首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Vegetation restoration efforts (planting trees and grass) have been effective in controlling soil erosion on the Loess Plateau (NW China). Shifts in land cover result in modifications of soil properties. Yet, whether the hydraulic properties have also been improved by vegetation restoration is still not clear. The objective of this paper was to understand how vegetation restoration alters soil structure and related soil hydraulic properties such as permeability and soil water storage capacity. Three adjacent sites with similar soil texture, soil type, and topography, but different land cover (black locust forest, grassland, and cropland) were selected in a typical small catchment in the middle reaches of the Yellow River (Loess Plateau). Seasonal variation of soil hydraulic properties in topsoil and subsoil were examined. Our study revealed that land‐use type had a significant impact on field‐saturated, near‐saturated hydraulic conductivity, and soil water characteristics. Specifically, conversion from cropland to grass or forests promotes infiltration capacity as a result of increased saturated hydraulic conductivity, air capacity, and macroporosity. Moreover, conversion from cropland to forest tends to promote the creation of mesopores, which increase soil water‐storage capacity. Tillage of cropland created temporarily well‐structured topsoil but compacted subsoil as indicated by low subsoil saturated hydraulic conductivity, air capacity, and plant‐available water capacity. No impact of land cover conversion on unsaturated hydraulic conductivities at suction > 300 cm was found indicating that changes in land cover do not affect functional meso‐ and microporosity. Our work demonstrates that changes in soil hydraulic properties resulting from soil conservation efforts need to be considered when soil conservation measures shall be implemented in water‐limited regions. For ensuring the sustainability of such measures, the impact of soil conversion on water resources and hydrological processes needs to be further investigated.  相似文献   

2.
Knowledge of the effects of land use on soil moisture variations is necessary to improve land and agricultural water management in the semi‐arid Chinese Loess Plateau. However, previous studies are insufficient to guide management practice in this area and improvement is needed to help with the development of the ‘Grain for Green’ programme. As part of the ‘Grain for Green’ programme, we examined the effects of five land uses (fallow, grassland, cropland, 3‐year and 8‐year jujube orchards) on soil water variations in a small catchment on the Loess Plateau. Soil moisture at 0–160 cm depth was monitored approximately weekly at 47 sites from 17 August to 19 October 2009 and from 4 April to 27 September 2010 using a portable time domain reflectometer. Results indicated that mean soil water profiles in different land uses varied with time, land use induced spatial variations of soil water but exerted negligible influence on soil water temporal patterns, and soil water content was of the greatest spatial variability with moderate means (approximately 20 per cent). Furthermore, the relationship between standard deviation and mean water content was dependent on soil depth, although it was negligibly affected by land use. Profile soil water for five land uses was different in various seasons, precipitation infiltration depth exhibited a positive correlation with precipitation, and the whole profile soil moisture (0–160 cm) was complemented following a 93·5‐mm rainfall event. The findings presented here provide helpful information for land and agricultural water management in this area. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Understanding the effects of land use change on soil properties is important for soil quality improvement and sustainable land use. In this study, six land use types including wasteland (WLD), cropland (CLD), abandoned land (ABD), artificial grassland (AGD), shrubland (SLD) and woodland (WOD) were selected to analyse the effects of land use types on soil nutrient in the Anjiapo catchment in the western part of the Loess Plateau in China. Significant differences were found in soil organic matter (SOM), total nitrogen (TN) and nitrate nitrogen (NON) (P < 0.01) between the six land use types. Our study also showed that land use types have different effects on soil nutrient storage, and vegetation restoration may improve soil nutrients and soil quality. While crop plantation can significantly decrease soil fertility, the trend can be reversed by cropland abandonment and afforestation. It is recommended that more C input, alternative cultivation practices, vegetation restoration and education and techniques training of local farmers could be used to improve soil conditions and to advance the sustainable land use and local development in the loess hilly area in the Loess Plateau of China. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
The Grain to Green Program in China which began in 1999 led to the conversion of 0.64 million ha of cropland to grassland on steep sloping landscapes. However, the pattern of natural vegetation succession following cropland has not been well represented in previous regional syntheses of land use change effects on soil organic carbon (SOC). A chronosequence study focusing on the vegetation succession and soil carbon stocks was conducted in the center of the Loess Plateau. The chronosequence included fields of 0, 2, 5, 8, 9, 10, 12, 15 and 25 years of self‐restoration after cropland abandonment, as well as a natural grassland reference. Plant coverage, species richness and plant biomass increased significantly with time of cropland abandonment. Over time, the species composition more nearly resembled a natural grasslands community. Cropland abandonment replenished SOC stocks by 3.6 kg C m−2 during the 25‐year self‐restoration, but the SOC accumulation was restricted to the upper soil profiles (0–60 cm). SOC accumulation rate was 88 g C m−2 y−1 in 0–30 cm and 55 g C m−2 y−1 in 30–60 cm soil depth, respectively. These carbon stocks were still significantly lower than those found in the natural grassland soil. Our results suggest that the recovery of plant communities and SOC stocks appears to be slow in this semiarid environment without revegetation effort along with appropriate field management, although the post‐agricultural soils have a high potential for carbon sequestration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Soil organic carbon (SOC) sequestration by vegetation restoration is the theme of much current research. Since 1999, the program of “Grain for Green”has been implemented in the semi-arid Loess Plateau, China. Its scope represents the largest vegetation restoration activity in China. However, it is still unclear for the SOC sequestration effects of vegetation cover change or natural succession promoted by the revegetation efforts at different scales under the semi-arid conditions. In this study, the changes in SOC stocks due to the vegetation restoration in the middle of Loess Plateau were estimated at patch, hill slope transect and small watershed scale from 1998 to 2006. Soil samples were taken from field for the determination of cesium-137 (137Cs) and SOC contents. Vegetation cover change from 1998 to 2006 at the small watershed scale was assessed using Geographic Information System. The results showed that cropland transforming to grassland or shrubland significantly increased SOC at patch scale. Immature woodland, however, has no significant effect. When vegetation cover has no transformation for mature woodland (25 years old), SOC has no significant increase implying that SOC has come to a stable level. At hill slope scale, three typical vegetation cover patterns showed different SOC sequestration effects of 8.6%, 24.6%, and 21.4% from 1998 to 2006, and these SOC increases mainly resulted from revegetation. At the small watershed scale, SOC stocks increased by 19% in the surface soil layer at 0–20 cm soil depth from 1998 to 2006, which was equivalent to an average SOC sequestration rate of 19.92 t C y− 1 km− 2. Meanwhile, SOC contents showed a significant positive correlation (P < 0.001) with the 137Cs inventory at every soil depth interval. This implied significant negative impacts of soil erosion on SOC sequestration. The results have demonstrated general positive effects of vegetation restoration on SOC sequestration at multiple scales. However, soil erosion under rugged topography modified the spatial distribution of the SOC sequestration effects. Therefore, vegetation restoration was proved to be a significant carbon sink, whereas, erosion could be a carbon source in high erosion sensitive regions. This research can contribute to the performance assessment of ecological rehabilitation projects such as “Grain to Green” and the scientific understanding of the impacts of vegetation restoration and soil erosion on soil carbon dynamics in semi-arid environments.  相似文献   

6.
Land use changes profoundly affect the equilibrium of soil organic carbon (SOC) sequestration and greenhouse gas emissions. With the current global climatic changes, it is vital to understand the influence of ecological restoration and conservation management on the dynamics of SOC under different land uses, especially in erosion-endangered Loess soils. Therefore, we investigated changes in SOC through a suit of labile fractions, namely: light fraction organic C (LFOC), heavy fraction organic C (HFOC), coarse particulate organic C (CPOC), fine particulate organic C (FPOC), and dissolved organic C (DOC), from two forests i.e., Robinia pseudoacacia (RP) and Platycladus orientalis (PO), with different ages, in comparison with farmland (FL). The SOC and STN contents significantly increased over 42 years in the RP forest where the contents of CPOC and FPOC were significantly higher than in the FL. Moreover, total SOC and its labile fractions, in the studied land use types, significantly correlated with soil CaCO3, pH, and STN contents, indicating their key roles in SOC sequestration. The results reported here from different vegetation with different ages provide a better understanding of SOC and STN alterations at different stages of vegetation restoration. Our findings suggest that long-term natural vegetation restoration could be an effective approach for SOC sequestration and soil conservation on the Loess soil.  相似文献   

7.
Soil organic‐carbon (SOC) stocks are expected to increase after conversion of cropland into grassland. Two adjacent cropland and grassland sites—one with a Vertisol with 23 y after conversion and one with an Arenosol 29 y after conversion—were sampled down to 60 cm depth. Concentrations of SOC and total nitrogen (Ntot) were measured before and after density fractionation in two light fractions and a mineral‐associated fraction with C adsorbed on mineral surfaces. For the soil profiles, SOC stocks and radiocarbon (14C) concentrations of mineral associated C were determined. Carbon stocks and mineral‐associated SOC concentrations were increased in the upper 10 cm of the grassland soil compared to the cropland. This corresponded to the root‐biomass distribution, with 59% and 86% of the total root biomass at 0–5 cm soil depth of the grasslands. However, at the Arenosol site, at 10–20 cm depth, C in the mineral‐associated fraction was lost 29 y after the conversion into grassland. Over all, SOC stocks were not significantly different between grassland and cropland at both sites when the whole profile was taken into account. At the Arenosol site, the impact of land‐use conversion on SOC accumulation was limited by low total clay surface area available for C stabilization. Subsoil C (30–50 cm) at cropland of the Vertisol site comprised 32% of the total SOC stocks with high 14C concentrations below the plowing horizon. We concluded that fresh C was effectively translocated into the subsoil. Thus, subsoil C has to be taken into account when land‐use change effects on SOC are assessed.  相似文献   

8.
Soil organic carbon (SOC) is an important component in agricultural soil, and its stock is a major part of global carbon stocks. Estimating the SOC distribution and storage is important for improving soil quality and SOC sequestration. This study evaluated the SOC distribution different land uses and estimated the SOC storage by classifying the study area by land use in a small watershed on the Loess Plateau. The results showed that the SOC content and density were affected by land use. The SOC content for shrubland and natural grassland was significantly higher than for other land uses, and cropland had the lowest SOC content. The effect of land use on the SOC content was more significant in the 0-10 cm soil layer than in other soil layers. For every type of land use, the SOC content decreased with soil depth. The highest SOC density (0-60 cm) in the study area was found in shrublandII (Hippophae rhamnoides), and the other land uses decreased in the SOC density as follows: natural grassland > shrublandI (Caragana korshinskii) > abandoned cropland > orchard > level ground cropland > terrace cropland > artificial grassland. Shrubland and natural grassland were the most efficient types for SOC sequestration, followed by abandoned cropland. The SOC stock (0-60 cm) in this study was 23,584.77 t with a mean SOC density of 4.64 (0-60 cm).  相似文献   

9.
以黄土高原寺底沟小流域为研究对象,根据不同土地利用方式采集46个样点的土壤样品,通过地统计方法对土壤有机碳和全氮的空间变异特征进行了分析。采用受限最大似然法(REML)和矩法(MOM)两种方法分别对变异函数进行了估计,通过交叉检验选择克里金预测效果较好的变异函数进行地统计插值。(1)与矩法(MOM)相比,在多数情况下受限最大似然法(REML)估计的变异函数进行克里金插值更加准确。(2)土层深度对土壤全氮空间变异影响较小,对土壤有机碳影响较大,表层土壤有机碳含量及变异程度明显高于下层土壤。(3)土地利用方式对土壤有机碳和全氮的空间分布有重要影响,灌木林和天然草地土壤有机碳和全氮水平最高,弃耕地其次,梯田、果园、人工草地最低,表明退耕还林对提高土壤碳氮水平有重要贡献。  相似文献   

10.
在洞庭湖区的2km2典型样区内,按3个/hm2的密度采集土样,分析不同耕种方式下(水稻、水旱轮作油菜、水改旱种苎麻1~5年)水稻土壤的有机碳、全氮和全磷含量状况。结果表明,水稻田土壤有机碳、全氮和全磷含量水平均较高,水田改为旱地后土壤有机碳、全氮含量及C/N比值有较大幅度的下降,但全磷含量变化不大。土壤有机碳、全氮及C/N比值均以水稻田土壤>油菜地土壤>苎麻地土壤,与水稻田相比,油菜土壤有机碳平均下降了11.19%、全氮下降了10.33%,而苎麻土壤有机碳平均下降了35.57%、全氮下降了31.61%。土壤有机碳与全氮之间呈线性关系,相关性均达极显著水平(P<0.01)。  相似文献   

11.
粮食生产系统的可持续性事关国家粮食安全目标的实现,探究退耕还林还草背景下粮食生产系统的可持续性对准确评估生态安全和粮食安全之间的关系具有重要意义。基于2000、2010和2018年黄土高原县域粮食生产相关数据,构建粮食生产系统可持续性综合测度指标体系,对黄土高原粮食生产系统的可持续性进行综合分析;通过分析典型生态修复工程"退耕还林还草",阐明退耕对粮食生产系统可持续性的影响。结果表明:1)2018年黄土高原粮食生产系统的可持续性高于2000年,系统的可持续性在逐步增强;粮食生产系统可持续性由自然资源供给为主导,转变到以社会经济可持续发展为主导的阶段。2)2000-2010、2010-2018年间黄土高原粮食生产系统可持续性增长率分别达到31.03%和28.81%,因此,2000-2010年间是粮食生产系统可持续性大幅提升阶段。3)退耕背景下虽然耕地大幅减少(-33.48%),但平均海拔和坡度也呈下降趋势(分别下降了20.3 m和0.88°),土壤侵蚀模数由16.14 t/(hm2·a)降至9.34 t/(hm2·a),产水量和粮食生产潜力则年均增长5.09 mm/(km2·a)、53.75 kg/hm2。4)退耕背景下粮食生产系统的可持续性显著提升,工程的实施对六个分区粮食生产系统的可持续性都呈正向的促进作用;其中,土石山区粮食生产系统的可持续性指数由0.14增长至0.17,其受退耕的影响最大。退耕还林还草工程对易造成水土流失和土地沙化的生态脆弱地区实行退耕,虽减少了粮食生产的物质基础,但通过改变其空间分布格局,对耕地质量、耕地平均海拔和高度均产生影响,由此使得土壤侵蚀模数下降、水源涵养能力提高,有效地改善了生态环境,显著提升了粮食生产系统的可持续性。整体而言,退耕还林还草提升了粮食生产系统的可持续性,生态安全对粮食安全存在着正向的促进作用。  相似文献   

12.
Agricultural soils are considered to have great potential for carbon sequestration through land‐use change. In this paper, we compiled data from the literatures and studied the change in soil organic carbon (SOC) following the ‘Grain‐for‐Green’ Programme (GGP, i.e., conversion from farmland to plantation, secondary forests and grasslands) in China. The results showed that SOC stocks accumulated at an average rate of 36·67 g m−2 y−1 in the top 20 cm with large variation. The current SOC storage could be estimated using the initial SOC stock and year since land use transformation (Adjusted R2 = 0·805, p = 0·000). After land use change, SOC stocks decreased during the initial 4–5 years, followed by an increase after above ground vegetation restoration. Annual average precipitation and initial SOC stocks had a significant effect (p < 0·05) on the rate of change in SOC, while no significant effects were observed between plantation and natural regeneration (p > 0·05). The ongoing ‘Grain‐for‐Green’ project might make significant contribution to China's carbon sequestration. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Land use change is a key factor driving changes in soil organic carbon (SOC) around the world. However, the changes in SOC following land use changes have not been fully elucidated, especially for deep soils (>100 cm). Thus, we investigated the variations of SOC under different land uses (cropland, jujube orchard, 7‐year‐old grassland and 30‐year‐old grassland) on hillslopes in the Yuanzegou watershed of the Loess Plateau in China based on soil datasets related to soils within the 0–100 cm. Furthermore, we quantified the contribution of deep‐layer SOC (200–1,800 cm) to that of whole soil profiles based on soil datasets within the 0–1,800 cm. The results showed that in shallow profiles (0–100 cm), land uses significantly (p  < 0·05) influenced the distribution of SOC contents and stocks in surface layer (0–20 cm) but not subsurface layers (20–100 cm). Pearson correlation analysis indicated that soil texture fractions and total N were significantly (p  < 0·05 or 0·01) correlated with SOC content, which may have masked effects of land use change on SOC. In deep profiles (0–1,800 cm), SOC stock generally decreased with soil depth. But deep soils showed high SOC sequestration capacity. The SOC accumulated in the 100–1,800 m equalled 90·6%, 91·6%, 87·5% and 88·6% of amounts in the top 100 cm under cropland, 7‐year‐old grassland, 30‐year‐old grassland and jujube orchard, respectively. The results provide insights into SOC dynamics following land use changes and stressed the importance of deep‐layer SOC in estimating SOC inventory in deep loess soils. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
The aim of this study was to assess the consequences of feasible land‐use change in Great Britain on GHG emissions mainly through the gain or loss of soil organic carbon. We use estimates of per‐area changes in soil organic carbon (SOC) stocks and in greenhouse gas (GHG) emissions, coupled with Great Britain (GB) county‐level scenarios of land‐use change based on historical land‐use patterns or feasible futures to estimate the impact of potential land‐use change between agricultural land‐uses. We consider transitions between cropland, temporary grassland (<5 yr under grass), permanent grass (>5 yr under grass) and forest. We show that reversion to historical land‐use patterns as present in 1930 could result in GHG emission reductions of up to ca. 11 Mt CO2‐eq./yr (relative to a 2004 baseline), because of an increased permanent grassland area. By contrast, cultivation of 20% of the current (2004) permanent grassland area for crop production could result in GHG emission increases of up to ca. 14 Mt CO2‐eq./yr. We conclude that whilst change between agricultural land‐uses (transitions between permanent and temporary grassland and cropland) in GB is likely to be a limited option for GHG mitigation, external factors such as agricultural product commodity markets could influence future land‐use. Such agricultural land‐use change in GB could have significant impacts on Land‐use, Land‐Use Change and Forestry (LULUCF) emissions, with relatively small changes in land‐use (e.g. 5% plough out of grassland to cropland, or reversion of cropland to the grassland cover in Nitrate Vulnerable Zones of 1998) having an impact on GHG emissions of a similar order of magnitude as the current United Kingdom LULUCF sink. In terms of total UK GHG emissions, however, even the most extreme feasible land‐use change scenarios account for ca. 2% of current national GHG emissions.  相似文献   

15.
黄土丘陵区小流域植被恢复的土壤养分效应研究   总被引:55,自引:5,他引:55  
研究了安家坡小流域荒草地、山杏林地、农地、油松林地、灌木林地、弃耕地等地类的土壤养分特征。结果表明,植被系统具有较强的养分表层富集功能;不同植被恢复类型对土壤养分含量有明显的影响,主要表现在不同土层土壤有机质、速效磷、速效钾、硝态氮和铵态氮含量在不同植被类型间存在显著的差异性;人工灌木植被对土壤的培肥作用高于乔木植被;农地弃耕(撂荒)有一定的土壤培肥作用;对水土流失极为严重的黄土丘陵沟壑区来说,在退耕还林还草时应优先考虑恢复灌木和草本等先锋植被;在土壤质量改善到一定程度时,再进行乔木的间植;农地弃耕是一种节省人力物力而其生态环境效应又很好的双赢途径。  相似文献   

16.
黄土高原小流域不同坡地利用方式的水土流失特征   总被引:15,自引:6,他引:9  
坡地是黄土高原水土流失的主要来源,坡地利用方式与水土流失的关系研究是黄土高原水土流失综合治理与植被恢复中的重要基础科学问题。在陕北神木县六道沟小流域内,选择谷子地、黑豆地、退耕撂荒地、荒草地和柠条地等5种利用方式修建标准径流小区,观测了产流产沙状况,分析比较其水土流失特征。结果表明:观测期内谷子、黑豆、退耕撂荒、荒草和柠条等5个小区的产流量分别为2.1、2.2 、1.5、1.2和0.9 m3,径流系数分别为4.1%、4.6%、2.9%、2.4%和1.9%,产流量大小顺序为黑豆>谷子>退耕撂荒>荒草>柠条,最大产流量为最小值的2.4倍。谷子、黑豆、退耕撂荒、荒草和柠条等5个小区的侵蚀产沙量分别为196.6、228.6、27.2、23.3和10.4 kg,其大小顺序为黑豆>谷子>退耕荒草>天然荒草>柠条,最大土壤流失量为最小值的22.0倍,表明草灌木等植被类型在保持水土的作用方面要明显高于坡耕地,为评价流域植被恢复的水土环境效应和水土流失治理模式选择提供了基础数据参考。  相似文献   

17.
Soil restoration is a means of combating desertification in semi‐arid and arid parts of the world. There, vast areas of the cropped soil degrade, particularly because of the loss of organic matter. One approach to reverse this loss is the conversion of cropland into permanent grassland for use as pasture. This study was designed to evaluate how fast and to what degree degraded cropland may re‐sequester soil organic carbon (SOC) when converted into permanent secondary pasture. Topsoil samples (0–5, 5–10 and 10–20 cm) were taken from chronosequences of secondary pastures (1 to 31 years old) at three agro‐ecosystems in the semi‐arid Highveld of South Africa. Long‐term croplands and primary grassland used as pastures served as the controls. In bulk soil samples (<2 mm) and their clay (<2 µm), silt (2–20 µm), fine sand (20–250 µm) and coarse sand (250–2000 µm) fractions, the contents of carbon (C) and nitrogen were determined. In all three agro‐ecosystems, using a mono‐exponential model, the SOC stocks increased exponentially until a maximum was reached 10–95 years after land conversion. This gain in SOC was clearly pronounced for the top 0–5 cm of soil, but hardly detectable at 10–20‐cm depth. The sand fractions recovered organic C more rapidly but less completely than did the finer size separates. Overall, between 9.0 and 15.3 t of SOC were sequestered in the 0–20 cm of surface soil by this land conversion. Thus, the SOC recovery in the secondary pastures resulted in SOC stocks that were 29.6–93.9% greater than those in the arable land. Yet, in no agro‐ecosystem, at any soil depth, nor in any soil fraction, did the measured SOC content reach that of the primary grassland. In part this can be attributed to a slightly finer texture of the primary grassland that had not lost silt through wind erosion or had never been used as arable land because of slightly elevated clay contents. Overall it appears, however, that previous losses of SOM cannot easily be rectified, suggesting that the native primary grassland soils are only partially resilient to land‐use change.  相似文献   

18.
基于GIS的土壤有机碳储量核算及其对土地利用变化的响应   总被引:9,自引:3,他引:6  
土地利用变化是影响土壤有机碳储量变化的重要驱动因素,为了进一步探讨土地利用变化对土壤碳储量的影响,该文根据土壤样点数据、土壤类型图、土地利用类型图,分析了江苏省1985年和2005年表层土壤有机碳密度的变化以及土地利用变化对表层土壤有机碳密度的影响,主要结论如下:1)江苏省表层土壤有机密度的空间变化趋势为:黄淮平原生态区南北差异明显,北部的沂沭泗平原丘岗以增加为主,南部的淮河下游平原以减少为主;沿海滩涂与海洋生态区持平为主;而长江三角洲平原生态区表现不一:沿江平原丘岗生态亚区以增加为主,而茅山宜溧低山丘陵生态亚区和太湖水网生态亚区均表现为有机碳密度的减少;2)各地类表层土壤有机碳密度均有所增加;耕地-林地、草地;草地-林地、建设用地;建设用地-耕地、草地、林地;水域的转出以及未利用地的转出等转换类型有利于土壤碳储量的增加、其他地类间的转换会造成一定的碳排放。  相似文献   

19.
黄土丘陵区天然和人工植被类型对土壤理化性质的影响   总被引:8,自引:2,他引:6  
不同植被类型对黄土高原土壤质量的改善作用存在较大差异。研究天然和人工植被类型对土壤性状的影响差异对于深入认识黄土高原植被恢复与土壤环境演化的关系,准确评价不同植被恢复模式生态环境效益具有重要意义。该研究以黄土丘陵区燕沟流域为例,选择研究区广泛分布的11种天然和人工植被类型为研究对象,系统分析了该区天然和人工植被类型对土壤性状的影响。结果表明:天然和人工植被类型对土壤性状的影响差异明显。200cm土层土壤含水率大小为农田>天然草地>人工乔木林地>果园>人工灌木林地>天然灌木林地。与农田相比,天然灌木林地和天然草地土壤体积质量降低最为明显,人工乔木林地、人工灌木林地和果园土壤体积质量下降差别不明显。天然灌木林地、天然草地和人工灌木林地土壤有机质、全氮都有明显提高,人工乔木林地和果园土壤有机质和全氮提高不明显。不同植被类型土壤有机质、全氮总体随土层加深呈下降趋势,农田、果园和人工乔木林地土壤有机质和全氮垂直变化较小,而天然灌木林地、天然草地和人工灌木林地变化较大。不同植被类型土壤全磷含量差异较小,且垂直变化不明显。总体看来,天然植被类型对该区土壤性状改善作用优于人工植被类型,而人工灌木林的改善作用优于人工乔木林。  相似文献   

20.
An accurate estimation of soil organic carbon (SOC) is important for the evaluation and management of carbon (C) flux in terrestrial ecosystems. However, there is little work on the spatial variability of SOC in deep soils and its driving factors. Thus, the objective of the study was to derive the primary factors dominating the spatial distribution of SOC in different soil layers with the use of the autoregressive state‐space approach. The concentration of SOC was measured to the depth of 500 cm (n  = 86) along a south–north transect of China's Loess Plateau. The mean SOC of the 500‐cm soil profile generally decreased from south to north following the decreasing rainfall gradient. Based on the investigated factors, the state‐space model was able to capture 90.3–99.9% of the spatial variability of SOC in the various soil layers. According to the coefficients in the optimal state‐space model for each soil layer, climatic factors such as precipitation and temperature had a dominant control over the spatial distribution of SOC at shallow depths. However, both climatic and edaphic (e.g. soil texture) factors, and to a small extent land use, influenced the spatial behavior of SOC at the 40–200 cm soil depth. For soil layers below 200 cm, the importance of land use was revealed, and the spatial characteristics of SOC were together driven by land use, climatic and edaphic factors. This is critical for the management of soil C flux in deep soils and the C stock and cycle in terrestrial ecosystems. Table SI. Basic properties of soils and climate and elevation under three land uses along the south–north transect on the Loess Plateau (mean ± standard deviation). Note that SWC is gravimetric soil water content. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号