首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For three years, the evolution of the three major anthocyanidin monoglucosides (malvidin 3-glucoside, malvidin 3-acetylglucoside, and malvidin 3-coumaroylglucoside) and their anthocyanin-pyruvic acid adducts was monitored in Port wines stored in oak barrels. The degradation reactions of all pigments followed first-order kinetics in all the wines studied. The degradation rate constants of the anthocyanin-pyruvic acid adducts were much lower than those of the anthocyanidin monoglucosides. The results of both anthocyanins and pyruvic acid adducts show that acylation on the sugar moiety of all the pigments decreased their stability in wine. The levels of malvidin 3-glucoside-pyruvic acid adduct and its acylated forms increased right after wine fortification with wine spirit before starting to decrease around 100 days. The initial formation of anthocyanin-pyruvic acid adducts was concurrent with the degradation of anthocyanidin monoglucosides.  相似文献   

2.
Pinotage red wines were found to contain a reaction product of malvidin 3-glucoside and caffeic acid, the so-called pinotin A. A total of 50 Pinotage wines from the vintages 1996-2002 were analyzed for the content of pinotin A, malvidin 3-glucoside, caffeic acid, and caftaric acid. Statistical analyses were performed to reveal variations in the content of these compounds and to determine the factors that influence pinotin A formation during wine aging. An exponential increase of the concentration of this aging product was observed with prolonged storage time. The most rapid synthesis of pinotin A was observed in 2.5-4 year old wines, although at this age malvidin 3-glucoside is already degraded to a large extent. This phenomenon is explained by the increased ratio of caffeic acid/malvidin 3-glucoside, which strongly favors the formation of pinotin A and makes side reactions less likely. Pinotin A formation proceeds as long as a certain level of malvidin 3-glucoside is maintained in the wines. In wines >5-6 years old degradation or polymerization of pinotin A finally exceeds the rate of its de novo synthesis.  相似文献   

3.
Vitisin A was prepared from malvidin 3-glucoside and pyruvic acid in model wine medium, isolated by countercurrent chromatography, and purified by preparative high-performance liquid chromatography (HPLC). The synthesized compound was used as a reference standard to quantify vitisin A in Chilean wines from Vitis vinifera cv. Cabernet Sauvignon, including a vertical row of wines from the same vineyard over 16 years. Maximum vitisin A content was reached within the first year of storage. Importantly, up to half of the initial amount of vitisin A in young wines was still present in 15 year old wines. Although vitisin A was found to be much more stable as compared to other monomeric C-4 underivatized anthocyanins, it also slowly degrades after reaching its peak concentration. The "color activity concept" was applied to vitisin A, malvidin 3-glucoside, malvidin 3-(6' '-acetylglucoside), and polymeric pigments isolated by countercurrent chromatography in order to estimate their contribution toward the overall color expression of wines. It was found that vitisin A is only a minor contributor to the visually perceived color of aged red wines (color contribution approximately 5%). The major contributor is the polymeric fraction (color contribution approximately 70-90%).  相似文献   

4.
Grenache red wines were produced following three different winemaking techniques, that is, small-scale standard experimental wines and industrial-scale wines by both double-mash fermentation and fermentation in Ganimede vats. Wines were analyzed for their color properties, as well as the anthocyanin, flavonol, hydroxycinnamic acid, and pyranoanthocyanin profiles following alcoholic and malolactic fermentation. The evolution of pyranoanthocyanins and their corresponding precursors in the experimental wines was monitored at 6 and 10 months of aging. Wines produced by double-mash fermentation exhibited superior color properties compared to Ganimede wines and the experimental red wines, due to better extraction of flavonols and anthocyanins as well as a lower degree of polymerization. Pyranoanthocyanin formation varied within the different classes of pigments. Vitisins A and B were formed only during alcoholic fermentation. Pinotin A (i.e., the reaction product from malvidin 3-glucoside and caffeic acid) formation took place only during the aging process, whereas formation of hydroxyphenyl-pyranoanthocyanins derived from p-coumaric and ferulic acid followed two different pathways, that is, an enzymatically assisted production during fermentation and a pure chemical formation during aging.  相似文献   

5.
PH-dependent forms of red wine anthocyanins as antioxidants   总被引:7,自引:0,他引:7  
Anthocyanins are one of the main classes of flavonoids in red wines, and they appear to contribute significantly to the powerful antioxidant properties of the flavonoids. In grapes and wines the anthocyanins are in the flavylium form. However, during digestion they may reach higher pH values, forming the carbinol pseudo-base, quinoidal-base, or the chalcone, and these compounds appear to be absorbed from the gut into the blood system. The antioxidant activity of these compounds, in several metal-catalyzed lipid oxidation model systems, was evaluated in comparison with other antioxidants. The pseudo-base and quinoidal-base malvidin 3-glucoside significantly inhibited the peroxidation of linoleate by myoglobin. Both compounds were found to work better than catechin, a well-known antioxidant. In a membrane lipid peroxidation system, the effectiveness of the antioxidant was dependent on the catalyst: In the presence of H(2)O(2)-activated myoglobin, the inhibition efficiency of the antioxidant was malvidin 3-glucoside > catechin > malvidin > resveratrol. However, in the presence of an iron redox cycle catalyzer, the order of effectiveness was resveratrol > malvidin 3-glucoside = malvidin > catechin. The pH-transformed forms of the anthocyanins remained effective antioxidants in these systems, and their I(50) values were between 0.5 and 6.2 microM.  相似文献   

6.
Three newly formed Port wine pigments were isolated by Toyopearl HW-40(s) gel chromatography and semipreparative HPLC. Furthermore, the pigments were identified by mass spectrometry (LC/MS) and NMR techniques (1D and 2D). These anthocyanin-derived pigments showed UV-visible spectra different from those of the original grape anthocyanins. These pigments correspond to malvidin 3-glucoside linked through a vinyl bond to either (+)-catechin, (-)-epicatechin, or procyanidin dimer B3 [(+)-catechin-(+)-catechin]. NMR data of these pigments are reported for the first time.  相似文献   

7.
Anthocyanin transformation in Cabernet Sauvignon wine during aging   总被引:2,自引:0,他引:2  
Anthocyanins in Cabernet Sauvignon grapes and wines were elucidated by HPLC-MS/MS. Major anthocyanins in Cabernet Sauvignon grape extract are malvidin 3-O-glucoside and malvidin 3-O-acetylglucoside. In matured wine, anthocyanins are transformed to anthocyanin-vinyl derivatives, ethyl bridged anthocyanin-flavanol adducts, and anthocyanin-flavanol adducts. The major anthocyanin pigments are malvidin 3-O-glucoside-pyruvate, malvidin 3-O-acetylglucoside-pyruvate, malvidin 3-O-coumaroylglucoside-pyruvate, malvidin 3-O-glucoside-4-vinylphenol, malvidin 3-O-acetylglucoside-4-vinylphenol, and malvidin 3-O-coumaroylglucoside-4-vinylphenol. The presence of syringetin 3-O-glucoside and syringetin 3-O-acetylglucoside has been established for the first time in grape and wine.  相似文献   

8.
Red pigments were isolated from wine and grape-skin extracts using preparative high-speed countercurrent chromatography (HSCCC) and identified by NMR and MS techniques. Four solvent systems were developed in order to separate anthocyanins with different polarities. Malvidin-3-glucoside was the major component present in young red wines, and up to 500 mg of pure malvidin-3-glucoside could be obtained from a single bottle of a red wine. Other isolated pigments were the malvidin- and peonidin-3,5-diglucosides, as well as acetyl-, coumaroyl-, and caffeoyl-derivatives of anthocyanins. Furthermore, condensed red wine pigments formed from malvidin-3-glucoside (vitisin A and acetylvitisin A) were isolated on a preparative scale. Isolated compounds were used as standards for quantification of anthocyanins in a range of red wines. The "color activity concept" was applied to red wine, and visual detection thresholds were determined for some of the isolated anthocyanins. Mono-glucosides were found to exhibit lower visual detection thresholds than di-glucosides and acylated anthocyanins.  相似文献   

9.
Two newly formed yellow pigments that revealed unique spectral features were detected and isolated from an aged Port red wine by TSK Toyopearl HW-40(s) gel chromatography and characterized by UV-visible spectrophotometry, 1H NMR and 13C NMR, and mass spectrometry (LC-ESI/MS). The UV-vis spectra of these pigments showed maximum absorption at 478 nm that is significantly hypsochromically shifted from those of original grape anthocyanins and other pyranoanthocyanins, exhibiting a more yellow hue in acidic solution. The structures of these pigments correspond to methyl-linked pyranomalvidin 3-glucoside and its respective coumaroyl glucoside derivative. They were shown to arise from the reaction between acetoacetic acid and genuine grape anthocyanins. Isolation and NMR identification using 1D and 2D NMR techniques are reported for the first time for this new family of anthocyanin-derived yellow pigments occurring in red wines.  相似文献   

10.
Direct addition of anthocyanins and flavan-3-ols was investigated in a model system by incubating malvidin 3-glucoside and (-)-epicatechin in ethanol. Analysis of reaction products by high-performance liquid chromatography coupled to electrospray ionization mass spectrometry (HPLC/ESI-MS) before and after thiolysis showed the formation of colorless dimers detected at m/z 781 in the negative ion mode, with retention times and spectroscopic characteristics identical to those of compounds detected in wine, which contain one malvidin 3-glucoside unit and one flavanol unit. On the basis of their resistance to thiolysis, these compounds were postulated to be bicyclic dimers linked with both carbon-carbon and ether bonds as observed in the case of A type proanthocyanidins. The major dimer analyzed by NMR experiments was identified as malvidin 3-glucoside(C2-O-C7,C4-C8)epicatechin, confirming this hypothesis. A similar assay was performed with (+)-catechin instead of (-)-epicatechin, and the formation of bicyclic dimers was also observed.  相似文献   

11.
The formation of vitisin A, an anthocyanin formed naturally in small quantities in maturing port wines, was studied in model wine solutions at a range of pH values (2.0-4.5) and pyruvate concentrations [molar ratios of pyruvic acid to total anthocyanins (PA/TA) ranging from 12.20 to 172.40]. Additionally, the effect of vitisin A formation on the color changes of these model wines was evaluated. Vitisin A was formed through the interaction between malvidin 3-glucoside and pyruvic acid, and vitisin A in acylated forms, having the 6-position of the sugar acylated with acetic acid (3-acetylvitisin A) and p-coumaric acid (3-p-coumarylvitisin A), formed through the interaction between pyruvic acid and malvidin 3-acetylglucoside and malvidin 3-p-coumarylglucoside, respectively; their identities were confirmed by spectral analysis and FABMS. The maximum formation of these new anthocyanin derivatives was at pH 2. 7-3.0, at the higher pyruvic acid concentration (PA/TA of 172.40 units). The vitisins A caused changes in the color of the solution and expressed about 11 times (pH 3) to 14 times (pH 2) more color than the normal anthocyanins. On aging, the model solutions changed from a bluish red, attributable to the main anthocyanins present, to a slightly more orange red, attributable to the vitisin compounds. The aged models containing vitisins A were all much redder than the more red-brown color of the models aged without pyruvic acid.  相似文献   

12.
Polyphenols present in red table grape varieties Red Globe, Flame Seedless, Crimson Seedless, and Napoleon, and the white varieties Superior Seedless, Dominga, and Moscatel Italica were analyzed by HPLC-DAD-MS. The anthocyanins peonidin 3-glucoside, cyanidin 3-glucoside (and their corresponding p-coumaroyl derivatives), malvidin 3-glucoside, petunidin 3-glucoside, and delphinidin 3-glucoside were found. In addition, caffeoyltartaric acid, p-coumaroyltartaric acid, and the flavonols quercetin 3-glucuronide, quercetin 3-rutinoside, quercetin 3-glucoside, kaempferol 3-galactoside, kaempferol 3-glucoside, and isorhamnetin 3-glucoside were detected. Flavan-3-ols were also detected, and were identified as gallocatechin, procyanidin B1, procyanidin B2, procyanidin B4, procyanidin C1, catechin, and epigallocatechin. These phenolics were present only in the skin, as the flesh of these grape cultivars was almost devoid of these compounds. Anthocyanins were the main phenolics in red grapes ranging from 69 (Crimson Seedless) to 151 (Flame Seedless) mg/kg fresh weight of grapes, whereas flavan-3-ols were the most abundant phenolics in the white varieties ranging from 52 (Dominga) to 81 (Moscatel Italica) mg/kg fresh weight of grapes. Total phenolics ranged from 115 (Dominga) to 361 (Flame Seedless) mg/kg fresh weight of grapes. This means that a serving of unpeeled table grapes (200 g) could provide up to 72 mg of total phenolics (Flame Seedless). These results indicate that the intake of unpeeled table grapes should be recommended in dietary habits as a potential source of antioxidant and anticarcinogenic phenolic compounds.  相似文献   

13.
In the skin of cv. Napoleon table grapes, the anthocyanins malvidin 3-glucoside (and its acetyl and p-coumaroyl derivatives), cyanidin 3-glucoside, peonidin 3-glucoside, cyanidin 3-glucoside, petunidin 3-glucoside, and delphinidin 3-glucoside were identified by HPLC-DAD-MS. In addition, quercetin 3-glucoside and 3-glucuronide, caffeoyltartaric, piceid, and resveratrol were also detected. The content of most phenolics remained quite constant during postharvest refrigerated storage (10 days at 0 degrees C) while the resveratrol derivatives increased 2-fold. Postharvest treatments of grapes with UVC and UVB light induced a large increase in resveratrol derivatives (3- and 2-fold, respectively). This means that a serving of mature Napoleon grapes (200 g) provides approximately 1 mg of resveratrol, which is in the range of the amount supplied by a glass of red wine. This can be increased to 2 or 3 mg of resveratrol per serving in grapes that have been irradiated with UVB or UVC, respectively. These results show that refrigerated storage and UV irradiation of table grapes can be beneficial in terms of increasing the content of potentially health-promoting phenolics.  相似文献   

14.
The detailed phenolic composition of five single-cultivar (Baboso Negro, Listán Negro, Negramoll, Tintilla, and Vijariego Negro) young and aged (vintages 2005-2009) red wines of the Canary Islands has been determined by HPLC-DAD-ESI-MS(n). Despite the total monomeric anthocyanin content decreasing for older wines in each set of single-cultivar wines, the corresponding anthocyanin profiles remained almost unchanged. Although all wine anthocyanin profiles were dominated by malvidin 3-glucoside, their differentiation by grape cultivar was possible, with the exception of Listán Negro. In contrast, the total content of non-anthocyanin phenolics did not appreciably change within vintages but polymerization, hydrolysis, and isomerization reactions greatly modified the phenolic profiles. Aglycone-type flavonol profiles offered the best results for differentiation of the wines according to grape cultivar (Listán Negro and Negramoll; Baboso Negro and Vijariego Negro; and Tintilla). Within flavan-3-ols, the B-ring trihydroxylated monomers ((-)-epigallocatechin and (-)-gallocatechin) and also (-)-epicatechin provided additional cultivar differentiation. Hydroxycinnamic acid derivatives and stilbene profiles were very heterogeneous with regard to both grape cultivar and vintage and did not significantly contribute to wine differentiation, even when structure-type profiles were obtained, with the exception of Tintilla, which always appeared as the most different single-cultivar wines. Finally, most Canary Islands wines showed characteristic high contents of stilbenes, especially trans-resveratrol.  相似文献   

15.
The free radical chemistry of two polyphenolic pigments from red wine, belonging to the family of portisins, has been investigated after reaction with O(2)(?-) radicals using electron paramagnetic resonance (EPR) spectroscopy. Two portisins derived from malvidin-3-glucoside and cyanidin-3-glucoside were used for this study. Stable free radicals were detected with both portisins and correspond to unpaired electrons localized on the B as well as F rings of the portisins. Interpretations were confirmed by comparison with the spectra of free radicals formed by oxidation of the model compounds cyanidin-3-glucoside, malvidin-3-glucoside, and catechin. These results concur with previous work reporting the higher antiradical properties of these pigments compared to their anthocyanin precursors.  相似文献   

16.
The condensation reaction between malvidin 3-glucoside and catechin mediated by isobutyraldehyde, benzaldehyde, and isovaleraldehyde was conducted in model solutions at two pH values (1.5 and 3.2). The formation of new alkyl/aryl-linked adducts corresponding to the structures malvidin 3-glucoside-isobutylcatechin, malvidin 3-glucoside-benzylcatechin, and malvidin 3-glucoside-3-methylbutylcatechin was respectively observed from each aldehyde. The structural characterization of these new structures has been elucidated by 1D and 2D NMR, mass spectrometry, and UV-vis techniques. These new adducts showed the same lambda(max) in the visible region at 540 nm, which is bathochromically shifted 15 nm when compared with the original anthocyanin (lambda(max) = 525 nm).  相似文献   

17.
The main flavonols found in seven widespread Vitis vinifera red grape cultivars include the 3-glucosides and 3-glucuronides of myricetin and quercetin and the 3-glucosides of kaempferol and isorhamnetin. In addition, the methoxylated trisubstituted flavonols, laricitrin and syringetin, were predominantly found as 3-glucosides. As minority flavonols, the results suggest the detection of the 3-galactosides of kaempferol and laricitrin, the 3-glucuronide of kaempferol, and the 3-(6' '-acetyl)glucosides of quercetin and syringetin. The flavonol profiles based on the eight above-mentioned flavonols allowed the cultivar differentiation of the grape samples. With regard to flavonol biosynthesis in the berry skin, quercetin 3-glucuronide predominated at véraison, followed by quercetin 3-glucoside, and only trace amounts of trisubstituted flavonols were detected. The proportion of quercetin 3-glucoside remained almost constant during berry ripening, whereas the proportion of quercetin 3-glucuronide decreased and the other flavonols, especially myricetin 3-glucoside, increased their importance. In wines, flavonol 3-glycosides coexisted with their corresponding free aglycones released by hydrolysis. The presence of laricitrin, syringetin, and laricitrin 3-glucoside in red wines is reported here for the first time. The extent of hydrolysis was widely variable among wines made from the same grape cultivar, and the results suggest the influence of the type of aglycone and glycoside on the rate of hydrolysis. Due to hydrolysis, the differentiation of single-cultivar wines gave acceptable results only when aglycone-type flavonol profiles were used.  相似文献   

18.
The formation of vitisin A, an anthocyanin formed naturally in small quantities in maturing port wines, was studied in model wine solutions at several storage temperatures (10, 15, 20, and 32 degrees C). Vitisin A was formed through the interaction between malvidin 3-glucoside and pyruvic acid, Acylated forms of vitisin A, having the 6-position of the sugar acylated with acetic acid (3-acetylvitisin A) and p-coumaric acid (3-p-coumarylvitisin A), were also formed through the interaction between pyruvic acid and malvidin 3-acetylglucoside and malvidin 3-p-coumarylglucoside, respectively. A maximum degradation of the anthocyanins was obtained at higher temperatures, and it followed a first-order kinetics both with and without pyruvic acid in the solution. Whereas at low temperatures (10 and 15 degrees C) the presence of pyruvic acid accelerated the kinetic reaction, at higher temperatures (20 and 32 degrees C) it decreased it. The activation energy values for the degradation of the three anthocyanins in model solutions without and with pyruvic acid were not significantly different from each other. At low temperatures the highest concentrations of vitisin A compounds were obtained. All solutions showed a decrease in L value, indicating that all solutions became darker. This change increased with increasing temperature. All model solutions increased in the hue angle, indicating that the solutions changed from a bluish-red to an orange-red or even brownish-red color. Samples without pyruvic acid remained lighter and became browner than those with pyruvic acid. A good correlation between the amount of vitisin A in the solution and hue angle was found, indicating that vitisin A may contribute the orange-red of solutions, compared to the browner control.  相似文献   

19.
Intermolecular copigmentation reactions are significantly responsible for the manifold color expression of fruits, berries, and their products. These reactions were investigated with five anthocyanins and five phenolic acids acting as copigments. The stability of the pigment-copigment complexes formed was studied during a storage period of 6 months. The study was conducted using a UV-visible spectrophotometer to monitor the hyperchromic effect and the bathochromic shift of the complexes. The greatest copigmentation reactions took place in malvidin 3-glucoside solutions. The strongest copigments for all anthocyanins were ferulic and rosmarinic acids. The immediate reaction of rosmarinic acid with malvidin 3-glucoside resulted in the biggest bathochromic shift (19 nm) and the strongest hyperchromic effect, increasing the color intensity by 260%. The color induced by rosmarinic acid was not very stable. The color intensity of pelargonidin 3-glucoside increased greatly throughout the storage period with the addition of ferulic and caffeic acids.  相似文献   

20.
Three newly formed pigments were detected and isolated from a 2-year-old Port wine through TSK Toyopearl HW-40(S) gel column chromatography and characterized by UV-visible spectrophotometry, NMR, and mass spectrometry (ESI/MS). (1)H NMR and (13)C NMR data for these pigments obtained using 1D and 2D NMR techniques (COSY, NOESY, gHSQC, and gHMBC) are reported for the first time. The structure of the pigments was found to correspond to the vinyl cycloadducts of malvidin 3-coumaroylglucoside bearing either a procyanidin dimer or a flavanol monomer ((+)-catechin or (-)-epicatechin). Additionally, conformational analysis was performed for one of these newly formed pigment using computer-assisted model building and molecular mechanics. A chemical nomenclature is proposed to unambiguously name this new family of anthocyanin-derived pigments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号