首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 156 毫秒
1.
为了探索动压型机械密封微间隙气液固流动特性及密封性能,建立了间隙润滑膜气液固多相流模型,对间隙流动进行数值模拟,分析槽型参数和工况参数对流动特性及密封性能的影响.研究表明:槽宽比、螺旋角和转速的增大以及槽深的减小均会使润滑膜空化区域增大;随着槽宽比、槽径比和槽深的增大,润滑膜开启力先增大后减小,最佳槽型参数值分别是槽宽比0.3~0.6、槽径比0.7~0.8、槽深6~10μm(转速高、槽深取大值),较小的螺旋角能获得较大开启力;在所研究参数内密封主要为负泄漏,转速、槽径比的增大和螺旋角的减小均会使泄漏量绝对值增大,而槽深、槽宽比的增大使泄漏量绝对值先增大后减小;总体上固体颗粒主要聚集在槽堰区及坝区内侧,槽径比减小和螺旋角增大会使固体颗粒向槽堰区聚集,易造成螺旋槽堵塞失效.  相似文献   

2.
为了研究锯齿形螺旋槽干气密封的性能特性.利用Fluent软件对其气膜流场进行数值模拟,并以开漏比(开启力与泄漏率之比)作为1个性能指标,分析其锯齿形表征角β1β2对锯齿形螺旋槽干气密封性能的影响,发现锯齿形螺旋槽干气密封的开漏比主要受角度β1的影响.选择1组锯齿形表征角β1=8°,β2=30°的锯齿形螺旋槽干气密封为基础模型,将其与普通螺旋槽干气密封分别进行数值模拟,并对以上2种槽型相对应的气膜压力分布、开启力、泄漏率、开漏比和刚度等干气密封性能参数进行比较分析,结果表明:锯齿形螺旋槽干气密封具有更小的泄漏率,但开启力也较小,其开漏比大于普通螺旋槽干气密封,在膜厚较大时,具有更大的气膜刚度.  相似文献   

3.
仿鸟翼型双流通槽干气密封静压特性模拟   总被引:1,自引:0,他引:1  
针对螺旋槽干气密封在低速下端面开启力不足、稳定性差的问题,借鉴飞鸟翼翅形状中翼尖和翼翅后缘的翅槽结构与小翼羽结构,从仿生学角度提出一种双流通螺旋槽端面干气密封(SDGS)端面结构,其特征是在螺旋槽的基础上开设一个密封堰.基于气体润滑理论,建立了数值分析模型并定义了双流通S-DGS的主要几何参数.采用有限差分方法求解雷诺方程,研究了静压条件下几何参数对双流通S-DGS端面开启力、泄漏率、气膜刚度和刚漏比等密封性能参数的影响规律,并开展了双流通S-DGS的几何参数优化分析.结果表明:当密封堰周向宽度比0.4≤λ≤0.6,密封堰径向长度比0.6≤γ≤0.8,槽坝比2≤δ≤3,槽深5μm≤h g≤8μm,螺旋角15°≤α≤20°,槽堰比0.7≤η≤1.3时,双流通S-DGS具有最佳工作性能.研究结果为低速下干气密封的型槽设计提供了理论依据.  相似文献   

4.
为了研究变形后螺旋槽干气密封的气膜压力分布情况,基于MUIJDERMAN的螺旋槽窄槽理论,给出了螺旋槽干气密封端面非平行间隙气膜力的1种近似解析计算方法,并结合具体算例,与平行间隙情况进行了对比.结果表明,与平行间隙情况相比,在密封面的区域内存在某一半径R处,变形前后的气膜压力保持不变.当密封端面间形成发散型(“A字形”)间隙时,在r小于R区域,气膜压力降低,而在r大于R区域,气膜压力增大.随着偏转角θ的增大,最小膜厚减小,泄漏量增大;当形成收敛型(“V字形”)间隙时,在r小于R区域,气膜压力增大,而在r大于R区域,气膜压力降低.随着偏转角θ的增大,最小膜厚和泄漏量均先减小而后增大.  相似文献   

5.
以微型多孔扇形分布光滑端面机械密封为对象,建立了表征密封端面运行状态的物理方程,并采用有限单元法求解了端面流体膜压力的控制方程,即二维稳态Reynolds方程;给出了流体膜刚度、端面开启力、泄漏率和流体膜刚漏比等主要密封性能参数的计算表达式;在给定操作参数条件下,分析研究了这些密封性能参数受微型多孔端面扇形区的数量k,周向开孔比α与径向开孔比β,以及微孔半径rp与深径比ε等微孔几何参数影响的规律,提出了获得优良密封性能的几何参数优选原则和优选范围.结果表明,在给定操作参数和密封介质性质的条件下,扇形区块数和微孔径一定时,微孔深径比对机械密封性能的影响最明显,其次是周向开孔比和径向开孔比,且当ε=0.003~0.007,α=0.3~0.5,β=0.45~0.85时,多孔端面密封可获得最佳综合性能.  相似文献   

6.
螺旋槽造型端面液体机械密封内流场的数值分析   总被引:1,自引:0,他引:1  
端面螺旋槽造型机械密封的研究已取得重要进展,特别是螺旋槽干气密封已在生产中得到应用,但对于螺旋槽液体机械密封内流场特性及性能的研究还有待深入。在分析液体机械密封特点和机理的基础上建立端面液膜压力控制方程,采用FLUENT软件分别对普通机械密封和螺旋槽机械密封内流场进行数值模拟,得到密封的压力、壁面剪切力、速度分布图和泄漏量,并进行对比,深入分析内流场特性与密封性能的内在联系。研究表明:与普通机械密封相比,螺旋槽液体机械密封端面存在明显超出介质压力的高压区和密封内径处泄漏液回吸等现象,这是螺旋槽密封泄漏量小得多并产生明显开启力的主要原因。  相似文献   

7.
基于动网格技术的端面造型机械密封性能   总被引:1,自引:0,他引:1  
利用Fluent软件中的动网格技术,将其应用于机械密封间隙内流场数值模拟中,以有效解决模拟过程中液膜厚度无法预知的问题,获得更加贴近实际的内流场特性,并在此基础上对普通机械密封、微孔端面机械密封、孔槽耦合端面机械密封进行内流场模拟研究,得到3种方案下压力分布、剪切应力分布和泄漏量,对模拟结果进行比较分析.结果表明:动网格技术在机械密封内流场模拟中的应用是可行的,能得到更好的效果;微孔和螺旋泵送槽都能够产生动压效应,其中由于微孔的动压效应产生的高压区出现在渐缩截面处,槽的动压效应产生的高压区主要出现在槽末端台阶处;与普通机械密封相比,微孔端面机械密封能够产生动压效应,减轻密封件的摩擦磨损,但防泄漏性能不佳;孔槽耦合端面机械密封运行时不仅剪切应力小,而且能有效抵抗压差流、降低泄漏量,具备优异的密封润滑性能,是获得零泄漏非接触高性能的可行途径.  相似文献   

8.
基于CFD的螺旋槽干气密封端面流场流态分析   总被引:2,自引:0,他引:2  
应用Gambit软件建立三维螺旋槽干气密封模型,并对其进行了网格划分.在特定工况下,运用Fluent软件对螺旋槽干气密封内部微间隙三维气体流场的两种流态,即层流和湍流分别进行了数值模拟,得到了两种流态的压力分布、速度分布以及泄漏量.运用模拟得到的层流和湍流的速度,根据流动因子进行了理论计算,结果表明:螺旋槽干气密封端面气体是以层流流动的.将模拟得到的层流和湍流的泄漏量与其相同工况下试验所测得的泄漏量进行对比分析,结果表明:螺旋槽干气密封端面气体亦是以层流流动的,模拟层流泄漏量为6.92×10^-6m^3/s,试验值为6.94×10^-6m^3/s,十分接近.综合以上两种结果表明:在一定工况下,螺旋槽干气密封端面气体是以层流流动的.  相似文献   

9.
针对乳液输送设备双端面机械密封主密封在实际运转中频现失效问题,采用端面螺旋槽造型技术对主密封进行端面改型,在考虑黏温关系的情况下,借助动网格UDF技术建立密封间隙液膜热流体计算模型,研究冲洗压力对液膜厚度、开启力、温度和冲洗液泄漏量等性能参数的影响规律,进行改型前后密封液膜热特性与冲洗液参数关系及端面摩擦功耗的对比分析.研究表明:冲洗压力增大,密封间隙膜厚减小,膜压增大,膜温升高,冲洗液泄漏量增大;主密封端面改型后,密封端面周向平均温度明显降低,随冲洗压力增大而增大的幅度明显减小,以及受温度、流量的影响程度也明显降低,且密封稳定性增加;同工况下,冲洗压力可降低0.1~0.5 MPa,达到延长密封寿命和显著降低冲洗系统能耗的目的.  相似文献   

10.
为了揭示工作参数对螺旋密封性能和内部流动的影响机理,获得螺旋密封工作参数的选取范围和相互关系,将摩擦因数作为螺旋密封性能的量纲一评价因子.首先,建立了包括离心泵和螺旋密封的耦合三维模型和块结构化网格模型,基于RANS雷诺时均方法和RNG k-ε模型,选择螺旋角、相对槽宽和相对槽深等工作参数,基于Fluent软件预测了轴向雷诺数和螺旋密封摩擦因数的特性曲线,并对螺旋密封内部流场分布特性进行数值分析.结果表明:不同螺旋密封模型的摩擦因数随着轴向雷诺数增大而减小,且减小幅度越来越小;在其他影响因素一致,而仅改变螺旋角、相对槽宽和相对槽深中的某一参数的情况下,当螺旋角α=21.05°或相对槽宽r=0.5时,摩擦因数达到最大值,密封性能最优;当相对槽深H=3时,密封性能最优.为螺旋密封的设计和选型提供理论依据.  相似文献   

11.
针对螺旋槽上游泵送机械密封的研究和设计过程中,利用未考虑修正因素的近似解析法所得结果与试验结果偏差进行比较,为准确、高效地解析计算螺旋槽上游泵送机械密封的性能,考虑液体进入螺旋槽时会产生压力损失的“端部效应”,对螺旋槽根处的压力进行了修正,获得了修正后的液膜压力分布近似解析表达式和密封的开启力.并将开启力与未修正的近似解析计算结果、数值模拟结果和试验结果进行了比较.结果表明:修正后的近似解析计算结果与数值模拟结果和试验结果基本吻合,当密封处于低压差工况时,与数值模拟结果的平均相对误差为19%,最大相对误差为62%,与试验结果的平均相对误差为86%,最大相对误差为155%;当密封处于高压差工况时,与数值模拟结果的平均相对误差为19%,最大相对误差为25%.研究结果可为上游泵送机械密封等液膜润滑机械密封的研究、设计和应用提供参考.  相似文献   

12.
为了准确获得上游泵送机械密封的液膜厚度,采用Pro/E软件建立螺旋槽上游泵送机械密封的三维参数化模型,应用Fluent软件的动网格技术,同时考虑空化的影响,对机械密封微间隙内流场进行了数值模拟.将得到的液膜厚度与有关文献的测试结果进行对比分析.在同时考虑空化模型和动网格技术的基础上,计算分析了工况参数对液膜刚度和泄漏量的影响.结果表明,应用动网格计算的液膜厚度与测试结果所获得的结果基本一致,最大相对误差为19.6%,最小相对误差为0,平均相对误差为8%,从而验证了动网格技术在机械密封内流场模拟中的可行性;机械密封内流场计算应当考虑空化问题,才能得到比较真实的内流场特性;液膜厚度、泄漏量和液膜刚度随着转速、介质压力的增大而增大,端面螺旋槽在产生泵送效应的同时也产生动压效应.  相似文献   

13.
以纯气体输送时的油气混输泵上游泵送螺旋槽机械密封为研究对象,基于气体润滑理论并采用有限差分法,在考虑密封环发生相对倾斜的情况下,研究操作参数、结构参数及密封环相对倾斜角对密封稳态性能的影响规律和作用机制.数值分析结果表明,相对于平行密封间隙,密封环发生相对倾斜时,会使膜厚减小区域的膜压峰值和膜压高压区范围明显增大,使膜厚增大区域的膜压峰值和膜压高压区范围明显减小;无论研究的参数如何变化,开启力、泄漏率及气膜刚度始终呈现出随着密封环相对倾角增大而增大的变化规律;通过增大转速、设计较小的平衡膜厚或优化型槽结构不仅可有效增强密封的上游泵送能力,以实现被密封介质的零泄漏,还可有效改善密封的开启性和稳定性.  相似文献   

14.
在干气密封的研究和设计过程中,一般将密封气体按理想气体处理.但在高压情况下,某些气体的实际效应明显偏离理想气体.以工业上常见的空气、CO2(二氧化碳)、H2(氢气)和N2(氮气)为例,针对广泛使用的螺旋槽干气密封,利用CFD商业软件的三维数值模拟功能,考虑实际气体效应,并同时考虑了气体流经密封环端面时温度发生变化的情况,得到了实际气体效应对干气密封开启力和泄漏率等密封性能的影响规律.结果表明:在压力不超过4.6 MPa研究范围内,空气、N2实际气体与理想气体的密封性能基本相同,而CO2实际气体的开启力和泄漏率大于理想气体结果,H2实际气体开启力和泄漏率则略微小于理想气体结果.实际气体效应对干气密封的泄漏率影响较大,对开启力的影响不大.  相似文献   

15.
干气密封低速运转时,气膜很小,受微尺度效应滑移流的影响明显.为准确、有效地计算低速运转下干气密封的性能,以螺旋槽干气体密封为例,采用有效黏性系数方程对Muijderman螺旋槽窄槽理论气膜压力控制方程进行修正,并加以求解,获得不同滑移流模型对干气密封端面开启力、泄漏量、气膜刚度的影响规律.在不同转速、不同膜厚条件下与文献中的有限元法计算结果进行比较.结果表明,通过近似解析法获得开启力、泄漏量、气膜刚度与对照文献差别不大.相同转速下,气膜厚度在0.6~1.2 μm时,随着气膜厚度的增加,开启力和气膜刚度变小、泄漏量变大;相同膜厚下,开启力、泄漏量、气膜刚度均随转速的增大而增大.多种滑移流模型计算结果基本重合.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号