首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
1 INTRODUCTIONPaulownia, indigenous to China, is one of the bestfast-growing tree species in China. It belongs toScrophulariaceae family, which was ever consideredto include more than 20 species and varieties. Butactually, some of them were the same species withdifferent names. In 1959, Professor Hu Xiuying hadall these species and varieties regrouped and classifiedthem into 6 species based on the results of previousstudies. They are Paulownia elongata, P. fortunei,P. tomentosa, P. gl…  相似文献   

2.
The fuelbreaks were established in south China from 1950s. With the active work of local communities and state government, the fuelbreaks have been built for 398,000 kilometers. In some areas, fuelbreaks and firebreaks have constructed a network primarily, such as in the provinces of Fujian, Guangdong, Guangxi. The fuelbreaks can prevent forest fire effectively. That has been approved by actual examples and burning tests. The fuelbreaks also benefit the forest ecosystem and environment. This paper makes a review on fuelbreaks research and application in China, discussed present research achievements about fuelbreaks mechanism and its development. In the future, the Chinese government and local communities will increase investment in the construction of firebreaks network with fuelbreaks as focal points.  相似文献   

3.
China is the most populated country in the world, andits land area is not the largest, especially its cultivatedland is gradually declining with socio-economicdevelopment. In order to meet the demand to grain,vegetable and so on, wasteland must be reclaimed(Zhang Jianfeng, 2004). In China there is a large scaleof salt-affected land, e.g. in Lop Nur 5 000 km2, inTurfan almost the same, in Quidam Basen 20000 km2 (Gong Hongzhu, et al, 1984). Owing toadverse conditions crops growing in salty s…  相似文献   

4.
INTRODUCTION After his study in the change of liver cell in human body, Kerr (1972) discovered Programmed Cell Death (PCD), a cell death model totally different from cell necrotic death, in which the cell necrosis usually appears typically as break of the protoplasm membrane and inflammatory leak of cell inclusions, which is a kind of abnormal process. PCD is a kind of active, physiologic death process. This kind of cell death process can helpthe body to eliminate decrepit, excrescent …  相似文献   

5.
The main differenee between Chinese and German green roofs 15 that 80% of the green roofs in Germany are extensive green roofs.In China Extensive Green Roofs are very rare,there are a few trial Projeets, but the advantages of sueh extensive green roofs be- eome more and more elear.Several institutes and orga-- nizations are working on the develoPment of standards regulations.  相似文献   

6.
IntroductionGreatBustaFd(OtiStBfdB),Gruiformes,Qtidae.ItismainlydistributedinEurope,southofSiberia,andInnerMongoliaAutonomousregioll,JinnProvinceandHeilongjiangProvinceinChina.ItisnearextinCtinCtionbecauseofoverhunting,therefore,itwaslabeledinAppendixlofCITESin1987.InChina,itwasraisedartificiallysincetheearlyof1950s,butfirSttriedinzoosin1987.UPtonow,therearestillmanytechnicalproblemsonartificialbreedingbeingunsolved.SoresearchongreatbuStardwillprovidescientificbasisforartificialbr…  相似文献   

7.
1 INTRODUCTIONUrban forestry can be viewed as a specialized branchof forestry, which deals with the science and art ofplanting, implementing the greenery in and around urbanand populated area. It includes tree planting in temples,offices, schools, hospitals, homesteads, highways orroads between towns or cities as well as public parksand recreational parks so that it contributes directlyand indirectly to the physical, physiological, sociologicaland economic well being of the communitiesconc…  相似文献   

8.
All of the plants can be combusted. The mechanism of forest belts resistance is that the tree species weren‘t liable to be burned compared with other plant species. In this paper new concepts on fire resistant trees and fuel-breaks trees were presented. The fire resistance mechanism includes 3 aspects, fire-resistant tree species, rational construction forest belts and environment. Tree crowns can resist fire forwarding. Forest belts can form the environment, which is not easy to fire, and also make fuels distributed discontinuous. The network of forest belts has large area of conifer forest segregated. The ideal f‘ire resistant tree species had better to embrace some characteristics, such as high f‘ire resistance, rational planting and biological characteristics.  相似文献   

9.
Photosynthetic Characteristics of Ash and Larch in Mixture and Pure stands   总被引:1,自引:0,他引:1  
IntroductionDuringthepasttwodecades,studieshaverevealedthatgrowingash(Fnainusmandshurica)andlarch(LarlksPP.)togetherinaproperwaycanincreasetheproduc-tivityQfthestandsI"'}'-'].Theyieldimprovementmechanismsattributetotwoaspects,i.e.,theabovegroundandundergr…  相似文献   

10.
1 INTRODUCTIONThe urban landscapes expand over large area. Asurbanization spreads into less developed rural areas, agrowing percentage of the natural resources will becomea part of urban forest ecosystems, and increasingamounts of forest outside these systems also will besubject to urban influence.The expansion of urban landscapes has particularlyimportant implications for the use and management ofpublic holdings, including protected forests, nationalparks, and state and locally administer…  相似文献   

11.
Despite growing attention to the role of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in forest nutrient cycling, their monthly concentration dynamics in forest ecosystems, especially in subtropical forests only were little known. The goal of this study is to measure the concentrations and monthly dynamics of DOC and DON in precipitation, throughfall and stemflow for two plantations ofSchima superba (SS) and Chinese fir (Cunninghamia lanceolata, CF) in Jianou, Fujian, China. Samples of precipitation, throughfall and stemflow were collected on a rain event base from January 2002 to December 2002. Upon collection, all water samples were analyzed for DOC, NO3 −N, NH4 +−N and total dissolved N (TDN). DON was calculated by subtracting NO3 −N and NH4 +−N from TDN. The results showed that the precipitation had a mean DOC concentration of 1.7 mg·L−1 and DON concentration of 0.13 mg·L−1. The mean DOC and DON concentrations in throughfall were 11.2 and 0.24 mg·L−1 in the SS and 10.3 and 0.19 mg·L−1 in the CF respectively. Stemflow DOC and DON concentrations in the CF (19.1 and 0.66 mg·L−1 respectively) were significantly higher than those in the SS (17.6 and 0.48 mg·L−1 respectively). No clear monthly variation in precipitation DOC concentration was found in our study, while DON concentration in precipitation tended to be higher in summer or autumn. The monthly variations of DON concentrations were very similar in throughfall and stemflow at both forests, showing an increase at the beginning of the rainy season in March. In contrast, monthly changes of the DOC concentrations in throughfall of the SS and CF were different to those in stemflow. Throughfall DOC concentrations were higher from February to April, while relatively higher DOC concentrations in stemflow were found during September–November period. Foundation item: This study was supported by the Teaching and Research Award program for MOE P.R.C. (TRAPOYT). Biography: Guo Jian-fen (1977-), female, Ph. Doctor in College of Life Science, Xiamen University, Xiamen 361005, P.R. China. Responsible editor: Zhu Hong  相似文献   

12.
Regressive models of the aboveground biomass for three conifers in subtropical China—slash pine (Pinus elliottii), Masson pine (P. massoniana) and Chinese fir (Cunninghamia lanceolata)—were established. Regression analysis of leaf biomass and total biomass of each branch against branch diameter (d), branch length (L), d 3 and d 2 L was conducted with functions of linear, power and exponent. A power law equation with a single parameter (d) was proved to be better than the rest for Masson pine and Chinese fir, and a linear equation with parameter (d 3) is better for slash pine. The canopy biomass was derived by adopting the regression equations to all branches of each individual tree. These kinds of equations were also used to fit the relationship between total tree biomass, branch biomass, foliage biomass and tree diameter at breast height (D), tree height (H), D 3 and D 2 H, respectively. D 2 H was found to be the best parameter for estimating total biomass. However, for foliage biomass and branch biomass, both parameters and equation forms showed some differences among species. Correlations were highly significant (P<0.001) for foliage biomass, branch biomass and total biomass, among which the equation of the total biomass was the highest. With these equations, the aboveground biomass of Masson pine forest, slash pine forest and Chinese fir forest were estimated, in addition to the allocation of aboveground biomass. The above-ground biomass of Masson pine forest, slash pine forest and Chinese fir forest was 83.6, 72.1 and 59 t/hm2 respectively, and the stem biomass was more than the foliage biomass and the branch biomass. The underground biomass of these three forests which estimated with others’ research were 10.44, 9.42 and 11.48 t/hm2, and the amount of carbon-fixed were 47.94, 45.14 and 37.52 t/hm2, respectively. __________ Translated from Chinese Journal of Applied Ecology, 2006, 17(8): 1382–1388 [译自: 应用生态学报]  相似文献   

13.
The amount of carbon returned through litterfall and its seasonal pattern were studied in a natural forest of Castanopsis kawakamii (NF) and adjacent monoculture plantations of C. kawakamii (CK) and Chinese fir (Cunninghamia lanceolata) (CF) in Sanming, Fujian Province, China. Mean annual carbon return through total litterfall over 3 years (from 1999 to 2001) was 5.097 t·hm−2 in the NF, 4.337 t·hm−2 in the CK and 2.502 t·hm−2 in the CF respectively. Of the total carbon return in the three forests, leaf contribution accounted for 58.96%, 68.53% and 56.12% and twig 24.41%, 22.34% and 26.18%, respectively. The seasonal patterns of carbon return from total litterfall and leaf-litter were quite similar among the three forests. A peak of carbon input from litterfall in the NF and the CK occurred in spring except for the highest annual C return through branch litter of the NF in summer, while the CF showed the maximum C return in summer. The results of this study demonstrate that the natural forest has a greater C return through litterfall than monoculture plantations, which is beneficial to the increase of soil organic matter storage and the maintenance of soil fertility. [Supported by the Teaching and Research Award Program of MOE P.R.C. (TRAPOYT) and the Key Basic Research Project of Fujian Province (2000F004)]  相似文献   

14.
Two-year-old seedlings ofPinus koraiensis, Pinus sylvestriformis andFraxinus mandshurica were treated in open-top chambers with elevated CO2 concentrations (700 μL·L−1, 500 μL·L−1) and ambient CO2 concentrations (350 μL·L−1) in Changbai Mountain from June to Sept. in 1999 and 2001. The net photosynthetic rate, dark respiration rate, ribulose-1,5-bisphosphate carboxlase (RuBPcase) activity, and chlorophyll content were analyzed. The results indicated the RuBPcase activity of the three species seedlings increased at elevated CO2 concentrations. The elevated CO2 concentrations stimulated the net photosynthetic rates of three tree species exceptP. sylvestriformis grown under 500 μL·L−1 CO2 concentration. The dark respiration rates ofP. koraiensis andP. sylvestriformis increased under concentration of 700 μL·L−1 CO2, out that ofF. mandshurica decreased under both concentrations 700 μL·L−1 and 500 μL·L−1 CO2. The seedlings ofF. mandshurica decreased in chlorophyll contents at elevated CO2 concentrations. Foundation item: This paper was supported by the National Natural Science Foundation of China (No. 30070158). Knowledge Innovation Item of Chinese Academy of Sciences (KZCX2-406) and “Hundred Scientists” Project of Chinese Academy of Sciences. Biography: Zhou Yu-mei (1973-) Ph. Doctor, Assistant Research fellow Institute of Applied Ecology. Chinese Academy of Sciences. Shenyang 110016. P.R. China. Responsible editor: Song Funan  相似文献   

15.
[目的]通过制定森林管理参考水平,计量并核算森林管理活动的合格净碳汇清除量。[方法]采用核证减排标准中农业、林业和其他土地利用项目的自愿碳标准,选取其中改善森林管理的项目方法学标准,并结合不可抗力及湖南会同县的杉木人工林林地资源现状,进行计量和核算湖南会同县杉木人工林的合格碳汇量。该方法学标准包括4个碳库,即地上部分、地下部分、枯死木和木质林产品。[结果]对30年生和23年生杉木人工林进行森林管理活动后,林分碳储量变化量和碳汇量都有明显增加。森林管理参考水平在考虑皆伐的碳排放后的净碳汇量为-82.79 t二氧化碳当量·hm~(-2),30年生和23年生的总碳汇量分别为441.00、715.46 t二氧化碳当量;实际合格总碳汇量分别为606.59、881.06 t二氧化碳当量。[结论]不同的森林管理采伐强度对30年生和23年生林分碳汇量的影响差异显著。本文分别基于湖南会同森林生态实验站第1代杉木人工林建立参考水平和生态站2代杉木人工林制定参考水平核算会同县杉木人工林碳汇量,结果是基于后者参考水平核算的会同县杉木人工林合格的碳汇量比基于前者参考水平核算的多30 t二氧化碳当量·hm~(-2)。  相似文献   

16.
Monitoring of soil nitrogen (N) cycling is useful to assess soil quality and to gauge the sustainability of management practices. We studied net N mineralization, nitrification, and soil N availability in the 0 10 cm and 11 30 cm soil horizons in east China during 2006 2007 using an in situ incubation method in four subtropical evergreen broad-leaved forest stands aged 18-, 36-, 48-, and 65-years. The proper- ties of surface soil and forest floor varied between stand age classes. C:N ratios of surface soil and forest floor decreased, whereas soil total N and total organic C, available P, and soil microbial biomass N increased with stand age. The mineral N pool was small for the young stand and large for the older stands. NO 3 - -N was less than 30% in all stands. Net rates of N mineralization and nitrification were higher in old stands than in younger stands, and higher in the 0 10 cm than in the 11 30 cm horizon. The differences were significant between old and young stands (p < 0.031) and between soil horizons (p < 0.005). Relative nitrification was somewhat low in all forest stands and declined with stand age. N trans- formation seemed to be controlled by soil moisture, soil microbial bio- mass N, and forest floor C:N ratio. Our results demonstrate that analyses of N cycling can provide insight into the effects of management distur- bances on forest ecosystems.  相似文献   

17.
The soil microbial biomass and nutrient status under the native broadleaved forest and Cunninghamia lanceolata plantations at the Huitong National Research Station of Forest Ecosystem (in Hunan Province, midland of China) were examined in this study. The results showed that after the native broadleaved forest was replaced by mono-cultured C. lanceolata or C. lanceolata, soil microbial biomass and nutrient pool decreased significantly. In the 0–10 cm soil layer, the concentrations of soil microbial carbon and nitrogen in the broadleaved forest were 800.5 and 84.5 mg/kg, respectively. These were 1.90 and 1.03 times as much as those in the first rotation of the C. lanceolata plantation, and 2.16 and 1.27 times as much as those in the second rotation of the plantation, respectively. While in the 10–20 cm soil layer, the microbial carbon and nitrogen in the broadleaved forest were 475.4 and 63.3 mg/kg, respectively. These were 1.86 and 1.60 times as much as those in the first rotation, and 2.11 and 1.76 times as much as those in the second rotation, respectively. Soil nutrient pools, such as total nitrogen, total potassium, NH4 +-N, and available potassium, also declined after the C. lanceolata plantation replaced the native broadleaved forest, or Chinese fir was planted continuously. Less litter and slower decay rate in pure Chinese fir plantation were the crucial factors leading to the decrease of soil microbial biomass and nutrient pool in this area. Human disturbance, especially slash-burning and site preparation, was another factor leading to the decrease. There were significant positive correlations between soil microbial carbon and nitrogen and soil nutrients. To improve soil quality and maintain sustainable productivity, some measures, including planting mixed conifer with hardwood, preserving residues after harvest, and adopting scientific site preparation, should be taken. Translated from Chinese Journal of Applied Ecology, 2006, 17(12): 2,292–2,296 [译自: 应用生态学报]  相似文献   

18.
Growth of regenerating trees in different light environments was studied for the mountainous, mixed-species forests in the Carpathian Mountains of Romania. The primary species in these mixtures were silver fir (Abies alba Mill.), European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst). Seedlings/saplings of these species were selected and measured in different stands from two different geographical locations. Regenerating trees were measured for height and diameter growth during the summer of 2002. For each seedling/sapling, percentage of above canopy light (PACL) and stand basal area (BA) were used to assess available and occupied growing space respectively. Regeneration growth was compared against these two variables and regression relationships were developed. Using these models, we predicted the dynamics of regeneration as both growth and species composition. Our results showed that in low-light environments (PACL<20–35%; BA>30 m2/ha), shade tolerant fir and beech clearly outcompeted the spruce. Therefore, in dense stands, spruce could be eliminated by the shade tolerant species. For intermediate levels of cover (PACL=35–70%; BA=15–35 m2/ha) the spruce grew at comparable rates as the beech and fir. All three species showed similar growth rates in open conditions (PACL>80–90%; BA<15–20 m2/ha) with the spruce having a tendency to outgrow the others. However, in terms of establishment, such conditions favor spruce and inhibit fir and beech.  相似文献   

19.
In order to clarify the effects of tree species on organic matter dynamics in soil, we investigated the amount of forest floor material, leaf litter decomposition rate, soil chemical characteristics, soil respiration rate and cellulose decomposition rate in a Japanese cedar forest (cedar plot) and an adjacent Japanese red pine forest (pine plot) established on a flatland. The amount of forest floor material in the cedar plot was 34.5 Mg ha−1 which was greater than that in the pine plot. Because the leaf litter decomposition rate was higher in the pine plot than in the cedar plot, it is likely that the difference in the amount of forest floor material between the plots is caused by the difference in the leaf litter decomposition rate. The C concentrations of soil in the cedar plot were 1.2–2.1 times higher than those in the pine plot. Soil pH(H2O)s in the cedar plot were significantly higher than those in the pine plot. The soil respiration rates and the rates of mineralized C in the cedar plot byin vitro incubation were higher than those in the pine plot. From this result, it is assumed that soil organic matter in the cedar plot was decomposed relatively faster compared with the pine plot. Furthermore, microbial activities, which were reflected as cellulose decomposition rates in the cedar plot, were higher than those in the pine plot. A part of this paper was presented at the 109th Annual Meeting of the Japanese Forestry Society (1998).  相似文献   

20.
The decline of virgin fir (Abies firma) forest at Mt. Oyama has been reported. Related field observations suggest that high acidity fog is linked with its decline. However, cedar (Cryptomeria japonica) in the same area shows no symptoms of decline. For assessing effects of acid fog on membrane-bound calcium (mCa) of the leaf mesophyll cells, 9-year-old seedlings of fir (Abies firma) and 8-year-old seedlings of cedar (Cryptomeria japonica) were exposed twice a week to simulated acid fog (SAF at pH 3 with pH 5 as control) for 2 h per day in a chamber during May–December 2007 (except August). Current and 1-year-old needles were collected from seedlings and analyzed at 1-month intervals. For current-year needles of fir, mCa levels in cells exposed to SAF at pH 3 were significantly lower than in cells exposed to pH 5, especially during September 2007–March 2008. In contrast, it is noteworthy that mCa levels of cedar were maintained as virtually constant irrespective of SAF acidity, indicating that fir is more sensitive to acid fog than is cedar. Based on these results, mCa loss by acid fog might also be caused in the declining virgin fir forest at Mt. Oyama.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号