首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
BACKGROUND: In dogs, flow cytometry is used in the phenotyping of immunologic cells and in the diagnosis of hemic neoplasia. However, the paucity of specific antibodies for myeloid cells and B lymphocytes and of labeled antibodies for multicolor techniques limits the ability to detect all leukocyte subpopulations. This is especially true for neoplastic and precursor cells. CD18 and CD45 are expressed on all leukocytes and are involved in cell activation, and together could be useful in helping determine cell lineage. OBJECTIVES: The purpose of this study was to double label canine blood for CD18 and CD45 and to use the differential expression of antigens to identify leukocyte populations in dogs with non-neoplastic and neoplastic hematologic diseases. METHODS: A template was developed using blood samples from 10 clinically healthy dogs and a back-gating technique. Differential leukocyte counts obtained with the template were compared with those obtained by manual and automated methods on blood samples from 17 additional healthy dogs. Blood samples obtained from 9 dogs with non-neoplastic (reactive) hematologic diseases and 27 dogs with hemic neoplasia were double stained for CD18 and CD45 using mouse anticanine CD18 monoclonal antibody (mAb) plus phycoerythrin-conjugated rat anticanine CD45 mAb and fluorescein isothiocyanate-conjugated rabbit antimouse IgG. Hemic neoplasms were diagnosed by cell morphology, and immunophenotypic and cytochemical markers. RESULTS: With the double label, neutrophils, eosinophils, monocytes, and T- and B-lymphocytes were identified. In reactive disorders, a population of activated neutrophils with high CD45 and CD18 expression was detected. In hemic neoplasia, cell lineage was easily determined, even in acute leukemia. CONCLUSIONS: Double labeling for CD18/CD45 may be useful as a screening method to evaluate hematologic diseases and help determine cell lineage, and to aid in the selection of a panel of antibodies that would be useful for further analysis.  相似文献   

2.
The hematopoietic cells in blood and/or bone marrow from 20 leukemic dogs and 22 control dogs were characterized using a battery of cytochemical stains. The results of cytochemical staining led to modification of the diagnoses based on clinical, hematologic and histologic findings in seven (35%) of the leukemias. Sudan black B and chloroacetate esterase served as granulocytic markers in both the control and leukemic groups. Peroxidase activity was present in the granulocytes and monocytes of control animals but not the blasts of leukemic dogs. Alkaline phosphatase-positive staining of granulocytic precursors was a consistent finding in granulocytic and myelomonocytic leukemia, and alkaline phosphatase-positive lymphoblasts were seen in 38% of lymphocytic leukemias. Diffuse alpha naphthyl butyrate esterase-positive staining marked monocytes in both control and leukemic dogs. Cytochemical staining was found to be a valuable diagnostic aid in the classification of leukemias in the dog.  相似文献   

3.
An 8-year-old male neutered Labrador Retriever was referred to the University of Wisconsin Veterinary Medical Teaching Hospital with a presumptive diagnosis of leukemia. Hematologic abnormalities included normal neutrophil count with a left shift, monocytosis, eosinophilia, thrombocytopenia, and circulating immature mononuclear cells. Bone marrow was effaced by immature hematopoietic cells of various morphologic appearances. In addition, large multinucleated cells were observed frequently. Flow cytometric analysis of nucleated cells in blood revealed 34% CD34(+) cells, consistent with acute leukemia. By immunocytochemical analysis of cells in blood and bone marrow, some mononuclear cells expressed CD18, myeloperoxidase, and CD11b, indicating myeloid origin; some, but not all, large multinucleated cells expressed CD117 and CD42b, the latter supporting megakaryocytic lineage. The diagnosis was acute myeloblastic leukemia without maturation (AML-M1). To identify genetic aberrations associated with this malignancy, cells from formalin-fixed paraffin-embedded bone marrow were analyzed cytogenetically by multicolor fluorescence in situ hybridization (FISH). Co-localization of bacterial artificial chromosome (BAC) containing BCR and ABL was evident in 32% of cells. This confirmed the presence of the canine BCR-ABL translocation or Raleigh chromosome. In people, the analogous translocation or Philadelphia chromosome is characteristic of chronic myelogenous leukemia (CML) and is rarely reported in AML. BCR-ABL translocation also has been identified in dogs with CML; however, to our knowledge this is the first report of AML with a BCR-ABL translocation in a domestic animal.  相似文献   

4.
Abstract: Chronic myelogenous leukemia was diagnosed in a 3.5-year-old neutered male Golden Retriever. The diagnosis was based on persistent leukocytosis (>73.0×103/μL), composed of a proportionate left shift to pro-granulocytes with no evidence of underlying inflammation, infection, or neoplasia. Marked dysplasia was evident in neutrophils and platelets in peripheral blood. Bone marrow and splenic aspirates were dominated by mature and immature neutrophils with < 2% myeloblasts. Cytochemical and flow cytometric assays confirmed that cells in the peripheral blood and spleen were of committed neutrophil lineage. The dog responded initially to treatment with hydroxyurea, but developed acute undifferentiated leukemia approximately 83 days after initial presentation.  相似文献   

5.
Goats are frequently used as a suitable animal model for tissue engineering. Immunohistochemistry can be helpful in improving the understanding and evaluation of the in vivo tissue responses at a molecular level. Several commercially available antibodies (KI67, vimentin, CD31, core-binding factor alpha-1, osteocalcin, alkaline phosphatase, MAC387, CD3, CD20, CD20cy, CD79 and CD45) were evaluated on Technovit 9100 New embedded goat tissues. Only vimentin, osteocalcin, MAC387 and CD3 revealed positive staining. These antibodies can be routinely used to evaluate goat tissues at molecular level. The use and development of alternative antibodies might further supplement and complete the possibilities for immunohistochemical analysis of goat tissue samples.  相似文献   

6.
Background— Morphology and cytochemistry are the foundation for classification of leukemias in dogs and cats. Advances in automated hematology instrumentation, immunophenotyping, cytogenetics, and molecular biology are significantly improving our ability to recognize and classify spontaneous myeloproliferative and lymphoproliferative disorders. Objective— The purpose of this study was to assess the utility of flow cytometry‐based light scatter patterns provided by the Cell‐Dyn 3500 (CD3500) automated hematology analyzer to predict the lineage of leukemic cells in peripheral blood of dogs and cats. Methods— Leukemic cells from 15 dogs and 6 cats were provisionally classified using an algorithm based on the CD3500 CBC output data and were subsequently phenotyped by enzyme cytochemistry, immunocytochemistry, indirect flow cytometry, and analysis of antigen receptor gene rearrangement. Results— The algorithm led to correct predictions regarding the ontogeny of the leukemic cells (erythroid/megakaryocytic potential, myeloid leukemia, monocytic leukemia, chronic granulocytic leukemia, lymphoid leukemia) in 19/21 animals. Mismatches in the WBC impedance count and the WBC optical count in conjunction with microscopic assessment of blasts in the blood were useful for predicting myeloproliferative disorders with erythroid or megakaryocytic potential. The leukocyte light scatter patterns enabled distinction among myeloid leukemias (represented by acute myelomonocytic leukemia, acute monocytic leukemia, chronic granulocytic leukemia) and lymphocytic leukemias (including acute and chronic lymphocytic leukemias). One case of acute lymphocytic leukemia was misidentified as chronic lymphocytic leukemia. Conclusions— Algorithmic analyses can be applied to data generated by the CD3500 to predict the ontogeny of leukemic cells in the peripheral blood of dogs and cats. This rapid and quantitative technique may be used to improve diagnostic decisions, expand therapeutic choices, and increase prognostic accuracy.  相似文献   

7.
A 9-year-old female spayed mixed breed dog was evaluated at the University of Florida Small Animal Hospital for marked leukocytosis with no associated clinical signs. CBC abnormalities included marked leukocytosis (106,000/μL), marked monocytosis (78,000/μL), and the presence of 13% blast cells (13,832/μL), supporting a diagnosis of leukemia. Cytopenias and dysplastic changes in other cell lines were not present. Microscopic examination of bone marrow showed hypercellular uniparticles with a marginal increase in frequency of unclassified blast cells (2%), but was otherwise unremarkable. Flow cytometric immunophenotyping of blood cells determined that leukemic cells were CD45(+) , CD14(+) , and CD34(-) , and based on side scatter and CD45 reactivity the marrow contained 19% monoblasts. By immunocytochemical staining, the leukemic cells in the bone marrow were CD11b(+) , CD11c(+) , CD11d(+) , MHC-II(+) , MPO(+) , and CD34(-) . Fluorescence in situ hybridization (FISH) analysis of peripheral blood leukocytes documented a chromosomal translocation producing a BCR-ABL gene hybrid, similar to the "Philadelphia" chromosome abnormality recognized in human chronic myelogenous leukemia, as well as a phosphatase and tensin homolog (PTEN) gene deletion. Hydroxyurea therapy was attempted, but was ineffective; the dog died 7 months after initial presentation. Clinical and laboratory findings and the protracted course supported a diagnosis of chronic monocytic leukemia (CMoL) and, to our knowledge, this is the first case of CMoL with a BCR-ABL chromosomal abnormalitiy described in dogs. This may have clinical implications for treatment of dogs with chronic leukemias associated with particular genetic mutations. However, more case studies are needed to further characterize this disease.  相似文献   

8.
A 16-month-old female spayed Labrador Retriever was referred to the University of Edinburgh for exercise intolerance, inappetence, and severe anemia. A CBC showed severe nonregenerative anemia and moderate numbers of atypical cells with morphologic features most consistent with megakaryoblastic origin. Similar cells were identified in a bone marrow aspirate and accounted for 23% of all nucleated cells. Atypical promegakaryocytes and megakaryocytes were also noted. Myelodysplastic syndrome affecting the megakaryocytic lineage was suspected. Cytologic examination of a fine-needle aspirate of the spleen revealed rare megakaryoblasts similar to those in blood and bone marrow. At necropsy, the bone marrow consisted of atypical megakaryoblasts and megakaryocytes that were also infiltrating spleen, liver, lymph nodes, renal perihilar tissue, and visceral adipose tissue, consistent with acute megakaryoblastic leukemia. Immunohistochemical analysis of splenic sections confirmed megakaryoblastic origin (immunoreactive for CD61 and von Willebrand factor). Some leukemic cells were also immunoreactive for myeloperoxidase (MPO). This aberrant immunophenotype suggested both megakaryocytic and granulocytic/monocytic differentiation of the leukemic cells. To our knowledge, this is the first report of MPO-positive acute megakaryoblastic leukemia in a dog.  相似文献   

9.
Blood and bone marrow smears from 49 dogs and cats, believed to have myeloproliferative disorders (MPD), were examined by a panel of 10 clinical pathologists to develop proposals for classification of acute myeloid leukemia (AML) in these species. French-American-British (FAB) group and National Cancer Institute (NCI) workshop definitions and criteria developed for classification of AML in humans were adapted. Major modifications entailed revision of definitions of blast cells as applied to the dog and cat, broadening the scope of leukemia classification, and making provisions for differentiating erythremic myelosis and undifferentiated MPD. A consensus cytomorphologic diagnosis was reached in 39 (79.6%) cases comprising 26 of AML, 10 of myelodysplastic syndrome (MDS), and 3 of acute lymphoblastic leukemia (ALL). Diagnostic concordance for these diseases varied from 60 to 81% (mean 73.3 +/- 7.1%) and interobserver agreement ranged from 51.3 to 84.6% (mean 73.1 +/- 9.3%). Various subtypes of AML identified included Ml, M2, M4, M5a, M5b, and M6. Acute undifferentiated leukemia (AUL) was recognized as a specific entity. M3 was not encountered, but this subclass was retained as a diagnostic possibility. The designations M6Er and MDS-Er were introduced where the suffix "Er" indicated preponderance of erythroid component. Chief hematologic abnormalities included circulating blast cells in 98% of the cases, with 36.7% cases having >30% blast cells, and thrombocytopenia and anemia in approximately 86 to 88% of the cases. Bone marrow examination revealed panmyeloid dysplastic changes, particularly variable numbers of megaloblastoid rubriblasts and rubricytes in all AML subtypes and increased numbers of eosinophils in MDS. Cytochemical patterns of neutrophilic markers were evident in most cases of Ml and M2, while monocytic markers were primarily seen in M5a and M5b cases. It is proposed that well-prepared, Romanowsky-stained blood and bone marrow smears should be examined to determine blast cell types and percentages for cytomorphologic diagnosis of AML. Carefully selected areas of stained films presenting adequate cellular details should be used to count a minimum of 200 cells. In cases with borderline diagnosis, at least 500 cells should be counted. The identity of blast cells should be ascertained using appropriate cytochemical markers of neutrophilic, monocytic, and megakaryocytic differentiation. A blast cell count of > 30% in blood and/or bone marrow indicates AML or AUL, while a count of < 30% blasts in bone marrow suggests MDS, chronic myeloid leukemias, or even a leukemoid reaction. Myeloblasts, monoblasts, and megakaryoblasts comprise the blast cell count. The FAB approach with additional criteria should be used to distinguish AUL and various subtypes of AML (Ml to M7 and M6Er) and to differentiate MDS, MDS-ER, chronic myeloid leukemias, and leukemoid reaction. Bone marrow core biopsy and electron microscopy may be required to confirm the specific diagnosis. Immunophenotyping with lineage specific antibodies is in its infancy in veterinary medicine. Development of this technique is encouraged to establish an undisputed identity of blast cells. Validity of the proposed criteria needs to be substantiated in large prospective and retrospective studies. Similarly, clinical relevance of cytomorphologic, cytochemical, and immunophenotypic characterizations of AML in dogs and cats remains to be determined.  相似文献   

10.
The combination of flow cytometric scatterplot analysis and specific monoclonal antibodies was used to evaluate the lineage of cells from six dogs with proliferative disorders of bone marrow. Scatterplot analysis was used to identify mature and immature myeloid and erythroid cells. The immunophenotype of cells in the immature myeloid gate was determined by labeling cells with four monoclonal antibodies. These results were compared to results of cytologic and cytochemical evaluation. The immunophenotype of a dog with a diagnosis of myelogenous leukemia was a cluster of differentiation-18 (CD-18) positive, CD-14 negative, Thy-1 negative, and a major histocompatibility complex (MHC) class II negative. The immunophenotype of a dog with a diagnosis of myelomonocytic leukemia was CD-18 positive, CD-14 positive, Thy-1 positive, and MHC class II positive. Although this phenotype clearly differentiated myelomonocytic leukemia from myelogenous leukemia, it was similar to the immunophenotype of dogs with a diagnosis of malignant histiocytosis or hemophagocytic syndrome. The immunophenotype of two dogs with myelodysplastic syndrome was CD-18 positive and CD-14 negative. Results for Thy-1 and MHC class II were variable. As additional lineage-specific monoclonal antibodies become available, immunophenotyping should become a valuable tool for determination of the lineage of cells in canine myeloproliferative disorders.  相似文献   

11.
Background: Growing interest in veterinary oncohematology has facilitated the recent development and advancement of new techniques, such as flow cytometry, for immunophenotyping hematopoietic neoplasia in animals. Objective: The aim of this retrospective study was to characterize hematologic abnormalities and flow cytometric immunophenotyping (FCI) results in cases of hematopoietic neoplasia in dogs. Methods: Signalment, CBC data, and FCI results were obtained for 210 dogs with blood samples submitted to our laboratory. Immunophenotyping was carried out using an Epics XL‐MCL flow cytometer and a panel of 10 antibodies (CD45, CD3, CD4, CD8, CD79, CD21, CD14, CD34, CD41/61, CD61). The prevalence and severity of hematologic abnormalities was determined for the different types of hematopoietic neoplasms. Results: Based on cell morphology and phenotype, cases were classified as: acute lymphoblastic leukemia (ALL, n=51), acute myeloid leukemia (AML, n=33), chronic lymphocytic leukemia (CLL, n=61), and leukemic high‐grade lymphoma (L‐HGL, n=65). Most cases of ALL (47/51) and L‐HGL (41/65) had a B‐cell phenotype, while most cases of CLL (54/61) had a T‐cell phenotype, with a high prevalence of the large granular lymphocyte subtype (49/61). Anemia was found in 85% of all cases and was significantly more severe in ALL and AML compared with CLL and L‐HGL. Neutropenia was seen in 64–78% of acute leukemias (AML and ALL) in contrast to no cases of CLL and 11% of L‐HGL. Thrombocytopenia was seen in 88–90% of acute leukemias in contrast to 15% of CLL and 40% of L‐HGL. Thrombocytopenia was more prevalent (71% vs 22%) and significantly more severe in T‐cell vs B‐cell L‐HGL. Conclusion: A standard CBC is useful in suggesting the type of hemoproliferative disorder and may also help to predict the phenotype, especially in cases of L‐HGL.  相似文献   

12.
Eight colostrum-deprived calves aged 8-12 weeks were inoculated intranasally with a non-cytopathic strain of bovine viral diarrhoea virus (BVDV) genotype-1 and the effects on the hepatic immune response were studied. Two calves were sacrificed at each of 3, 6, 9 and 14 days post-inoculation (dpi) and two uninoculated animals were used as negative controls. BVDV was detected in hepatic macrophages and monocytes from 3 to 14dpi and in Küpffer cells (KCs) from 6 to 14dpi. Increases in the numbers of MAC387(+) KCs and monocytes, but not interstitial macrophages, differentiated by morphological features, were evident in the liver following inoculation with BVDV. There was a substantial increase in the number of monocytes positive for tumour necrosis factor (TNF)-α, but only small increases in the numbers of TNF-α(+) KCs and interstitial macrophages and interleukin (IL)-6(+) monocytes, KCs and interstitial macrophages. There was an increase in the number of interstitial CD3(+) T lymphocytes in the liver, but no substantial changes in the numbers of circulating CD3(+) T lymphocytes, interstitial or circulating CD4(+) or CD8(+) T lymphocytes, or CD79αcy(+) B lymphocytes. Serum haptoglobin and serum amyloid A increased transiently at 12dpi. Upregulation of some pro-inflammatory cytokines by hepatic macrophages is evident in subclinical acute BVDV type 1 infection in calves.  相似文献   

13.
Three dogs from Saskatoon, Saskatchewan were diagnosed with acute granulocytic anaplasmosis. Fever, lethargy, inappetence, vomiting, diarrhea, and lameness were reported. Lymphopenia, thrombocytopenia, and splenomegaly were identified in all dogs. Inclusions were identified within the cytoplasm of blood neutrophils, and infection with Anaplasma phagocytophilum was confirmed by polymerase chain reaction.  相似文献   

14.
OBJECTIVE: To test serum samples of dogs and horses by use of class-specific recombinant-based ELISA for establishing a diagnosis of granulocytic ehrlichiosis attributable to infection with organisms from the Ehrlichia phagocytophila genogroup. SAMPLE POPULATION: Serum samples from 43 client-owned dogs and 131 horses (81 with signs of acute illness and 50 without signs of disease). PROCEDURE: Serum samples were analyzed, using ELISA with a recombinant 44-kd protein antigen for IgM and IgG antibodies to the human granulocytic ehrlichiosis (HGE) agent (NCH-1 strain). Western blot analyses, using infected human promyelocytic leukemia cells, were conducted on 38 serum samples of horses and 11 serum samples of dogs to verify reactivity to the 44-kd peptide. RESULTS: IgM or IgG antibodies to the HGE agent were detected in 5 to 28% of dog serum samples and 5 to 37% of horse serum samples. Thirty-five of 38 (92%) horse serum samples had corresponding results on both tests (2 positive results for 26 samples and 2 negative results for 9 samples), using an ELISA for IgG antibodies or immunoblotting for total immunoglobulins. All 11 serum samples of dogs had positive results for both methods. CONCLUSION AND CLINICAL RELEVANCE: These ELISA with recombinant 44-kd antigen are suitable for detecting IgM or IgG antibodies to the HGE agent in serum samples of dogs and horses. Positive results for serum samples of horses from Connecticut, New York, Virginia, and Georgia indicate that the HGE agent is widely distributed in tick-infested areas of the eastern United States.  相似文献   

15.
The lymphoid, renal, pulmonary, and hepatic lesions of naturally occurring postweaning multisystemic wasting syndrome (PMWS) affected pigs have been studied by means of immunohistology. Ten conventionally reared pigs showing acute clinical signs of PMWS were selected from a farm on which animal were seronegative to porcine reproductive and respiratory virus and to Aujeszky's disease virus. All pigs were positive in tests for porcine circovirus type 2 by ISH and IHC. Monoclonal and polyclonal antibodies to CD3, CD79alpha, CD45RA (3C3/9), lysozyme, SLA-II-DQ (BL2H5), and MAC387 were used to characterise cells in PMWS lesions. The most relevant changes were reduction or loss of B and T lymphocytes, increased numbers of macrophages, and partial loss and redistribution of antigen presenting cells throughout lymphoid tissues compared to uninfected controls. The characteristics of lymphoid lesions in the present study strongly suggest an immunosuppressive effect of PMWS in affected pigs.  相似文献   

16.
OBJECTIVE: To develop and evaluate a polyvalent ELISA incorporating a highly specific recombinant antigen (p44) for diagnosis of granulocytic ehrlichiosis in dogs and horses. ANIMALS: 32 dogs and 43 horses. PROCEDURE: Results of the ELISA were compared with results of indirect fluorescent antibody (IFA) staining and western immunoblotting incorporating whole-cell antigen. RESULTS: For the canine and equine samples, percentages of samples with positive IFA staining, western immunoblotting, and ELISA results were similar. For 29 (91 %) canine samples and 30 (70%) equine samples, results of IFA staining, western immunoblotting, and the ELISA were in complete agreement. Results of the ELISA for 3 canine serum samples known to contain antibodies to Ehrlichia canis and 12 equine serum samples known to contain antibodies to E risticii were negative. CONCLUSIONS AND CLINICAL RELEVANCE: Results of the present study suggest that a polyvalent ELISA incorporating a recombinant p44 antigen is suitable for detecting antibodies to E equi in dogs and horses.  相似文献   

17.
CD71 is an immunohistochemical marker used in diagnosing acute myeloid leukemia (AML) M6-Er in humans; however, to our knowledge, it has not been reportedly used for immunohistochemistry in veterinary medicine. We evaluated the pathologic features of AML M6-Er in a retrovirus-negative cat and used CD71 to support the diagnosis. A 4-y-old spayed female Scottish Fold cat was presented with lethargy, anorexia, and fever. Whole-blood PCR assay results for pro feline leukemia virus/pro feline immunodeficiency virus and feline vector-borne diseases were negative. Early erythroid precursors were observed in the peripheral blood smear. Fine-needle aspiration of the enlarged spleen and splenic lymph node showed many early erythroid precursors. Bone marrow aspirate smears revealed erythroid hyperplasia with 68.4% erythroid lineage and 3.6% rubriblasts. Dysplastic cells infiltrated other organs. The patient was diagnosed with myelodysplastic syndrome, progressing to the early phase of AML M6-Er. The patient died on day 121 despite multidrug treatments. Postmortem examination revealed neoplastic erythroblasts infiltrating the bone marrow and other organs. Neoplastic cells were immunopositive for CD71 but immunonegative for CD3, CD20, granzyme B, von Willebrand factor, CD61, myeloperoxidase, and Iba-1. Although further studies are necessary for the application of CD71, our results supported the morphologic diagnosis of AML M6-Er.  相似文献   

18.
Although synovial cell sarcoma is reported to be the most common neoplasm of the canine synovium, this retrospective study of 35 canine synovial tumors found that the majority were of histiocytic origin. Five (14.3%) synovial cell sarcomas were identified by positive immunohistochemical staining with antibodies to cytokeratin. Eighteen (51.4%) histiocytic sarcomas were identified by cell morphology and immunohistochemical staining with antibodies to CD18. Six (17.1%) synovial myxomas were identified by histologic pattern. The remaining six (17.1%) synovial tumors represented a variety of sarcomas, including two malignant fibrous histiocytomas (actin positive), one fibrosarcoma, one chondrosarcoma, and two undifferentiated sarcomas. Rottweilers were overrepresented in the histiocytic sarcoma category and Doberman Pinschers were overrepresented in the synovial myxoma category. The average survival time was 31.8 months for dogs with synovial cell sarcoma, 5.3 months for dogs with histiocytic sarcoma, 30.7 months for dogs with synovial myxoma, and 3.5 months for dogs with other sarcomas. Among the dogs with follow-up information available, metastatic disease was detected in 25% of dogs with synovial cell sarcoma, in 91% of dogs with histiocytic sarcoma, in none of the dogs with synovial myxoma, and in 100% of dogs with other sarcomas. Immunohistochemical staining for cytokeratin, CD18, and smooth muscle actin is recommended to make the diagnosis and thereby predict the behavior of synovial tumors in dogs.  相似文献   

19.
20.
Peripheral blood smears from four adult reindeer (Rangifer tarandus) were examined after staining with Romanowsky's stain and cytochemical stains, including alpha-napthyl butyrate esterase (alpha-NBE), Sudan black B (SBB), chloroacetate esterase (CAE) and alkaline phosphatase (ALP). Romanowsky-stained eosinophils, neutrophils, lymphocytes and monocytes resembled those of cattle, sheep and goats. Basophils had two different staining patterns with Romanowsky's stain. Basophils that we termed "grey basophils" were similar in appearance to grey eosinophils in Greyhound dogs, with medium blue-grey to lavender-grey cytoplasm containing varying numbers of clear vacuoles or granules and variable numbers of small, intensely basophilic, perinuclear granules. The second basophil staining pattern was more typical of ruminant basophils, with uniform, pale to dark basophilic cytoplasmic granules. Basophils stained positive for alpha-NBE, SBB, CAE, and ALP. Eosinophils stained positive for SBB, and were negative for alpha-NBE, CAE, and ALP. Neutrophils were negative for SBB, CAE, and ALP. Monocytes stained positive for alpha-NBE, were rarely positive for CAE and SBB, and were negative for ALP. Transmission electron microscopy revealed matrix within all granulocytes granules, including those of basophils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号