首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

A greenhouse experiment was carried out to study severity of the zinc (Zn) deficiency symptoms on leaves, shoot dry weight and shoot content and concentration of Zn in 164 winter type bread wheat genotypes (Triticunt aestivum L.) grown in a Zn‐deficient calcareous soil with (+Zn=10 mg Zn kg?1 soil) and without (‐Zn) Zn supply for 45 days. Tolerance of the genotypes to Zn deficiency was ranked based on the relative shoot growth (Zn efficiency ratio), calculated as the ratio of the shoot dry weight produced under Zn deficiency to that produced under adequate Zn supply. There was a substantial difference in genotypic tolerance to Zn deficiency. Among the 164 genotypes, 108 genotypes had severe visible symptoms of Zn deficiency (whitish‐brown necrotic patches) on leaves, while in 25 genotypes Zn deficiency symptoms were slight or absent, and the remaining genotypes (e.g., 31 genotypes) showed mild deficiency symptoms. Generally, the genotypes with higher tolerance to Zn deficiency originated from Balkan countries and Turkey, while genotypes originating from the breeding programs in the Great Plains of the United States were mostly sensitive to Zn deficiency. Among the 164 wheat genotypes, Zn efficiency ratio varied from 0.33 to 0.77. The differences in tolerance to Zn deficiency were totally independent of shoot Zn concentrations, but showed a close relationship to the total amount (content) of Zn per shoot. The absolute shoot growth of the genotypes under Zn deficiency corresponded very well with the differences in tolerance to Zn deficiency. Under adequate Zn supply, the 10 most Zn‐ inefficient genotypes and the 10 most Zn‐efficient genotypes were very similar in their shoot dry weight. However, under Zn deficiency, shoot dry weight of the Zn‐efficient genotypes was, on average, 1.6‐fold higher compared to the Zn‐inefficient genotypes. The results of this study show large, exploitable genotypic variation for tolerance to Zn deficiency in bread wheat. Based on this data, total amount of Zn per shoot, absolute shoot growth under Zn deficiency, and relative shoot growth can be used as reliable plant parameters for assessing genotypic variation in tolerance to Zn deficiency in bread wheat.  相似文献   

2.
A greenhouse experiment was conducted at the University of Çukurova, Rhisosphere Lab, Adana, Turkey, on a growth medium to assess the impact of several selected mycorrhiza including indigenous AMF-maize hybrid combinations on spore production, plant growth and nutrient uptake. In the experiment, six maize (Zea mays L.) (Luce, Vero, Darva, Pegasso, P.3394, and P.32K61) genotypes were used. Control, Glomus mossea, G. caledonium, G. etunicatum, G. clarium, G. macrocarpum, G. fasciculatum, G. intraradices, Dr. Kinkon (Japanese species), indigenous mycorrhizae (Balcal? series) and cocktail mycorrhizae species spores were used. The growth of maize genotypes was found to depend on the mycorrhizal species. For shoot and root dry weight production G. intraradices is one of the most efficient mycorrhiza species on average on all maize genotypes. Genotypes P.3394 and P.32K61 produced the highest shoot and root dry weight as well. Pagasso and Darva genotypes compared to the other genotypes have high root colonization percentages. On average G. clarium inoculated plants also have high percentages of root colonization. It has been found that the P.32K61 genotype has a high phosphorus (P)% content and Pagasso genotypes have higher zinc (Zn) content uptake than other genotypes. G. clarium inoculated maize genotype plant tissues have high P% and Zn content. G. intraradices is also efficient for P and Zn uptake. Mycorrhizal dependent maize genotypes showed variability in P efficiency from inefficient to efficient genotypes.  相似文献   

3.
Potato (Solanum tuberosum L.), an important food crop, generally requires a high amount of phosphate fertilizer for optimum growth and yield. One option to reduce the need of fertilizer is the use of P‐efficient genotypes. Two efficient and two inefficient genotypes were investigated for P‐efficiency mechanisms. The contribution of root traits to P uptake was quantified using a mechanistic simulation model. For all genotypes, high P supply increased the relative growth rate of shoot, shoot P concentration, and P‐uptake rate of roots but decreased root‐to‐shoot ratio, root‐hair length, and P‐utilization efficiency. Genotypes CGN 17903 and CIP 384321.3 were clearly superior to genotypes CGN 22367 and CGN 18233 in terms of shoot–dry matter yield and relative shoot‐growth rate at low P supply, and therefore can be considered as P‐efficient. Phosphorus efficiency of genotype CGN 17903 was related to higher P‐utilization efficiency and that of CIP 384321.3 to both higher P‐uptake efficiency in terms of root‐to‐shoot ratio and intermediate P‐utilization efficiency. Phosphorus‐efficient genotypes exhibited longer root hairs compared to inefficient genotypes at both P levels. However, this did not significantly affect the uptake rate and the extension of the depletion zone around roots. The P inefficiency of CGN 18233 was related to low P‐utilization efficiency and that of CGN 22367 to a combination of low P uptake and intermediate P‐utilization efficiency. Simulation of P uptake revealed that no other P‐mobilization mechanism was involved since predicted uptake approximated observed uptake indicating that the processes involved in P transport and morphological root characterstics affecting P uptake are well described.  相似文献   

4.
Forty six wheat genotypes from different origins were tested at stress (25 μM P) and adequate (250 μM P) levels of phosphorus (P) developed in a modified Johnson's nutrient solution. Response of wheat genotypes for tolerance to P deficiency stress was measured at two growth stages in terms of growth, P uptake, and P utilization efficiency. Substantial differences in shoot and root growth were observed among genotypes at both stress and adequate P levels in the growth medium. Reduction in shoot biomass due to P deficiency varied from >50% to 27%. Similarly P concentration in shoot and root, P uptake, specific absorption rate of P, and P utilization efficiency varied significantly at both levels of applied P. A significant negative correlation between P stress factor and root dry weight (r = ?0.396**), shoot P uptake (r = ?0.451**), and specific absorption rate of P (r = ?0.281**, P < 0.01) suggested that the genotypes with greater root biomass, higher P uptake potentials in shoots, and absorption rate of P were generally more tolerant to P deficiency in the growth medium. Wheat genotypes were grouped according to the ranking order of investigated plant characteristics and shoot dry matter yield per unit of P absorbed. Genotypes Inqlab-91, SARC-II, SARC-IV, Chakwal-86, 90627, 89626, and Parvaz-94 were P efficient, while genotypes Pak-81, Pato, 88042, 88163, 89295, 4072, 89313, and 91109 were P inefficient. All other genotypes were intermediate in P use efficiency.  相似文献   

5.
采用溶液培养筛选,结合田间试验,提出了采用低钾胁迫下水稻体内钾利用效率作为衡量水稻钾利用效率的指标;探讨了钾高效基因型水稻的若干生长特性和营养特性;指出低钾胁迫导致水稻生物量减少,植株生长缓慢,分蘖能力差,根系生长受到抑制,根系吸收的钠增加。水稻钾高效基因型低钾胁迫下仍具有较强的生长势(相对干重、相对株高、相对根长较大),其地上部钾/钠比值高而根部钾/钠比值较低,地上部和根部钾/氮吸收量比值较低。  相似文献   

6.
Zinc (Zn)–efficient wheat genotypes yield well on Zn-deficient soil. In this study, two Chinese wheat genotypes, Kenong9204 and Han6172, and two reference genotypes, Bezostaja (Zn efficient) and BDME10 (Zn inefficient), from Turkey were conducted to measure their physiological responses to Zn deficiency in the greenhouse. Results showed obvious genetic variation among the genotypes with Zn efficiency from 76% to 105%. Bezostaja and Kenong9204 had greater shoot dry weight and accumulated more shoot Zn content than BDME10 and Han6172 without Zn application. In one aspect of enzyme activities, Bezostaja and Kenong9204 presented significantly greater activities of superoxide dismutase while maintaining similar activities of catalase, ascorbate peroxidase, and glutathione reductase compared with inefficient genotypes BDME10 and Han6172 under Zn-deficient condition. Zinc-efficient genotypes are recommended to satisfy the sustainable grain yield in China and other areas, where Zn deficiency in soil is spread and multiple stresses may happen at times.  相似文献   

7.
Cacao (Theobroma cacao L) is mostly grown on soils with low natural fertility. On such soils nitrogen (N) is one of the most yield limiting nutrients for cacao. Information is lacking on N use efficiency in cacao. A greenhouse experiment was conducted to evaluate growth response and N use efficiency by two cacao genotypes. The genotypes used were TSH-565 and ICS-9 and N rates adapted were 0, 120, 240, 360, and 480 mg N /pot. In both genotypes, increasing levels of applied N improved growth (stem girth, dry weight of shoot and roots and shoot/root ratio), and concentration and uptake of N. Genotypes differed significantly for stem girth and ICS -9 produced greater stem girth compared with TSH-565. Nitrogen uptake had a linear relationship with root dry weight of the two genotypes. In both genotypes, increasing levels of applied N overall increased N-uptake efficiency (NEFF = N concentration in shoot x shoot/root), but decreased N-use efficiency by shoot and roots (NUE = g dry matter of shoot or root/mg N) and N-use efficiency of carbohydrate (NUEC = mg of total carbohydrates in shoot/mg of N in shoot). Both genotypes responded differently to applied N, despite the existence of close genetic relatedness between them. The method used here appears to be suitable method for identification of cacao genotypes that are efficient in uptake and utilization of N.  相似文献   

8.
The root morphology (root length, diameter) of the three wheat genotypes (Triticum aestivum L. cvs Excalibur and Gatcher, and T. turgidum conv. durum (Desf.) McKay cv Durati) grown in zinc (Zn)‐deficient, sandy soil under controlled conditions has been measured by a root scanner coupled to a computer. Wheat plants were supplied with 0, 0.025, 0.05, 0.1, 0.2, or 0.4 mg Zn/kg soil. Excalibur has previously been identified as the Zn‐efficient genotype which can take up more Zn and has higher yield in soils with low plant‐available Zn. Durati is Zn‐inefficient and Gatcher an intermediate genotype with respect to Zn efficiency. Root and shoot dry matter significantly increased at 0.1 mg Zn/kg soil compared to the 0 Zn level. Zinc content in shoots was lower in Durati than in Excalibur and Gatcher at sufficient supply of Zn. Zinc applications had no significant effect on root morphology at two weeks after sowing. At that time, however, the Zn‐efficient genotype Excalibur developed a longer and thinner roots (greater proportion of fine roots with diameter <0.2 mm) than the less efficient Gatcher and Zn‐inefficient Durati. Hence, growing longer and thinner roots and having a greater proportion of thinner roots in the total root biomass early in the growth period may be the two characters associated with the Zn‐efficient genotypes.  相似文献   

9.
Genotypic variation for morpho-physiological parameters, phosphorus (P) content and root acid phosphatase activity was studied in 52 pigeonpea genotypes. Data related to shoot (length, dry weight, number of leaves, and leaf area), root (volume, length, dry weight, area, perimeter, and number of root tips), acid phosphatase activity, and P content (root, stem, and leaf) were recorded at 60 days after sowing (DAS). The P use efficient genotypes showed high root length, root area, root perimeter, root dry weight, P content in leaves, and root to shoot dry weight ratio under the P not added condition. Significant variation was found among genotypes for root- and shoot-associated characteristics under both P treatments. The P use efficient genotypes with improved root morphological phenes have potential to acquire and utilize more P from immobile soil bound P sources may be of additional factor for increasing efficiency of acquisition and utilization of supplied P fertilizer.  相似文献   

10.
Phosphorus (P) deficiency is a principal yield‐limiting factor for annual crop production in acid soils of temperate as well as tropical regions. The objective of this study was to screen nine corn (Zea mays L.) genotypes at low (0 mg P kg‐1), medium (75 mg P kg‐1), and high (150 mg P kg‐1) levels of P applied in an Oxisol. Plant height, root length, shoot dry weight, root dry weight, shoot‐root ratio, P concentration in shoot and root, P uptake in root and shoot, and P‐use efficiency parameters were significantly (P<0.01) influenced by P treatments. Significant genotype differences were found in plant height, shoot and root dry weight, P uptake in root and shoot, and P‐use efficiency. Based on dry matter production and P‐use efficiency, genotypes were classified as efficient and responsive, efficient and nonresponsive, nonefficient and responsive, and nonefficient and nonresponsive.  相似文献   

11.
Using six bread wheat genotypes (Triticum aesttvum L. cvs. Dagdas‐94, Gerek‐79, BDME‐10, SBVD 1–21, SBVD 2–22 and Partizanka Niska) and one durum wheat genotype (Triticum durum L. cv. Kunduru‐1149) experiments were carried out to study the relationship between the rate of phytosiderophore release and susceptibility of genotypes to zinc (Zn) deficiency during 15 days of growth in nutrient solution with (1 μM Zn) and without Zn supply. Among the genotypes, Dagdas‐94 and Gerek‐79 are Zn efficient, while the others are highly susceptible to Zn deficiency, when grown on severely Zn deficient calcareous soils in Turkey. Similar to the field observations, visual Zn deficiency symptoms, such as whitish‐brown lesions on leaf blades occurred first and severely in durum wheat Kunduru‐1149 and bread wheats Partizanka Niska, BDME‐10, SBVD 1–21 and SBVD 2–22. Visual Zn deficiency symptoms were less severe in the bread wheats Gerek‐79 and particularly Dagdas‐94. These genotypic differences in susceptibility to Zn deficiency were not related to the concentrations of Zn in shoots or roots. All bread wheat genotypes contained similar Zn concentration in the dry matter. In all genotypes supplied adequately with Zn, the rate of phytosiderophore release was very low and did not exceed 0.5 μmol/48 plants/ 3 h. However, under Zn deficiency the release of phytosiderophores increased in all bread wheat genotypes, but not in the durum wheat genotype. The corresponding rates of phytosiderophore release in Zn deficient durum wheat genotype were 1.2 umol and in Zn deficient bread wheat genotypes ranged between 8.6 μmol for Partizanka Niska to 17.4 umol for SBVD 2–22. In Dagdas‐94, the most Zn efficient genotype, the highest rate of phytosiderophore release was 14.8 umol. The results indicate that the release rate of phytosiderophores does not relate well with the susceptibility of bread wheat genotypes to Zn deficiency. Root uptake and root‐to‐shoot transport of Zn and particularly internal utilization of Zn may be more important mechanisms involved in expression of Zn efficiency in bread wheat genotypes than release of phytosiderophores.  相似文献   

12.
石灰性土壤上不同小麦基因型对施锌的反应   总被引:1,自引:0,他引:1  
为比较石灰性土壤上面包型小麦(Triticum aestivum L.)对施锌的反应,选择20种小麦基因型在温室中进行了土培试验。结果表明,在杨凌当地土壤有效锌含量水平(0.6 mg kg-1左右)下,施Zn对供试基因型小麦植株生长量均无明显影响,由于小麦根冠比主要受基因型控制,施锌对它的影响也很小。然而,供Zn显著提高了所有基因型小麦植株各部分的Zn含量和吸Zn量,根、茎、叶、籽粒中Zn含量增加幅度分别达0.22~3.22倍、0.26~2.82倍、0.10~3.84倍、0.10~0.84倍,整株吸Zn量均大幅度增加,幅度在28.8%~219.3%之间,平均增加104.8%。施Zn后不同基因型的Zn转运率有明显差异,范围在13.5%~90.2%之间,收获籽粒的6种基因型小麦对锌的转运率明显高于其它正处于抽穗期的基因型,表明灌浆期是Zn从根部向穗部转运的关键时期。施锌也显著提高了土壤有效锌含量。总之,对生长在有效锌含量不高的石灰性土壤上的小麦施锌是改善其营养品质的重要措施。  相似文献   

13.
Dry bean is an important legume for human consumption worldwide. Low soil fertility, including zinc (Zn) deficiency, is one of the main factors limiting yield of this legume in South America, including Brazil. The objective of this study was to evaluate 30 dry bean genotypes for zinc (Zn)–use efficiency. The Zn rates used were 0 mg Zn kg?1 (low) and 20 mg Zn kg?1 (high) of soil. Grain yield, straw yield, number of pods, hundred-seed weight, number of seeds per pod, maximum root length, and rood dry weight were significantly affected by Zn and genotype treatments. The Zn × genotype interactions were also significant for growth, yield, and yield components, indicating that some genotypes were highly responsive to the Zn application while others were not. Based on seed yield efficiency index (SYEI), genotypes were classified as efficient, moderately efficient, and inefficient in Zn-use efficiency. Most efficient genotypes were CNFP 10104, BRS Agreste, BRS 7762 Supreme, CNFC 10429, BRS Estilo, CNFC 10467, BRS Esplendor, and BRS Pitamaba. The most inefficient genotype was BRS Executive. Remaining genotypes were moderately efficient in Zn-use efficiency.  相似文献   

14.
Potassium (K) is an important nutrient for watermelon (Citrullus lanatus Thunb. Matsum. & Nakai). However, there is little knowledge about genetic variations in K efficiency in watermelon. Sixty‐four watermelon genotypes were grown under conditions of ample (6 mM) and limited (0.1 mM) K supply in a glasshouse. Thirty‐eight wild genotypes (C. lanatus var. citroide) and 26 domesticated genotypes (C. lanatus var. lanatus) were cultivated hydroponically for 30 d. Shoot dry weight, shoot K concentration, K uptake, K‐use index (shoot dry weight / shoot K concentration), relative shoot dry weight (shoot dry weight under limited K / shoot dry weight under ample K), and relative shoot K concentration (shoot K concentration under limited K / shoot K concentration under ample K) were determined. Significant differences were observed among genotypes. The K efficiency was classified based on a medium‐efficiency interval which is equivalent to the 95% confidence interval of the mean relative shoot dry weight and relative shoot K concentration. Genotypic data above or below this interval were classified as either K‐efficient or K‐inefficient. We identified eight K‐efficient genotypes, of which four were wild types. Thus, wild watermelons can be used in breeding programs to improve the K efficiency of domesticated watermelons.  相似文献   

15.
Dry bean is an important legume for human consumption in South America. A greenhouse experiment was conducted to evaluate uptake and use efficiency of macro- and micronutrients by six dry bean genotypes at two P levels (25 and 200 mg kg?1 soil). Shoot dry weight and grain yield varied significantly among genotypes and significantly increased with increasing phosphorus (P) levels. Grain harvest index (GHI) and 100-grain weight also differ significantly among genotypes and significantly increased with the increasing P levels. Based on grain yield efficiency index (GYEI), genotypes were classified as efficient and inefficient. The most efficient genotype was CNFP 10104, and inefficient genotypes were CNFP 10103 and CNFP 10120. Number of pods per plant and number of seeds per pod increased significantly with the addition of 200 mg P kg?1 of soil compared to the low level of P (25 mg P kg?1). Similarly, nitrogen (N), P, calcium (Ca), magnesium (Mg), sulfur (S), zinc (Zn), copper (Cu), and manganese (Mn) concentrations and uptake in the shoot and grain also significantly varied among genotypes. Uptake of macro- and micronutrients was greater under the greater P rate compared to the low P rate. This may be related to greater shoot or grain yield at 200 mg P kg?1 soil compared to 25 mg P kg?1 of soil.  相似文献   

16.
Abstract

Effects of bicarbonate (10 mM as NaHCO3) and high pH (pH 8 buffered with HEPES) separately on root growth and accumulation of organic acids in the roots of zinc (Zn)‐efficient (IR36) and Zn‐inefficient (IR26) rice genotypes (Oriza sativa L.) were investigated in this study. The results indicated that shoot dry matter yields were decreased more by bicarbonate than by high pH for the Zn‐inefficient genotype, but not affected for the Zn‐efficient genotype. Root dry weights, especially root length, was significantly decreased by bicarbonate and high pH treatments for the Zn‐inefficient genotype, whereas was considerably enhanced by only bicarbonate treatment for the Zn‐efficient rice genotype. The reduction in root growth of the Zn‐inefficient rice genotype and the enhancement of root length in the Zn‐efficient genotype were greater when plants grown with bicarbonate than with high pH treatment. Accumulation of malate, citrate, and fumarate in roots of the two genotypes increased considerably due to both high pH and bicarbonate treatments, but to a greater extent for the Zn‐inefficient than for the Zn‐efficient cultivars. After an 8‐day treatment, more organic acids accumulated in the roots of the Zn‐inefficient genotype (IR26) when plants grown with bicarbonate than at high pH, but this was not the case for the Zn‐efficient genotype. The influence of root growth by bicarbonate appeared to be one of the major factors for the sensitivity of rice genotypes to Zn deficiency in calcareous soils. The greater inhibitory effect of bicarbonate than high pH on root growth of the Zn‐inefficient genotype might result from an excessive accumulation and inefficient compartmentation of organic acids, particularly citrate and malate, in the root cells.  相似文献   

17.
小麦苗期耐低氮基因型的筛选与评价   总被引:5,自引:1,他引:4  
氮是作物吸收的第一大必需营养元素, 对作物生长发育具有不可替代的作用。大量研究表明, 不同基因型小麦对氮的吸收利用能力不同, 培育氮高效小麦品种是提高氮利用效率的根本途径, 而发掘耐低氮小麦种质资源是小麦氮高效育种的基础。为此, 本研究以30 个小麦-冰草远缘杂交的高代品系, 1 个小麦-黑麦远缘杂交的T1BL·1RS 易位系, 2 个"小偃54"×"京411"重组自交系群体中的品系, 以及13 个生产上的主栽品种为试验材料, 通过低氮胁迫和正常供氮2 个处理的苗期水培试验, 进行了耐低氮基因型的筛选与评价。方差分析显示, 13 个氮效率相关性状在2 种氮水平之间及各小麦基因型之间的差异均达到显著或极显著水平。主成分分析显示, 前3 个主成分累积贡献率达到81.2%, 已包含了大部分信息, 能够基本反映整体状况。其中, 相对茎叶吸氮量、相对植株吸氮量、相对根冠比、相对茎叶干重、相对植株干重、相对茎叶氮利用效率、相对根含氮量在3 个主成分中占较大的比重。综合评价结果显示, 在33 个小麦远缘杂交品系中08B41 得分最高, 为1.60,为最耐低氮的品系; 13 个主栽品中"科农9204"得分最高, 为2.10, 为耐低氮的品种。聚类分析显示, 46 份基因型小麦可划分为3 大类: 耐低氮型(15 份)、中间型(22 份)和低氮敏感型(9 份)。筛选出08B41、XJ19-1、08B8、08B10、08B13、08B25、WR9603、08B2、08B5 共9 份耐低氮远缘杂交高代品系, 及"科农9204"、"邯7086"、"河农827"、"石麦18"、"石4185"、"石新733"共6 份耐低氮主栽品种。这些耐低氮的基因型可作为小麦营养高效育种的种质资源, 本文并对小麦近缘种属在小麦营养高效遗传改良中的作用进行了讨论。  相似文献   

18.
有机肥与种植密度对旱作玉米根系生长及功能的影响   总被引:5,自引:1,他引:4  
在大田条件下研究了基施有机肥及3种种植密度(60,75,90千株/hm2)对旱作玉米根系生长和功能的影响。结果表明,在大喇叭口期,基施有机肥显著降低了30—100cm土层内的根长与根表面积,但对根干重影响不显著;由于基施有机肥处理地上部生物量更大,因而显著降低了根冠比;种植密度对该时期根系生长的影响较小。在蜡熟期,基施有机肥限制了30—100cm土层及1/4行间、行间与膜下位置的根系分布,但对根冠比的作用不显著。该时期根长、根表面积及根干重均有随密度增加而减少的趋势,该趋势在0—30cm土层和株上位置表现显著;种植密度的增加也降低了根冠比。有机肥延缓根系衰老作用不明显,其根系导水率与不基施有机肥处理无显著差异;而在种植密度增加情况下,单位根系表面积吸水功能的提高弥补了根量减少带来的损失,表现出一定的适应性。  相似文献   

19.
In this study, seven watermelon (Citrullus lanatus) cultivars were tested in solution culture experiment with limiting and ample phosphorus (P) supply to evaluate P uptake and utilization of watermelon under low P stress. Different genotypes showed considerable diversity in terms of biomass accumulation, P uptake, P utilization, root morphological parameters and photosynthetic parameters under low P stress. At low P supply, genotype XN8 and ZCHY were clearly superior to other genotypes in terms of total dry matter yield. The genotype ZJ has the highest P uptake ability, while the genotype XN8 has the highest P efficiency ratio and P utilization efficiency among the seven genotypes under low P stress. The P uptake ability of these genotypes was related significantly and positively to root morphological parameters and photosynthesis parameters under low P stress, the P utilization efficiency showed significant and positive correlation with total dry matter. Results showed existence of genetic differences among watermelon genotypes with regard to P absorption and utilization. The seven genotypes were classified into four groups: efficient responsive (ER), inefficient responsive (IER), efficient non-responsive (ENR) and inefficient nonresponsive (IENR) according to P utilization efficiency under low P stress and dry matter at high P supply. XN8 was identified as ER, and ZCHY was identified as ENR, which may be valuable resources for watermelon production in different soil with low P stress.  相似文献   

20.
Genotypic differences in potassium (K) uptake and utilization were compared for eight cotton cultivars in growth chamber and field experiments. Four of the cultivars (‘SGK3’, ‘SCRC18’, ‘SCRC21’ and ‘SCRC22’) typically produce lower dry mass and the other four (‘Nannong8’, ‘Xiangza2’, ‘Xinluzao12’ and ‘Xiangza3’) produce greater dry mass in K-deficient solution (0.02 mM). The mean dry weight of seedlings (five-leaf stage) of cultivars with greater biomass was 155% higher than that of cultivars with lower biomass yield under K deficiency. However, all the genotypes had similar dry matter yields in K-sufficient solution (2.5 mM). Thus, the four cultivars with superior biomass yield under low K medium may be described as K efficient cultivars while the inferior cultivars may be described as K inefficient. Although seeds of the studied cultivars originated from different research institutes or seed companies, there were little differences in seed K content among them, irrespective of their K efficiency. Consequently, there were no significant differences in K accumulation in seedlings (4 d after germination in a K-free sand medium) just before transferring to nutrient solutions. However, the K efficient genotypes, on average, accumulated twice as much K at 21 d after transferring to K-deficient solution (0.02 mM). A much larger root system as well as a slightly higher uptake rate (K uptake per unit of root dry weight) may have contributed to the higher net K uptake by the K efficient cultivars. In addition, the K efficiency ratio (dry mass produced per unit of K accumulated) and K utilization efficiency (dry mass produced per unit of K concentration) of the K efficient cultivars exceeded those of the K inefficient genotypes by 29% and 234%, respectively, under K deficiency. On average, the K efficient cultivars produced 59% more potential economic yield (dry weight of all reproductive organs) under field conditions even with available soil K at obviously deficient level (60 mg kg?1). We noted especially that the four K inefficient cultivars studied were all transgenic insect-resistant cotton, suggesting that the introduction of foreign genes (Bt and CpTI) may affect the K use efficiency of cotton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号