首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Subtropical evergreen broad-leaved forest is the most widely distributed land-cover type in eastern China. As the rate of land-use change accelerates worldwide, it is becoming increasingly important to quantify ecosystem biomass and carbon (C) and nitrogen (N) pools. Above and below-ground biomass and ecosystem pools of N and C in a subtropical secondary forest were investigated at Laoshan Mountain Natural Reserve, eastern China. Total biomass was 142.9 Mg ha−1 for a young stand (18 years) and 421.9 Mg ha−1 for a premature stand (ca. 60 years); of this, root biomass was from 26.9 (18.8% of the total) to 100.3 Mg ha−1 (23.8%). Total biomass C and N pools were, respectively, 71.4 Mg ha−1 and 641.6 kg ha−1 in the young stand, and 217.0 Mg ha−1 and 1387.4 kg ha−1 in the premature stand. The tree layer comprised 91.8 and 89.4% of the total biomass C and N pools in the young stand, and 98.0 and 95.6% in the premature stand. Total ecosystem C and N pools were, respectively, 101.4 and 4.6 Mg ha−1 for the young stand, and 260.2 and 6.6 Mg ha−1 for the premature stand. Soil C comprised 23.8–29.6% of total ecosystem C whereas soil N comprised 76.9–84.4% of the total. Our results suggest that a very high percentage of N in this subtropical forest ecosystem is stored in the mineral soil, whereas the proportion of organic C in the soil pool is more variable. The subtropical forest in eastern China seems to rapidly accumulate biomass during secondary succession, which makes it a potentially rapid accumulator of, and large sink for, atmospheric C.  相似文献   

2.
The poplar based agroforestry system improves aggregation of soil through huge amounts of organic matter in the form of leaf biomass. The extent of improvement may be affected by the age of the poplar trees and the soil type. The surface and subsurface soil samples from agroforestry and adjoining non-agroforestry sites with different years of poplar plantation (1, 3 and 6 years) and varying soil textures (loamy sand and sandy clay) were analyzed for soil organic carbon, its sequestration and aggregate size distribution. The average soil organic carbon increased from 0.36 in sole crop to 0.66% in agroforestry soils. The increase was higher in loamy sand than sandy clay. The soil organic carbon increased with increase in tree age. The soils under agroforestry had 2.9–4.8 Mg ha−1 higher soil organic carbon than in sole crop. The poplar trees could sequester higher soil organic carbon in 0–30 cm profile during the first year of their plantation (6.07 Mg ha−1 year−1) than the subsequent years (1.95–2.63 Mg ha−1 year−1). The sandy clay could sequester higher carbon (2.85 Mg ha−1 year−1) than in loamy sand (2.32 Mg ha−1 year−1). The mean weight diameter (MWD) of soil aggregates increased by 3.2, 7.3 and 13.3 times in soils with 1, 3 and 6 years plantation, respectively from that in sole crop. The increase in MWD with agroforestry was higher in loamy sand than sandy clay soil. The water stable aggregates (WSA >0.25 mm) increased by 14.4, 32.6 and 56.9 times in soils with 1, 3 and 6 years plantation, respectively, from that in sole crop. The WSA >0.25 mm were 6.02 times higher in loamy sand and 2.2 times in sandy clay than in sole crop soils.  相似文献   

3.
A study was conducted in an agricultural field to examine the biomass production of three fast-growing short rotation woody crop (SRWC) species, Populus deltoides, Quercus pagoda, and Platanus occidentalis using fertilization and irrigation (fertigation). The study included a randomized complete block (RCB) with five treatments; control, irrigated, and irrigated with 56, 112, and 224 kg nitrogen (N) ha−1 year−1. We quantified survival, basal area, standing biomass, aboveground net primary productivity (ANPP), leaf area index (LAI), and growth efficiency (GE) for each species along the soil nitrogen and water gradient. P. deltoides had low rates of survival (83, 82, and 77% years six, seven, and eight, respectively), but had production values greater than Q. pagoda and P. occidentalis. Standing biomass reached its peak for P. deltoides and P. occidentalis (17.56 and 10.36 Mg ha1, respectively) in the irrigation treatment, and in the 112 kg N treatment for Q. pagoda (5.42 Mg ha−1). P. deltoides and P. occidentalis ANPP peaked in the irrigation treatment (6.66 and 6.31 Mg ha−1 year−1, respectively) and in the 112 kg N (4.43 Mg ha−1 year−1) for Q. pagoda. ANPP was correlated with LAI; however, the relationship was species specific. Maximum ANPP was reached below the maximum LAI for Q. pagoda and P. occidentalis. P. deltoides ANPP was highest at the maximum LAI, which was achieved with IRR. These results suggest that species-specific cultural practices producing optimum LAI and maximum ANPP should be identified before fertigation techniques are adopted widely for SRWC production on agricultural fields.  相似文献   

4.
Fine roots play a key role in carbon and nutrient dynamics in forested ecosystems. Fine-root dynamics can be significantly affected by forest management practices such as thinning, but research on this topic is limited. This study examined dynamics of fine roots <1 mm in diameter in a 10-year-old stand of hinoki cypress (Chamaecyparis obtusa) for 3 years following thinning (65% in basal area). Fine-root production and mortality rates were estimated using a minirhizotron technique in combination with soil coring. In both thinned and un-thinned control plots, fine-root elongation occurred from early spring to winter (March to December) and fluctuated seasonally. In the thinned and the control plots, the annual fine-root production rates were estimated to be 101 and 120 g m−2 year−1, respectively, whereas the estimated annual fine-root mortality rates were 77 and 69 g m−2 year−1, respectively. At 3 years after thinning, live fine-root biomass was significantly smaller in the thinned plot (143 g m−2) than in the control plot (218 g m−2), whereas dead fine-root biomass was not (147 and 103 g m−2, respectively). Morphological and physiological indices of fine roots such as diameter, specific root length, and root tissue density of the live fine roots was similar in both plots. These results suggested that thinning tended to decrease biomass and production of fine roots, but the effects on characteristics of fine roots would be less evident.  相似文献   

5.
Tropical forests are large reservoirs of biomass and there is a need for information on existing carbon stocks in these ecosystems and especially the effects of logging on these stocks. Reliable estimates of aboveground biomass stocks within the Atlantic Forest are rarely available. Past human disturbance is an important factor affecting forest structure variation and biomass accumulation among tropical forest ecosystems. To support the efforts of improving the quality of estimations of the current and future biomass carbon storage capacity of this disturbed forest region we tested a non-experimental small scale approach to compare the aboveground tree biomass (AGB) of forest sites. Three sites with known disturbance histories have been investigated: complete cut down, selective logging and conservation since 70 years. The woody plant community (dbh ≥ 10 cm) was censused and canopy openness in conjunction with leaf area index has been obtained by hemispherical photographs at each site. Estimates of aboveground tree biomass have been carried out using an allometric equation for moist tropical forests already applied for the study area. Additionally, a FAO standard equation has been employed for crosschecking our results. We identified significant differences in recent AGB of the three compared forest sites. With 313 (±48 Mg ha−1) the highest AGB-values have been found in the preserved forest area within a National Park, followed by 297 (±83) Mg ha−1 at the former clear cut site. Lowest AGB has been calculated for the area with past selective logging: 204 (±38) Mg ha−1. Values calculated with the FAO standard equation showed the same trend but at a lower AGB level. Our results based an a small scale approach suggest that biomass productivity can recover in a forest which was completely cleared 60 years ago to reach AGB values up to a level that almost represents the situation in a preserved forest. Selective logging may slow down AGB accumulation and the effect is measurable after several decades.  相似文献   

6.
Generic or default values to account for biomass and carbon accumulation in tropical forest ecosystems are generally recognized as a major source of errors, making site and species specific data the best way to achieve precise and reliable estimates. The objective of our study was to determine carbon in various components (leaves, branches, stems, structural roots and soil) of single-species plantations of Vochysia guatemalensis and Hieronyma alchorneoides from 0 to 16 years of age. Carbon fraction in the biomass, mean (±standard deviation), for the different pools varied between 38.5 and 49.7% (±3 and 3.8). Accumulated carbon in the biomass increased with the plantation age, with mean annual increments of 7.1 and 5.3 Mg ha−1 year−1 for forest plantations of V. guatemalensis and H. alchorneoides, respectively. At all ages, 66.3% (±10.6) of total biomass was found within the aboveground tree components, while 18.6% (±20.9) was found in structural roots. The soil (0–30 cm) contained 62.2 (±13) and 71.5% (±17.1) of the total carbon (biomass plus soil) under V. guatemalensis and H. alchorneoides, respectively. Mean annual increment for carbon in the soil was 1.7 and 1.3 Mg ha−1 year−1 in V. guatemalensis and H. alchorneoides. Allometric equations were constructed to estimate total biomass and carbon in the biomass which had an R 2aj (adjusted R square) greater than 94.5%. Finally, we compare our results to those that could have resulted from the use of default values, showing how site and species specific data contribute to the overall goal of improving carbon estimates and providing a more reliable account of the mitigation potential of forestry activities on climate change.  相似文献   

7.
A study was conducted to assess carbon stocks in various forms and land-use types and reliably estimate the impact of land use on C stocks in the Nam Yao sub-watershed (19°05'10"N, 100°37'02"E), Thailand. The carbon stocks of aboveground, soil organic and fine root within primary forest, reforestation and agricultural land were estimated through field data collection. Results revealed that the amount of total carbon stock of forests (357.62 ± 28.51 Mg·ha-1, simplified expression of Mg (carbon)·ha-1) was significantly greater (P< 0.05) than the reforestation (195.25 ±14.38 Mg·ha-1) and the agricultural land (103.10±18.24 Mg·ha-1). Soil organic carbon in the forests (196.24 ±22.81 Mg·ha-1) was also significantly greater (P< 0.05) than the reforestation (146.83± 7.22 Mg·ha-1) and the agricultural land (95.09 ± 14.18 Mg·ha-1). The differences in carbon stocks across land-use types are the primary consequence of variations in the vegetation biomass and the soil organic matter. Fine root carbon was a small fraction of carbon stocks in all land-use types. Most of the soil organic carbon and fine root carbon content was found in the upper 40-cm layer and decreased with soil depth. The aboveground carbon(soil organic carbon: fine root carbon ratios (ABGC: SOC: FRC), was 5:8:1, 2:8:1, and 3:50:1 for the forest, reforestation and agricultural land, respectively. These results indicate that a relatively large proportion of the C loss is due to forest conversion to agricultural land. However, the C can be effectively recaptured through reforestation where high levels of C are stored in biomass as carbon sinks, facilitating carbon dioxide mitigation.  相似文献   

8.
This study examined the hypothesis that incorporation of Gliricidia sepium (Jacq.) Walp.) (gliricidia), a fast-growing, nitrogen-fixing tree, into agroforestry systems in southern Malawi may be used to increase the input of organic fertilizer and reduce the need for expensive inorganic fertilizers. The productivity of maize (Zea mays L.), pigeonpea (Cajanus cajan L.) and gliricidia grown as sole stands or in mixed cropping systems was examined at Makoka Research Station (latitude 15° 30′ S, longitude 35° 15′ E) and a nearby farm site at Nazombe between 1996 and 2000. Treatments included gliricidia intercropped with maize, with or without pigeonpea, and sole stands of gliricidia, maize and pigeonpea. Trees in the agroforestry systems were pruned before and during the cropping season to provide green leaf manure. Maize yields and biomass production by each component were determined and fractional light interception was measured during the reproductive stage of maize. Substantial quantities of green leaf manure (2.4 to 9.0 Mg ha−1 year−1) were produced from the second or third year after tree establishment. Green leaf manure and fuelwood production were greatest when gliricidia was grown as unpruned sole woodlots (c. 8.0 and 22 Mg ha−1 year−1 respectively). Improvements in maize yield in the tree-based systems also became significant in the third year, when c. 3.0 Mg ha−1 of grain was obtained. Tree-based cropping systems were most productive and exhibited greater fractional light interception (c. 0.6 to 0.7) than cropping systems without trees (0.1 to 0.4). No beneficial influence of pigeonpea on maize performance was apparent either in the presence or absence of gliricidia at either site in most seasons. However, as unpruned gliricidia provided the greatest interception of incident solar radiation (>0.9), coppicing may be required to reduce shading when gliricidia is grown together with maize. As pigeonpea production was unaffected by the presence of gliricidia, agroforestry systems containing gliricidia might be used to replace traditional maize + pigeonpea systems in southern Malawi. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
The study was carried out in a 9-year-old hinoki cypress (Chamaecyparis obtusa (Sieb. et Zucc.) Endl.), stand over a span of three years from July 1992 to June 1995, primarily to predict litter production from exteral tree dimensions by combining open-top clothtrap and clipping methods. Litter production was virtually concentrated in October and November. Stem cross-sectional area at the crown base was proved to be the reliable predictor of litter production, and that single regression model was evolved irrespective of year. The regression model had proportional constants of 2.696 × 10−2 and 3.540 × 10−2 kg cm−2 year−1 for leaf litter and total litter production, respectively. Utilizing the model, leaf litter production of the stand was assessed to be 5.04, 5.12, and 4.99, and total litter production to be 6.48, 6.58, and 6.40 Mg ha−1 year−1 for the first, second and third year, respectively. Biomass increment was 6.67, 7.80, and 7.70, tree mortality was 0.15, 0.13, and 0.41, and insect grazing was 0.09, 0.05, and 0.002 Mg ha−1 year−1 for the first, second and third year, respectively. Above-groud net production was therefore 13.39, 14.55, and 14.51, Mg ha−1 year−1, and biomass accumulation ratio (biomass/net production) was 1.86, 2.21, and 2.76 year for the first, second and third year, respectively. Considering data from earlier studies and the results of this study, biomass accumulation ratio,BAR (year), of hinoki stands was best related to above-ground biomass,y (Mg ha−1), using the power function:BAR=0.112y 0.936. Excluding seedling stands, leaf efficiency (above-ground net production per unit leaf mass) of hinoki stands was 0.91±0.02 (SE) Mg Mg−1 year−1, irrespective of stand biomass or age.  相似文献   

10.
Data on the biomass and productivity of southeast Asian tropical forests are rare, making it difficult to evaluate the role of these forest ecosystems in the global carbon cycle and the effects of increasing deforestation rates in this region. In particular, more precise information on size and dynamics of the root system is needed. In six natural forest stands at pre-montane elevation (c. 1000 m a.s.l.) on Sulawesi (Indonesia), we determined above-ground biomass and the distribution of fine (d < 2 mm) and coarse roots (d > 2 mm), estimated above- and below-ground net production, and compared the results to literature data from other pre-montane paleo- and neotropical forests. The mean total biomass of the stands was 303 Mg ha−1 (or 128 Mg C ha−1), with the largest biomass fraction being recorded for the above-ground components (286 Mg ha−1) and 11.2 and 5.6 Mg ha−1 of coarse and fine root biomass (down to 300 cm in the soil profile), resulting in a remarkably high shoot:root ratio of c. 17. Fine root density in the soil profile showed an exponential decrease with soil depth that was closely related to the concentrations of base cations, soil pH and in particular of total P and N. The above-ground biomass of these stands was found to be much higher than that of pre-montane forests in the Neotropics, on average, but lower compared to other pre-montane forests in the Paleotropics, in particular when compared with dipterocarp forests in Malesia. The total above- and below-ground net primary production was estimated at 15.2 Mg ha−1 yr−1 (or 6.7 Mg C ha−1 yr−1) with 14% of this stand total being invested below-ground and 86% representing above-ground net primary production. Leaf production was found to exceed net primary production of stem wood. The estimated above-ground production was high in relation to the mean calculated for pre-montane forests on a global scale, but it was markedly lower compared to data on dipterocarp forests in South-east Asia. We conclude that the studied forest plots on Sulawesi follow the general trend of higher biomasses and productivity found for paleotropical pre-montane forest compared to neotropical ones. However, biomass stocks and productivity appear to be lower in these Fagaceae-rich forests on Sulawesi than in dipterocarp forests of Malesia.  相似文献   

11.
Acacia pennatula trees are the most conspicuous woody species in the pasturelands of the Nature Reserve Mesas de Moropotente, Estelí, Nicaragua. Cattle ranchers keep A. pennatula because it produces fence posts, forage (pods) and firewood. A population projection matrix model was developed to: (1) estimate the sustainable harvest (H) of fence posts at different tree population densities, (2) explore the range of recruitment (R), and survival and growth of both saplings and small poles compatible with current population density, and (3) determine how much carbon is stored in the soil-pasture-tree system. Acacia pennatula trees take 40 years to reach H size (D30 ≥ 30 cm). Estimated sustainable H from current tree population density is 1.8l7 trees ha−1 year−1, yielding 2.8 large and 11.2 regular size fence posts ha−1 year−1. This annual output easily satisfies the needs of a typical 100 ha cattle ranch in the study area. Current population density is congruent with very low R (<100 saplings ha−1 year−1), very low survival rates (<0.30%) and/or retarded D30 growth of saplings and small poles. Total carbon in tree biomass was only 37 Mg ha−1. Cattle ranchers have learned to harness the invasive nature of the species to obtain valuable tree products for farm use or sale.  相似文献   

12.
The above-ground biomass and production, below-ground biomass, nutrient (NPK) accumulation, fine roots and foliar characteristics of a 8-year-old silver birch (Betula pendula) natural stand, growing on abandoned agricultural land in Estonia, were investigated. Total above-ground biomass and current annual production after eight growing seasons was 31.2 and 11.9 t DM ha−1, respectively. The production of stems accounted for 62.4% and below-ground biomass accounted for 19.2% of the total biomass of the stand. Carbon sequestration in tree biomass reaches roughly 17.5 t C ha−1 during the first 8 years. The biomass of the fine roots (d < 2 mm) was 1.7 ± 0.2 t DM ha−1 and 76.2% of it was located in the 20 cm topsoil layer. The leaf area index (LAI) of the birch stand was estimated as 3.7 m2 m−2 and specific leaf area (SLA) 15.0 ± 0.1 m2 kg−1. The impact of the crown layer on SLA was significant as the leaves are markedly thicker in the upper part of the crown compared with the lower part. The short-root specific area (SRA) in the 30 cm topsoil was 182.9 ± 9.5 m2 kg−1, specific root length (SRL), root tissue density (RTD) and the number of short-root tips (>95% ectomycorrhizal) per dry mass unit of short roots were 145.3 ± 8.6 m g−1, 58.6 ± 3.0 kg m−3 and 103.7 ± 5.5 tips mg−1, respectively. In August the amount of nitrogen, phosphorus and potassium, accumulated in above ground biomass, was 192.6, 25.0 and 56.6 kg ha−1, respectively. The annual flux of N and P retranslocation from the leaves to the other tree parts was 57.2 and 3.7 kg ha−1 yr−1 (55 and 27%), respectively, of which 29.1 kg ha−1 N and 2.8 kg ha−1 P were accumulated in the above-ground part of the stand.  相似文献   

13.
Nitrogen fertilization increased largely over the last decade in tropical eucalypt plantations but the behaviour of belowground tree components has received little attention. Sequential soil coring and ingrowth core methods were used in a randomized block experiment, from 18 to 32 months after planting Eucalyptus grandis, in Brazil, in order to estimate annual fine root production and turnover under contrasting N fertilization regimes (120 kg N ha−1 vs. 0 kg N ha−1). The response of growth in tree height and basal area to N fertilizer application decreased with stand age and was no longer significant at 36 months of age. The ingrowth core method provided only qualitative information about the seasonal course of fine root production and turnover. Mean fine root biomasses (diameter <2 mm) in the 0–30 cm layer measured by monthly coring amounted to 0.91 and 0.84 t ha−1 in the 0 N and the 120 N treatments, respectively. Fine root production was significantly higher in the 0 N treatment (1.66 t ha−1 year−1) than in the 120 N treatment (1.12 t ha−1 year−1), probably as a result of the greater tree growth in the control treatment throughout the sampling period. Fine root turnover was 1.8 and 1.3 year−1 in the 0 N and the 120 N treatments, respectively. However, large fine root biomass (diameter <1 mm) was found down to a depth of 3 m one year after planting: 1.67 and 1.61 t ha−1 in the 0 N and the 120 N treatments, respectively. Fine root turnover might not be insubstantial in deep soil layers where large changes in soil water content were observed.  相似文献   

14.
This study quantified the mass and inputs of coarse woody debris (CWD) in two old-growth lucidophyllous forests in southwestern Japan: in a steep slope area at Aya and in a flattish bottomland at Okuchi. CWD mass averaged 36.85 Mg ha−1 with eightfold variations at Aya, and 20.77 Mg ha−1 with more than 40-fold variations at Okuchi. CWD inputs estimated from long-term data on tree mortality averaged 36.76 Mg ha−1 over 16 years at Aya and 44.11 Mg ha−1 over 11 years at Okuchi. In both plots, fallen logs were the major form of CWD mass: 74.4% at Aya and 60.2% at Okuchi. About 19% of CWD was snapped and 7% was uprooted at Aya, and about 34% was snapped and 5.4% was uprooted at Okuchi. The CWD mass differed markedly with topographic conditions in both plots, increasing from valleys up to ridges at Aya and from forest down to a stream at Okuchi. Canopy gaps enhanced CWD mass and inputs in both plots: CWD input under gaps was two to three times that beneath closed canopy. These results imply that typhoons would increase CWD mass and inputs on upper slopes on account of the high aboveground biomass stocks and existence of large-diameter trees.  相似文献   

15.
The responses of fine root mass, length, production and turnover to the increase in soil N availability are not well understood in forest ecosystems. In this study, sequential soil core and ingrowth core methods were employed to examine the responses of fine root (≤1 mm) standing biomass, root length density (RLD), specific root length (SRL), biomass production and turnover rate to soil N fertilization (10 g N m−2 year−1) in Larix gmelinii (larch) and Fraxinus mandshurica (ash) plantations. N fertilization significantly reduced fine root standing biomass from 130.7 to 103.4 g m−2 in ash, but had no significant influence in larch (81.5 g m−2 in the control and 81.9 g m−2 in the fertilized plots). Similarly, N fertilization reduced mean RLD from 6,857 to 5,822 m m−2 in ash, but did not influence RLD in larch (1,875 m m−2 in the control and 1,858 m m−2 in the fertilized plots). In both species, N fertilization did not alter SRL. Additionally, N fertilization did not significantly alter root production and turnover rate estimated from sequential soil cores, but did reduce root production and turnover rate estimated from the ingrowth core method. These results suggested that N fertilization had a substantial influence on fine root standing biomass, RLD, biomass production and turnover rate, but the direction and magnitude of the influence depended on species and methods.  相似文献   

16.
Biomass of a mature man-made forest in West Java, Indonesia, was estimated to evaluate the carbon sequestration potential of plantation forest in the humid tropics. Twenty plots, each 0.25 ha in area and containing one to six planted species over 40 years of age and with closed canopies, were selected. Trunk dry mass was estimated from trunk diameter, tree height, and bulk density. Maximum trunk diameter (122 cm) was observed in a 46-year-old Khaya grandifoliola C. DC. tree, and the tallest tree (51 m) was a 46-year-old Shorea selanica (DC.) Blume. The largest trunk biomass (911 Mg ha−1) was achieved in the plot composed of two Khaya spp. Among the plots composed of indigeneous Dipterocarpaceae species, the largest trunk biomass was 635 Mg ha−1. These trunk biomasses were larger than those reported from primary rainforests in Southeast Asia (e.g., 403 Mg ha−1 in East Kalimantan, 522 and 368 Mg ha−1 in Peninsular Malaysia). The large biomass in this forest suggests that, given favorable conditions, man-made forests can accumulate the quantities of atmospheric carbon that were lost by the logging of primary forests in the humid tropics.  相似文献   

17.
With increasing CO2 in the atmosphere, there is an urgent need of reliable estimates of biomass and carbon pools in tropical forests, most especially in Africa where there is a serious lack of data. Information on current annual increment (CAI) of carbon biomass resulting from direct field measurements is crucial in this context, to know how forest ecosystems will affect the carbon cycle and also to validate eddy covariance flux measurements. Biomass data were collected from 25 plots of 13 ha spread over the different vegetation types and land uses of a moist evergreen forest of 772,066 ha in Cameroon. With site-specific allometric equations, we estimated biomass and aboveground and belowground carbon pools. We used GIS technology to develop a carbon biomass map of our study area. The CAI was estimated using the growth rates obtained from tree rings analysis. The carbon biomass was on average 264 ± 48 Mg ha−1. This estimate includes aboveground carbon, root carbon and soil organic carbon down to 30 cm depth. This value varied from 231 ± 45 Mg ha−1 of carbon in Agro-Forests to 283 ± 51 Mg ha−1 of carbon in Managed Forests and to 278 ± 56 Mg ha−1 of carbon in National Park. The carbon CAI varied from 2.54 ± 0.65 Mg ha−1 year−1 in Agro-Forests to 2.79 ± 0.72 Mg ha−1 year−1 in Managed Forests and to 2.85 ± 0.72 Mg ha−1 year−1 in National Park. This study provides estimates of biomass, carbon pools and CAI of carbon biomass from a forest landscape in Cameroon as well as an appropriate methodology to estimate these components and the related uncertainty.  相似文献   

18.
Fine roots are a key component of forested ecosystems, but available information is still limited. This study examined the production and mortality of fine roots less than 1 mm in diameter in a Japanese cedar (Cryptomeria japonica D. Don) plantation located on the Kanto Plain in central Japan. We used a minirhizotron technique in combination with soil coring, and collected data for 1 year (May 2002–May 2003). Fine root production and mortality were determined from changes in the lengths of individual fine roots on minirhizotron tubes. Both fine root production and mortality rates were greater in the upper soil than in lower soil levels. Both rates were seasonal, with higher values in summer than in winter; this trend was more pronounced in upper soil levels. These results suggest that environmental conditions, such as temperature or soil properties, affect the production and mortality rates of fine roots. Fine root production and mortality occurred simultaneously, and their rates were similar, which may have led to unclear seasonal changes in fine root standing crop estimates. Soil coring indicated that the fine root biomass of this stand was about 120 g m−2, of which 40% was from Japanese cedar. The estimated rates of dry matter production and mortality of total fine roots, including understory plants, were both approximately 300 g m−2 year−1.  相似文献   

19.
High elevation ecosystems are particularly sensitive to environmental change. Mountain agriculture is extending to areas at high elevations in Taiwan but the effects on nutrient cycling of the surrounding ecosystems are largely unknown. We examined precipitation chemistry at Piluchi Experimental Forest in central Taiwan to evaluate the contributions of local air pollution and long-range transport of air pollutants on nutrient cycling at this seemingly remote forest. Sea-salt aerosols and anthropogenic pollutants resulting from long-range transport of air pollutants and mountain agriculture activities are the key factors affecting precipitation chemistry at Piluchi Experimental Forest. Precipitation chemistry was dominated by ions of oceanic origin in the summer and by anthropogenic pollutants SO4 2−, NO3 and NH4 + in the winter and spring, the northeast monsoon season. The much higher concentrations of S and N in the northeast monsoon season than the summer suggest a substantial contribution from long-range transport as the prevailing air masses moved from inland China and passed over the industrialized east coast of China before arriving in Taiwan. The very high concentration of NH4 + (22 μeq L−1) in the spring, when the local application of N-containing fertilizers was high, signifies the influences of mountain agriculture. Despite very low concentrations relative to other sites in Taiwan, annual input of NH4 + (3.6 kg ha−1 year−1), NO3 (7.2 kg ha−1 year−1) and SO4 2− (10 kg ha−1 year−1) via precipitation was substantial suggesting that high elevation ecosystems of Taiwan are not free from the threat of atmospheric deposition of pollutants.  相似文献   

20.
The distribution of fine (<2 mm diameter) and small roots (2–20 mm diameter) was investigated in a chronosequence consisting of 9-year-old, 26-year-old, 82-year-old and 146-year-old European beech (Fagus sylvatica) stands. A combination of trench wall observations and destructive root sampling was used to establish whether root distribution and total biomass of fine and small roots varied with stand age. Root density decreased with soil depth in all stands, and variability appeared to be highest in subsoil horizons, especially where compacted soil layers occurred. Roots clustered in patches in the top 0–50 cm of the soil or were present as root channels at greater depths. Cluster number, cluster size and number of root channels were comparable in all stands, and high values of soil exploitation occurred throughout the entire chronosequence. Overall fine root biomass at depths of 0–120 cm ranged from 7.4 Mg ha−1 to 9.8 Mg ha−1, being highest in the two youngest stands. Small root biomass ranged from 3.6 Mg ha−1 to 13.3 Mg ha−1. Use of trench wall observations combined with destructive root samples reduced the variability of these estimates. These records showed that variability in fine root distribution depended more on soil depth and edaphic conditions than on stand age, and suggest that trench wall studies provide a useful tool to improve estimates of fine root biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号