首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
2.
The primary circadian pacemaker, in the suprachiasmatic nucleus (SCN) of the mammalian brain, is photoentrained by light signals from the eyes through the retinohypothalamic tract. Retinal rod and cone cells are not required for photoentrainment. Recent evidence suggests that the entraining photoreceptors are retinal ganglion cells (RGCs) that project to the SCN. The visual pigment for this photoreceptor may be melanopsin, an opsin-like protein whose coding messenger RNA is found in a subset of mammalian RGCs. By cloning rat melanopsin and generating specific antibodies, we show that melanopsin is present in cell bodies, dendrites, and proximal axonal segments of a subset of rat RGCs. In mice heterozygous for tau-lacZ targeted to the melanopsin gene locus, beta-galactosidase-positive RGC axons projected to the SCN and other brain nuclei involved in circadian photoentrainment or the pupillary light reflex. Rat RGCs that exhibited intrinsic photosensitivity invariably expressed melanopsin. Hence, melanopsin is most likely the visual pigment of phototransducing RGCs that set the circadian clock and initiate other non-image-forming visual functions.  相似文献   

3.
4.
哺乳动物昼夜节律生物钟是以24 h为周期的自主维持的振荡器。在分子水平上,生物钟的振荡由自身调控反馈环路的转录和翻译组成,并接受外界环境因素的影响,通过下丘脑视叉上核(Supra Ch iasm atic N u-cleus,SCN)中枢震荡器的同步整和而产生作用。文章对生物钟上下游的分布、反馈环路的转录、翻译后事件、视觉通路、钟的整和等方面进行了综述,并对其今后的研究方向作了展望。  相似文献   

5.
Lighting cycles synchronize (entrain) mammalian circadian rhythms by altering activity of cells in the suprachiasmatic nucleus (SCN) of the hypothalamus, a circadian pacemaker. Exposure of hamsters and rats to light pulses at those phases of the circadian rhythm during which light can shift the rhythm caused increased immunoreactivity for the product of the immediate-early gene c-fos in cells in the region of the SCN that receives retinal fibers. Light pulses also increased messenger RNA for the Fos protein and for the immediate-early protein NGFI-A in the rat SCN. Similar increases in mRNA for NGFI-A were seen in the SCN of hamsters. Thus cells in this portion of the SCN undergo alterations in gene expression in response to retinal illumination, but only at times in the circadian cycle when light is capable of influencing entrainment.  相似文献   

6.
An unusual property of the circadian timekeeping systems of animals is rhythm "splitting," in which a single daily period of physical activity (usually measured as wheel running) dissociates into two stably coupled components about 12 hours apart; this behavior has been ascribed to a clock composed of two circadian oscillators cycling in antiphase. We analyzed gene expression in the hypothalamic circadian clock, the suprachiasmatic nucleus (SCN), of behaviorally "split" hamsters housed in constant light. The results show that the two oscillators underlying the split condition correspond to the left and right sides of the bilaterally paired SCN.  相似文献   

7.
Molecular mechanisms of the biological clock in cultured fibroblasts   总被引:1,自引:0,他引:1  
In mammals, the central circadian pacemaker resides in the hypothalamic suprachiasmatic nucleus (SCN), but circadian oscillators also exist in peripheral tissues. Here, using wild-type and cryptochrome (mCry)-deficient cell lines derived from mCry mutant mice, we show that the peripheral oscillator in cultured fibroblasts is identical to the oscillator in the SCN in (i) temporal expression profiles of all known clock genes, (ii) the phase of the various mRNA rhythms (i.e., antiphase oscillation of Bmal1 and mPer genes), (iii) the delay between maximum mRNA levels and appearance of nuclear mPER1 and mPER2 protein, (iv) the inability to produce oscillations in the absence of functional mCry genes, and (v) the control of period length by mCRY proteins.  相似文献   

8.
Environmental temperature cycles are a universal entraining cue for all circadian systems at the organismal level with the exception of homeothermic vertebrates. We report here that resistance to temperature entrainment is a property of the suprachiasmatic nucleus (SCN) network and is not a cell-autonomous property of mammalian clocks. This differential sensitivity to temperature allows the SCN to drive circadian rhythms in body temperature, which can then act as a universal cue for the entrainment of cell-autonomous oscillators throughout the body. Pharmacological experiments show that network interactions in the SCN are required for temperature resistance and that the heat shock pathway is integral to temperature resetting and temperature compensation in mammalian cells. These results suggest that the evolutionarily ancient temperature resetting response can be used in homeothermic animals to enhance internal circadian synchronization.  相似文献   

9.
分析光照对泌乳期小鼠下丘脑视上核(SCN)及乳腺组织内生物钟基因Clock表达的影响.采用荧光定量RT-PCR法测定不同光照条件下SCN和乳腺组织中Clock基因的昼夜表达规律.试验发现Clock基因的mRNA不但在SCN,而且在乳腺组织也具有昼夜节律性表达.在光照-黑暗交替光制下,SCN和乳腺组织Clock基因的mRNA表达的峰值相位存在约6 h的相位差;在全黑暗条件下,Clock基因的mRNA表达存在昼夜节律,SCN和乳腺组织Clock基因的mRNA表达的峰值相位基本同步.结果显示,Clock基因的昼夜节律表达具内源性特征;光照影响Clock基因mRNA的表达.  相似文献   

10.
11.
Mice lacking mCry1 and mCry2 are behaviorally arrhythmic. As shown here, cyclic expression of the clock genes mPer1 and mPer2 (mammalian Period genes 1 and 2) in the suprachiasmatic nucleus and peripheral tissues is abolished and mPer1 and mPer2 mRNA levels are constitutively high. These findings indicate that the biological clock is eliminated in the absence of both mCRY1 and mCRY2 (mammalian cryptochromes 1 and 2) and support the idea that mammalian CRY proteins act in the negative limb of the circadian feedback loop. The mCry double-mutant mice retain the ability to have mPer1 and mPer2 expression induced by a brief light stimulus known to phase-shift the biological clock in wild-type animals. Thus, mCRY1 and mCRY2 are dispensable for light-induced phase shifting of the biological clock.  相似文献   

12.
13.
14.
Entrainment of the circadian clock in the liver by feeding   总被引:2,自引:0,他引:2  
Circadian rhythms of behavior are driven by oscillators in the brain that are coupled to the environmental light cycle. Circadian rhythms of gene expression occur widely in peripheral organs. It is unclear how these multiple rhythms are coupled together to form a coherent system. To study such coupling, we investigated the effects of cycles of food availability (which exert powerful entraining effects on behavior) on the rhythms of gene expression in the liver, lung, and suprachiasmatic nucleus (SCN). We used a transgenic rat model whose tissues express luciferase in vitro. Although rhythmicity in the SCN remained phase-locked to the light-dark cycle, restricted feeding rapidly entrained the liver, shifting its rhythm by 10 hours within 2 days. Our results demonstrate that feeding cycles can entrain the liver independently of the SCN and the light cycle, and they suggest the need to reexamine the mammalian circadian hierarchy. They also raise the possibility that peripheral circadian oscillators like those in the liver may be coupled to the SCN primarily through rhythmic behavior, such as feeding.  相似文献   

15.
The clock gene period-4 (prd-4) in Neurospora was identified by a single allele displaying shortened circadian period and altered temperature compensation. Positional cloning followed by functional tests show that PRD-4 is an ortholog of mammalian checkpoint kinase 2 (Chk2). Expression of prd-4 is regulated by the circadian clock and, reciprocally, PRD-4 physically interacts with the clock component FRQ, promoting its phosphorylation. DNA-damaging agents can reset the clock in a manner that depends on time of day, and this resetting is dependent on PRD-4. Thus, prd-4, the Neurospora Chk2, identifies a molecular link that feeds back conditionally from circadian output to input and the cell cycle.  相似文献   

16.
In multicellular organisms, circadian oscillators are organized into multitissue systems which function as biological clocks that regulate the activities of the organism in relation to environmental cycles and provide an internal temporal framework. To investigate the organization of a mammalian circadian system, we constructed a transgenic rat line in which luciferase is rhythmically expressed under the control of the mouse Per1 promoter. Light emission from cultured suprachiasmatic nuclei (SCN) of these rats was invariably and robustly rhythmic and persisted for up to 32 days in vitro. Liver, lung, and skeletal muscle also expressed circadian rhythms, which damped after two to seven cycles in vitro. In response to advances and delays of the environmental light cycle, the circadian rhythm of light emission from the SCN shifted more rapidly than did the rhythm of locomotor behavior or the rhythms in peripheral tissues. We hypothesize that a self-sustained circadian pacemaker in the SCN entrains circadian oscillators in the periphery to maintain adaptive phase control, which is temporarily lost following large, abrupt shifts in the environmental light cycle.  相似文献   

17.
Light synchronizes mammalian circadian rhythms with environmental time by modulating retinal input to the circadian pacemaker-the suprachiasmatic nucleus (SCN) of the hypothalamus. Such photic entrainment requires neither rods nor cones, the only known retinal photoreceptors. Here, we show that retinal ganglion cells innervating the SCN are intrinsically photosensitive. Unlike other ganglion cells, they depolarized in response to light even when all synaptic input from rods and cones was blocked. The sensitivity, spectral tuning, and slow kinetics of this light response matched those of the photic entrainment mechanism, suggesting that these ganglion cells may be the primary photoreceptors for this system.  相似文献   

18.
19.
生物体内源性的昼夜节律使其能够预测周边环境周期性的变化,使机体的内在代谢和周边环境保持一致。在禽类卵泡的成熟、排卵和蛋的形成过程中,不同生理进程在时间上的吻合显示了机体自身以及机体与环境之间的协调统一。动物对营养物质的摄入、内分泌激素的生成、能量代谢等一系列的行为和生理过程都有生物钟参与调控。文章从光照和营养两种因素入手,综述了生物钟在神经内分泌、能量摄入和能量代谢中的调控作用,揭示了蛋鸡的排卵和产蛋机制。1.光信号通过调控生物钟影响下丘脑-垂体-性腺轴(HPG轴),从而调控机体的繁殖活动。在光信号刺激下,位于禽类视交叉上核(SCN)和松果体的中枢生物钟作用于下丘脑,使下丘脑定时性释放促性腺激素释放激素(Gn RH)和促性腺激素抑制激素(Gn IH),Gn RH和Gn IH继而作用于垂体调节释放促性腺激素-促黄体生成素(LH)和促卵泡激素(FSH),卵巢中存在的外周生物钟接受中枢的同步化信号来维持生物节律,促使禽类的卵泡成熟和定时排卵;2.除了受到HPG的神经内分泌调控之外,蛋鸡的排卵-产蛋过程还受到机体能量代谢的影响。中枢和外周的生物钟基因能够调控食欲调节系统,从而影响能量摄入;生物钟能够通过调控代谢过程中重要限速酶的表达、整合核受体和营养信号蛋白、调节代谢感受器和代谢物、影响肠道微生物等途径来调节能量代谢,影响卵黄前体物质的合成、转运和沉积;禽类松果体分泌的褪黑素可通过介导降钙素、甲状旁腺素(PTH)及雌激素分泌,节律性地调节体内钙代谢,影响蛋壳的形成。能量摄入的时间和行为、机体能量代谢和能量状态也可以通过腺苷酸活化蛋白激酶(AMPK)、过氧化物酶体增殖物激活受体α(PPARα)等一些与食欲调控和能量代谢相关的细胞因子反过来调控生物钟。营养-生物钟-能量代谢三者之间相互作用,使生物体适应环境的能力增强,能量利用达到最优。因此,通过调整进食时间和食物组分(如饲料能量水平和钙水平),能够改变能量代谢从而调节生物钟的功能。将环境(光照管理)和营养(饲喂时间、饲料配方)综合研究并加以运用,使机体生物钟成为连接外部环境信号和内部能量代谢的纽带,既能响应外界环境刺激,又能同时调控机体能量代谢进程,从而使各项生理功能得到更好地发挥,这将为蛋鸡的产蛋调控机制研究提供新的视角。  相似文献   

20.
In some simple protozoans and unicellular algae, the cell cycle clock is strongly influenced by the circadian clock, such that mitotic cell division takes place only at certain times of the day. Now, as Schibler reports in his Perspective, new work on regenerating liver cells in mice (Matsuo et al.) reveals that the cell cycle clock of mammalian cells is also under the yoke of the master circadian oscillator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号