses. To reduce the impact of the disease, a timely prediction of a disease outbreak is important. Worldwide, modelling attempts have been made to predict the occurrence of Alternaria in order to take adequate measures. In the present paper, we made an effort to classify the existing prediction models and subdivided them into three categories: plant-based, pathogen-based and plant-pathogen-based models. Plant-based models predict the susceptibility of the host crop and presume that Alternaria inoculum is abundantly present and not the restrictive factor, whereas pathogen-based models consider one or more stages of the Alternaria life cycle and suppose that the host crop is always susceptible. The plant-pathogen-based models try to take into account the complete plant-pathogen-environment relationship. In this paper, a critical review of the described models for Alternaria leaf spot is presented. To illustrate the discrepancy between the predicted and the observed dates of the first Alternaria symptoms or the discrepancy between the suggested first treatment and necessity to treat Alternaria, the existing models were subjected to the Belgian weather conditions. It turns out that these models are not applicable in Belgium or similar regions. This can be partially attributed to the fact that most of the currently available models are too simplistic (only plant- or pathogen-based) for regions where the disease pressure highly fluctuates between growing seasons and between locations within one season. Finally, perspectives for model improvement are given taking into account both plant, pathogen and environment.  相似文献   

19.
20.
The effect of chloropicrin fumigation on the soil populations of Spongospora subterranea and the development of powdery scab, formation of root galls and tuber yield was investigated in seven field trials conducted in Minnesota and North Dakota. Sixteen potato cultivars, with different levels of susceptibility to disease on roots and tubers, were planted in plots treated with chloropicrin at rates ranging from zero to 201.8 kg a.i. ha?1. The amount of S. subterranea DNA in soil was determined using qPCR. Bioassays were conducted to further assess the effect of chloropicrin fumigation on root colonization by S. subterranea in two potato cultivars with contrasting disease susceptibility. In the field, chloropicrin applied at rates between 70.1 to 201.8 kg a.i. ha?1 significantly decreased S. subterranea initial inoculum in soil but increased the amount of disease observed on roots and tubers of susceptible cultivars. The effect of increasing disease was confirmed in controlled conditions experiments. Although the amount of S. subterranea DNA in roots of bioassay plants increased with increasing chloropicrin rates, it remained similar among potato cultivars. Chloropicrin fumigation significantly increased tuber yield which in cultivars such as Shepody and Umatilla Russet were associated with the amount root galls (r = 0.30; P < 0.03). Results of these studies contradict earlier reports on the use of chloropicrin fumigation for the control of powdery scab. Factors other than inoculum level, such as environmental conditions that affect inoculum efficiency and host susceptibility, may be significant contributors to the development of powdery scab and root gall formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号