首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
长期施肥对华北平原土壤生产力的影响   总被引:3,自引:0,他引:3  
Soil productivity is the ability of a soil, in its normal environment, to support plant growth and can be evaluated with respect to crop production in unfertilized soil within the agricultural ecosystem. Both soil productivity and fertilizer applications affect crop yields. A long-term experiment with a winter wheat-summer maize rotation was established in 1989 in a field of the Fengqiu State Key Agro-Ecological Experimental Station, a region typical of the North China Plain, including seven treatments: 1) a balanced application of NPK chemical fertilizers(NPK); 2) application of organic fertilizer(OM); 3) application of 50% organic fertilizer and50% NPK chemical fertilizers(1/2OMN); 4) application of NP chemical fertilizers(NP); 5) application of PK chemical fertilizer(PK);6) application of NK chemical fertilizers(NK); and 7) unfertilized control(CK). To investigate the effects of fertilization practices on soil productivity, further pot tests were conducted in 2007–2008 using soil samples from the different fertilization treatments of the long-term field experiment. The soil sample of each treatment of the long-term experiment was divided into three pots to grow wheat: with no fertilization(Potunf), with balanced NPK fertilization(PotNPK), and with the same fertilizer(s) of the long-term field experiment(Potori). The fertilized soils of the field experiment used in all the pot tests showed a higher wheat grain yield and higher nutrient uptake levels than the unfertilized soil. Soil productivity of the treatments of the field experiment after 18 years of continuous fertilizer applications were ranked in the order of OM 1/2OMN NPK NP PK NK CK. The contribution of soil productivity of the different treatments of the field experiment to the wheat grain yield of Potoriwas 36.0%–76.7%, with the PK and NK treatments being higher than the OM, 1/2OMN, NPK, and NP treatments since the soil in this area was deficient in N and P and rich in K. Wheat grain yields of PotNPKwere higher than those of Potoriand Potunf. The N, P, and K use efficiencies were higher in PotNPKthan Potoriand significantly positively correlated with wheat grain yield. Soil organic matter could be a better predictor of soil productivity because it correlated more strongly than other nutrients with the wheat grain yield of Potunf. Wheat yields of PotNPKshowed a similar trend to those of Potunf, indicating that soil productivity improvement was essential for a further increase in crop yield. The long-term applications of both organic and chemical fertilizers were capable of increasing soil productivity on the North China Plain, but the former was more effective than the latter. The balanced application of NPK chemical fertilizers not only increased soil productivity, but also largely increased crop yields, especially in soils with lower productivity. Thus, such an approach should be a feasible practice for the sustainable use of agricultural soils on the North China Plain, particularly when taking into account crop yields, labor costs, and the limited availability of organic fertilizers.  相似文献   

2.
Microbial biomass carbon (MBC), a small fraction of soil organic matter, has a rapid turnover rate and is a reservoir of labile nutrients. The water-extractable carbon pools provide a fairly good estimate of labile C present in soil and can be easily quantified. Changes in soil MBC and water-extractable organic carbon pools were studied in a 14-year long-term experiment in plots of rice-wheat rotation irrigated with canal water (CW), sodic water (SW, 10-12.5 mmol c L-1 residual sodium carbonate), and SW amended with gypsum with or without application of organic amendments including farmyard manure (FYM), green manure (GM), and wheat straw (WS). Irrigation with SW increased soil exchangeable sodium percentage by more than 13 times compared to irrigation with CW. Sodic water irrigation significantly decreased hot water-extractable organic carbon (HWOC) from 330 to 286 mg kg-1 soil and cold water-extractable organic carbon (CWOC) from 53 to 22 mg kg-1 soil in the top 0-7.5 cm soil layer. In the lower soil layer (7.5-15 cm), reduction in HWOC was not significant. Application of gypsum alone resulted in a decrease in HWOC in the SW plots, whereas an increase was recorded in the SW plots with application of both gypsum and organic amendments in both the soil layers. Nevertheless, application of gypsum and organic amendments increased the mean CWOC as compared with application of gypsum alone. CWOC was significantly correlated with MBC but did not truly reflect the changes in MBC in the treatments with gypsum and organic amendments applied. For the treatments without organic amendments, HWOC was negatively correlated with MBC (r = 0.57*) in the 0-7.5 cm soil layer, whereas for the treatments with organic amendments, both were positively correlated. Irrigation with SW significantly reduced the rice yield by 3 t ha-1 and the yield of rice and wheat by 5 t ha-1 as compared to irrigation with canal water. Application of amendments significantly increased rice and wheat yields. Both the rice yield and the yield of rice and wheat were significantly correlated with MBC (r = 0.49**-0.56**, n = 60). HWOC did not exhibit any relation with the crop yields under the treatments without organic amendments; however, CWOC showed a positive but weak correlation with the crop yields. Therefore, we found that under sodic water irrigation, HWOC or CWOC in the soils was not related to MBC.  相似文献   

3.
In rice-wheat rotation systems, changes in soil phosphorus(P) pools and microorganisms in rice-growing seasons have been studied;however, further investigations are required to test whether these indexes exhibit different responses in wheat-growing seasons. Additionally, such studies need to include potential variations in soil carbon(C) structure and microbial community composition. In this study, a long-term rice-wheat rotation P-input reduction experiment was conducted to observe the variations in soil P pools and C composition in the 7th wheat season and to investigate the responses of soil enzyme activity and microbial communities. Four P fertilization treatments were included in the experiment, i.e., P application for rice season only(PR), for wheat season only(PW), and for both rice and wheat seasons(PR+W) and no P application in either season(Pzero). Compared with PR+W treatment, Pzero treatment significantly decreased(P < 0.05) labile and stable P pools. Different P fertilization regimes altered soil microbial community composition and enzyme activity, whereas C composition did not vary. However, PW treatment resulted in relatively more O-alkyl-C than PR treatment and the highest number of microorganisms. Besides, the higher ratios of fungi/bacteria and Gram-positive bactetia/Gram-negative bactetia were related to labile C pools, particularly O-alkyl-C, as opposed to recalcitrant C. Our results clarified the status of soil P pools, C chemistry, and the response of microorganisms under dry-farming conditions in the P input-reduced rice-wheat rotation system.  相似文献   

4.
The greatest challenge for tropical agriculture is land degradation and reduction in soil fertility for sustainable crop and livestock production.Associated problems include soil erosion,nutrient mining,competition for biomass for multiple uses,limited application of inorganic fertilizers,and limited capacity of farmers to recognize the decline in soil quality and its consequences on productivity.Integrated soil fertility management(ISFM) is an approach to improve crop yields,while preserving sustainable and long-term soil fertility through the combined judicious use of fertilizers,recycled organic resources,responsive crop varieties,and improved agronomic practices,which minimize nutrient losses and improve the nutrient-use efficiency of crops.Soil fertility and nutrient management studies in Ethiopia under on-station and on-farm conditions showed that the combined application of inorganic and organic fertilizers significantly increased crop yields compared to either alone in tropical agro-ecosystems.Yield benefits were more apparent when fertilizer application was accompanied by crop rotation,green manuring,or crop residue management.The combination of manure and NP fertilizer could increase wheat and faba bean grain yields by 50%–100%,whereas crop rotation with grain legumes could increase cereal grain yields by up to 200%.Although organic residues are key inputs for soil fertility management,about 85% of these residues is used for livestock feed and energy;thus,there is a need for increasing crop biomass.The main incentive for farmers to adopt ISFM practices is economic benefits.The success of ISFM also depends on research and development institutions to provide technical support,technology adoption,information dissemination,and creation of market incentives for farmers in tropical agro-ecosystems.  相似文献   

5.
Organic agricultural systems rely on organic amendments to achieve crop fertility requirements, and weed control must be achieved without synthetic herbicides. Our objective was to determine the crop yield and soil quality as affected by a transition from grass to dryland organic agriculture in the Central Great Plains of North America. This study evaluated three beef feedlot compost(BFC)treatments in 2010–2015 following biennial application rates: 0(control), 22.9, and 108.7 t ha~(-1) on two dryland organic cropping systems: a wheat(Triticum aestivum)-fallow(WF) rotation harvested for grain and a triticale(Triticosecale)/pea(Pisum sativum)-fallow(T/P-F) rotation harvested for forage. The triticale + pea biomass responded positively to the 108.7-t ha~(-1) BFC treatment,but not the 22.9-t ha~(-1) BFC treatment. The wheat biomass was not affected by BFC addition, but biomass N content increased.Beef feedlot compost input did not increase wheat grain yields, but had a positive effect on wheat grain Zn content. Soil total C and N contents increased with the rate of 108.7 t ha~(-1) BFC after three applications, but not with 22.9 t ha~(-1) BFC. Soil enzyme activities associated with N and C cycling responded positively to the 108.7-t ha~(-1) BFC treatment. Saturated salts were high in the soil receiving 108.7 t ha~(-1) of BFC, but did not affect crop yields. These results showed that BFC was effective in enhancing forage yields, wheat grain quality, and soil C and N, as well as specific microbial enzymes important for nutrient cycling. However, the large rates of BFC necessary to elicit these positive responses did not increase grain yields, and resulted in an excessive buildup of soil P.  相似文献   

6.
Sustainable agricultural production is of vital importance to food supply security. This study aimed to investigate crop yield response to spatial variability of soil quality at a county scale in the North China Plain(NCP) and subsequently derive key soil quality indicators. Soil samples were geo-referenced and taken in 2008 from both surface(0–20 cm) and subsurface(20–40 cm) layers in132 fields throughout the Fengqiu County, located in the centre of the NCP, for subsequent soil properties' analyses. Annual crop yields were obtained from the same fields where soil samples were collected. Soil quality was evaluated based on a fuzzy set with 13 soil properties, and its spatial distributions were investigated by integrating geostatistical analysis and geographic information system(GIS) techniques. Soil quality indices were classified into five grades, and their spatial distributions were mapped within the county.The surface soil qualities were about one to two grades higher than the subsurface soil. The quality indices for surface and subsurface soils were positively associated with the annual crop yields, suggesting the importance of both. Soil organic matter, total nitrogen,available P, and available K contributed 50% of the combined weight to the soil quality index and were identified as key indicators of soil quality status in the area in terms of sustainability.  相似文献   

7.
S. PAL  P. MARSCHNER 《土壤圈》2016,26(5):643-651
Crop yields in sandy soils can be increased by addition of clay-rich soil, but little is known about the effect of clay addition on nutrient availability after addition of plant residues with different C/N ratios. A loamy sandy soil(7% clay) was amended with a clay-rich subsoil(73% clay) at low to high rates to achieve soil mixtures of 12%, 22%, and 30% clay, as compared to a control(sandy soil alone) with no clay addition. The sandy-clay soil mixtures were amended with finely ground plant residues at 10 g kg~(-1): mature wheat(Triticum aestivum L.) straw with a C/N ratio of 68, mature faba bean(Vicia faba L.) straw with a C/N ratio of 39, or their mixtures with different proportions(0%–100%, weight percentage) of each straw. Soil respiration was measured over days 0–45 and microbial biomass C(MBC), available N, and p H on days 0, 15, 30, and 45. Cumulative respiration was not clearly related to the C/N ratio of the residues or their mixtures, but C use efficiency(cumulative respiration per unit of MBC on day 15) was greater with faba bean than with wheat and the differences among the residue mixtures were smaller at the highest clay addition rate. The MBC concentration was lowest in sole wheat and higher in residue mixtures with 50% of wheat and faba bean in the mixture or more faba bean. Soil N availability and soil p H were lower for the soil mixtures of 22% and 30% clay compared to the sandy soil alone. It could be concluded that soil cumulative respiration and MBC concentration were mainly influenced by residue addition, whereas available N and p H were influenced by clay addition to the sandy soil studied.  相似文献   

8.
淹水条件下FACE处理的水稻以及小麦秸秆的分解及产物   总被引:2,自引:0,他引:2  
LIU Juan  HAN Yong  CAI Zu-Cong 《土壤圈》2009,19(3):389-397
Winter wheat and rice straw produced under ambient and elevated CO2 in a China rice-wheat rotation free-air CO2 enrichment (FACE) experiment was mixed with a paddy soil at a rate of 10 g kg-1 (air-dried), and the mixture was incubated under flooded conditions at 25 ℃ to examine the differences in decomposition as well as the products of crop residues produced under elevated CO2. Results showed that the C/N ratio and the amount of soluble fraction in the amended rice straw grown under elevated CO2 (FR) were 9.8% and 73.1% greater, and the cellulose and lignin were 16.0% and 9.9% lesser than those of the amended rice straw grown under ambient CO2 (AR), respectively. Compared with those of the AR treatment, the CO2-C and CH4-C emissions in the FR treatment for 25 d were increased by 7.9% and 25.0%, respectively; a higher ratio of CH4 to CO2 emissions induced by straw in the FR treatment was also observed. In contrast, in the treatments with winter wheat straw, the CO2-C and CH4-C productions, the ratio of straw-induced CH4 to CO2 emissions, and the straw composition were not significantly affected by elevated CO2, except for an 8.0% decrease in total N and a 9.7% increase in C/N ratio in the wheat straw grown under elevated CO2. Correlation analysis showed that the net CO2-C and CH4-C emissions from straw and the ratio of straw-induced CH4 to CO2 emissions were all exponentially related to the amount of soluble fraction in the amended straw (P < 0.05). These indicated that under flooded conditions, the turnover and CH4 emission from crop straw incorporated into soil were dependent on the effect of elevated CO2 on straw composition, and varied with crop species. Incorporation of rice straw grown under elevated CO2 would stimulate CH4 emission from flooded rice fields, whereas winter wheat straw grown under elevated CO2 had no effect on CH4 emission.  相似文献   

9.
长期稻田垄作免耕对土壤性质和水稻产量的影响   总被引:4,自引:0,他引:4  
A tillage method of combining ridge with no-tillage (RNT) was employed in lowland rice-based cropping system to study the long-term effects of RNT on soil profile pattern, soil water stable aggregate distribution, nutrients stratification and yields of rice and post-rice crops. After flooded paddy field (FPF) was practiced with RNT for a long time, soil profile changed from G to A-P-G, and horizon G was shifted to a deeper position in the profile. Also the proportion of macroaggregate (> 2 mm) increased, whereas the proportion of silt and clay (< 0.053 mm) decreased under RNT, indicating a better soil structure that will prevent erosion. RNT helped to control leaching and significantly improved total N, P, K and organic matter in soil. The highest crop yields were found under RNT system every year, and total crop yields were higher under conventional paddy-upland rotation tillage (CR) than under FPF, except in 2003 and 2006 when serious drought occurred. RNT was proven to be a better tillage method for lowland rice-based cropping system.  相似文献   

10.
中国东北农田土壤质量评价的最小数据集选择   总被引:2,自引:0,他引:2  
Soil quality assessment provides a tool for agriculture managers and policy makers to gain a better understanding of how various agricultural systems afect soil resources.Soil quality of Hailun County,a typical soybean (Glycine max L.Merill) growing area located in Northeast China,was evaluated using soil quality index(SQI)methods.Each SQI was computed using a minimum data set(MDS) selected using principal components analysis(PCA)as a data reduction technique.Eight MDS indicators were selected from 20 physical and chemical soil measurements.The MDS accounted for 74.9% of the total variance in the total data set(TDS).The SQI values for 88 soil samples were evaluated with linear scoring techniques and various weight methods.The results showed that SQI values correlated well with soybean yield (r=0.658**) when indicators in MDS were weighted by the regression coefcient computed for each yield and index.Stepwise regression between yield and principal components (PCs) indicated that available boron(AvB),available phosphorus (AvP),available potassium (AvK),available iron (AvFe) and texture were the main factors limiting soybean yield.The method used to select an MDS could not only appropriately assess soil quality but also be used as a powerful tool for soil nutrient diagnosis at the regional level.  相似文献   

11.
Abstract

Soil samples were obtained at 0–3, 3–6, 6–9 and 0–9 inch depths from experimental plots receiving five tillage treatments. Each of two samplers composited approximately six one‐inch cores from each plot. Soil samples were analyzed for acidity, P and K using routine analysis procedures in the University of Illinois Soil Testing Laboratory.

Few significant differences were attributed to sampler and it was concluded that samplers using similar sampling techniques were obtaining soil samples from the same population.

No significant differences in soil acidity at different depths were observed. The different tillage methods did significantly affect soil P at the 0–3 inch depth, but had no significant effect on soil P at deeper depths. Different tillage methods also significantly affected soil K values at different depths.  相似文献   

12.
Soil textural information is an important component underlying other soil health indicators. Soil texture analysis is a common procedure, but it can be labor intensive and expensive. Soil texture data typically are available from the Soil Survey Geographic (SSURGO) database, which may be an option for determining soil health texture groups (SHTG). The SSURGO database provides soil texture information in the soil map unit (SMU) name, taxonomic class category (family), and detailed values (≤ 2 mm soil fraction) of percent sand, silt and clay by soil horizon. The objective of this study was to examine the possibility of using SSURGO data for SHTG at the 147-ha Cornell University Willsboro Research Farm in New York state as an alternative for soil texture data determined manually on collected soil core samples. Comparative results revealed that representative values for soil texture from the SSURGO database generally matched measured mean values for all SMUs.  相似文献   

13.
土壤含水率与土壤碱度对土壤抗剪强度的影响   总被引:11,自引:11,他引:11  
土壤含水率和土壤碱度是表征土壤物理化学性质的两个重要参数。通过室内三轴不固结不排水试验,研究了土壤含水率和土壤碱度对土壤抗剪强度的影响。试验处理采用5种土壤碱度(土壤可交换钠百分比ESP=0、5、10、20、40)和4种土壤质量含水率(0.05、0.10、0.20以及饱和含水率0.34)水平。试验结果显示,土壤黏聚力随着土壤含水率的增加基本上呈先增大后减小之趋势;当土壤含水率在0.10附近时黏聚力达到其最大值。土壤内摩擦角随着土壤含水率的增加而线性减小。土壤碱度对土壤黏聚力的影响机理较为复杂,其影响效果随土壤含水率的增加而减小;但土壤碱度对土壤内摩擦角的影响较小。土壤碱度对土壤抗剪强度的影响程度明显地小于土壤含水率对其的影响程度。  相似文献   

14.
Abstract

The design, dimensiors and materials for constructing volumetric soil measures for routine soil testing use are presented. Scoop calibration techniques are also described. Reproducibility of results obtained under routine laboratory, conditions are shown. The measures include volumes of 1.0‐, 2.5‐, 5.0‐ and 10‐ cm3 respectively.  相似文献   

15.
The interaction of soil microbes with their physical environment affects their abilities to respire, grow and divide. One of these environmental factors is the amount of moisture in the soil. The work we published almost 25 years ago showed that microbial respiration was linearly related to soil-water content and log-linearly related to water potential. The paper arose out of collaboration between two young researchers from different areas of soil science, physics and microbiology. The project was driven by not only our curiosity but also the freedom to operate without the constraints common to the current system of science management. The citation history shows three peaks, 1989, 1999 and from 2002 to the present day. Interestingly, the annual citation rate is as high as it has ever been. The initial peak is due to the application of the work to studies on microbial processes. The second peak is associated with the rise of simulation modelling and the third with the relevance of the findings to climate change research. In this article, our paper is re-evaluated in the light of subsequent studies that allow the principle of separation of variables to be tested. This re-evaluation lends further credence to the linear relationship proposed between soil respiration and water content. A scaled relationship for respiration and water content is presented. Lastly, further research is suggested and more recent work on the physics of gas transport discussed briefly.  相似文献   

16.
Microbial activity is affected by changes in the availability of soil moisture. We examined the relationship between microbial activity and water potential in a silt loam soil during four successive drying and rewetting cycles. Microbial activity was inferred from the rate of CO2 accumulating in a sealed flask containing the soil sample and the CO2 respired was measured using gas chromatography. Thermocouple hygrometry was used to monitor the water potential by burying a thermocouple in the soil sample in the flask. Initial treatment by drying on pressure plates brought samples of the test soil to six different water potentials in the range -0.005 to -1.5MPa. Water potential and soil respiration were simultaneously measured while these six soil samples slowly dried by evaporation and were remoistened four times. The results were consistent with a log-linear relationship between water potential and microbial activity as long as activity was not limited by substrate availability. This relationship appeared to hold for the range of water potentials from ?0.01 to ?8.5 MPa. Even at ?0.01 MPa (wet soil) a decrease in water potential from ?0.01 to ?0.02 MPa caused a 10% decrease in microbial activity. Rewetting the soil caused a large and rapid increase in the respiration rate. There was up to a 40-fold increase in microbial activity for a short period when the change in water potential following rewetting was greater than 5 MPa. Differences in microbial activity between the wetter and drier soil treatments following rewetting to the original water potentials are discussed in terms of the availability of energy substrate.  相似文献   

17.
Abstract

The design, materials and dimensions for constructing a coring device for sampling soil fauna and flora at different depths is described.  相似文献   

18.
《CATENA》1998,32(1):15-22
Evaluation of various soil erosion models with large data sets have consistently shown that these models tend to over-predict soil erosion for small measured values, and under-predict soil erosion for larger measured values. This trend appears to be consistent regardless of whether the soil erosion value of interest is for individual storms, annual totals, or average annual soil losses, and regardless of whether the model is empirical or physically based. The hypothesis presented herein is that this phenomenon is not necessarily associated with bias in model predictions as a function of treatment, but rather with limitations in representing the random component of the measured data within treatments (i.e., between replicates) with a deterministic model. A simple example is presented, showing how even a `perfect' deterministic soil erosion model exhibits bias relative to small and large measured erosion rates. The concept is further tested and verified on a set of 3007 measured soil erosion data pairs from storms on natural rainfall and run-off plots using the best possible, unbiased, real-world model, i.e., the physical model represented by replicated plots. The results of this study indicate that the commonly observed bias, in erosion prediction models relative to over-prediction of small and under-prediction of large measured erosion rates on individual data points, is normal and expected if the model is accurately predicting erosion rates as a function of environmental conditions, i.e., treatments.  相似文献   

19.
黑土区土壤侵蚀厚度对土地生产力的影响及其评价   总被引:3,自引:2,他引:3  
刘慧  魏永霞 《农业工程学报》2014,30(20):288-296
为了研究黑土区土壤侵蚀厚度对土地生产力的影响,采用盆栽试验,人为剥离黑土表层0、5、10、15、20、25和30 cm土壤以模拟侵蚀厚度不同的耕层土壤,分析土壤侵蚀厚度对土壤理化性质、大豆生物性状和水分利用效率等指标的影响。并对TOPSIS(technique for order preference by similarity to ideal solution)模型进行改进,用于评价侵蚀厚度不同的土壤的土地生产力。结果表明:土壤全N、碱解N、全P、速效P、有机质含量和土壤田间持水率均随侵蚀厚度的增加而递减,土壤容重随侵蚀厚度的增加而递增。土壤侵蚀厚度对大豆生长有显著影响,随着侵蚀厚度的增加,大豆减产率呈"S型"曲线递增,产量、耗水量呈"Z型"曲线递减,水分利用效率呈指数曲线关系递减。改进的TOPSIS模型对不同侵蚀厚度下土地生产力的评价结果较为理想,计算的土地生产力指数随土壤侵蚀厚度的变化呈"Z型"曲线,与大豆产量的变化趋势相同,且二者呈指数函数关系,决定系数达0.996,均方根误差为0.65。研究结果可为黑土区土壤侵蚀防治提供理论依据。  相似文献   

20.
节水灌溉对盐渍土盐分调控与土壤微生物区系的影响   总被引:5,自引:0,他引:5  
河套灌区是我国大型自流灌区之一,盐渍化是该区土壤主要障碍因素之一。目前,河套灌区葵花田生育期灌溉量约为1 100~1 200 m3hm-2,灌溉用水量偏大和地下水位偏高已成为制约当地灌溉农业可持续发展的主要障碍:一方面,水资源浪费严重;另一方  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号