首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oxytetracycline (OTC) pharmacokinetics were studied in the red pacu ( Colossoma brachypomum ) following intravenous (i.v.) and intramuscular (i.m.) administration at a dose of 5 mg/kg body weight. OTC plasma concentrations were determined by high-performance-liquid-chromatography (HPLC). A non-compartmental model was used to describe plasma drug disposition after OTC administration. Following i.m. administration, the elimination half-life ( t ½) was 62.65 ± 1.25 h and the bioavailability was 49.80 ± 0.01%. After i.v. administration the t ½ was 50.97 ± 2.99 h, the V d was 534.11 ± 38.58 mL/kg, and CI b was 0.121 ± 0.003 mL/min.kg. The 5 mg/kg i.v. dose used in this experiment resulted in up to 48 h plasma concentrations of OTC above the reported MIC values for some strains of fish pathogens such as Aeromonas hydrophila , A. liquefaciens , A. salmonicida , Cytophaga columnaris , Edwardsiella ictaluri , Vibrio anguillarium , V. ordalii , V. salmonicida and Yeersinia ruckeri . These MIC values are below the susceptible range (4 μg/mL) listed by the National Committee for Clinical Laboratory Standards (NCCLS) as determined by the NCCLS susceptibility interpretive criteria.  相似文献   

2.
Pharmacokinetics of diminazene in female Boran (Bos indicus) cattle   总被引:1,自引:0,他引:1  
The disposition kinetics and bioavailability of diminazene in five healthy heifers were determined after single intravenous (i.v.) and intramuscular (i.m.) administration of the drug in sequence with a wash-out period between administrations of 6 weeks. Intact diminazene in plasma, whole blood and urine samples was analysed using high-performance liquid chromatography. Nonlinear regression analysis of the i.v. and i.m. data indicated that, for either route, the plasma disappearance curves of diminazene were best described by triexponential equations. The i.v. bolus was followed by rapid and biphasic distribution with half-life values of 0.04 h and 0.58 h, Vd(ss) was 1.91 ± 0.42 1/kg, elimination half-life was 31.71 h while CI averaged 1.74 ± 0.40 ml/min/kg. Within 30 min of the i.v. dose, the erythrocyte/plasma partition ratio of diminazene was 0.30 ± 0.15. Diminazene was rapidly absorbed following i.m. administration; t ½ka was 0.60 h. Cmax, 4.68 ± 1.12 μg/ml, was attained in 10–15 min and systemic availability was 102.42 ± 7.25%. The half-life of the terminal disappearance phase was 145.48 h. About 8.26% of the i.m. dose was excreted intact in the urine within the first 24 h of treatment. In vitro , diminazene was bound to bovine plasma albumin to the extent of 38.01–91.10%.  相似文献   

3.
The single-dose disposition kinetics of danofloxacin were determined in clinically normal lactating cows after intravenous (i.v.) and intramuscular (i.m.) administration of the drug at 1.25 mg/kg. The drug concentrations in blood serum and milk were determined by microbiological assay methods and the data were subjected to kinetic analysis. The mean i.v. and i.m. elimination half-lives ( t ½el) in serum were 54.9 and 135.7 min, respectively. The steady-state volume of distribution ( V ss) was 2.04 L/kg. The drug was quickly absorbed after i.m. injection but a 'flip flop' effect was clearly evident and bioavailability was > 100%. Penetration of danofloxacin from blood into milk was rapid and extensive with drug concentrations in milk exceeding those in serum beginning 90–120 min after i.v. and i.m. administration and onwards. Milk danofloxacin concentrations equal to or higher than the minimal inhibitory concentrations (MIC) for pathogenic Gram-negative bacteria and Mycoplasma species were maintained over ≈ 24 h.
  Concentrations greater than the MIC for Staphylococcus aureus were maintained in the milk for 12 h.  相似文献   

4.
A comparison of i.v., i.m. and s.c. administration erythromycin base in polyethylene glycol at 15 mg/kg and 30 mg/kg body weight was carried out in beef-type calves of approximately 200 kg body weight. Additional evaluations were carried out with oral administration of erythromycin phosphate and erythromycin stearate. Absorption of erythromycin was very slow by both the i.m. and s.c. routes of administration with a Kab of 0.0135 min-1 and 0.0185 min-1 for i.m. and 0.0032 min-1 and 0.0074 min-1 for s.c. at 15 mg/kg and 30 mg/kg, respectively. The bioavailability (32–42%) and peak serum concentrations were much lower with s.c. than with i.m. (60–65%) administration. The disposition of erythromycin administered i.v. appeared to be representative of dose-dependent kinetics rather than dose-independent first-order kinetics inasmuch as the elimination half-time ( t 1/2B) increased from 174.5 ± 13 min for the 15 mg/kg dosage to 239 ± 10.8 min with 30 mg/kg dosage. An acute apparent cardiovascular effect accompanied i.v. administration of erythromycin at 30 mg/kg dosage but not at 15 mg/kg. Severe diarrhea followed oral administration of either erythromycin phosphate or erythromycin stearate.  相似文献   

5.
The objective of this study was to evaluate the plasma pharmacokinetics of ketamine and its active metabolite norketamine administered intravenously at a dose of 0.1 mg/kg together with xylazine (0.05 mg/kg) to control the pain associated with castration in calves. A two-compartment model with an additional metabolite compartment linked to the central compartment was used to simultaneously describe the time-concentration profiles of both ketamine and its major metabolite norketamine. Parameter values estimated from the time-concentration profiles observed in this study were volume of the central compartment (Vc = 132.82 ± 68.23 mL/kg), distribution clearance (CLD = 15.49 ± 2.56 mL/min/kg), volume of the peripheral compartment (VT = 257.05 ± 41.65 mL/kg), ketamine clearance by the formation of the norketamine metabolite (CL2M = 8.56 ± 7.37 mL/kg/min) and ketamine clearance by other routes (CLo = 16.41 ± 3.42 mL/kg/min). Previously published data from rats suggest that the metabolite norketamine contributes to the analgesic effect of ketamine, with a potency that is one-third of the parent drug. An understanding of the time-concentration relationships and the disposition of the parent drug and its metabolite is therefore important for a better understanding of the analgesic potential of ketamine in cattle.  相似文献   

6.
The single-dose disposition kinetics of orbifloxacin were determined in clinically normal rabbits ( n  = 6) after intravenous (i.v.), subcutaneous (s.c.) and intramuscular (i.m.) administration of 5 mg/kg bodyweight. Orbifloxacin concentrations were determined by high performance liquid chromatography with fluorescence detection. Minimal inhibitory concentrations ( MIC s) assay of orbifloxacin against 30 strains of Staphylococcus aureus from several European countries was performed in order to compute pharmacodynamic surrogate markers. The concentration–time data were analysed by compartmental and noncompartmental kinetic methods. Steady-state volume of distribution ( V ss) and total body clearance ( Cl ) of orbifloxacin after i.v. administration were estimated to be 1.71 ± 0.38 L/kg and 0.91 ± 0.20 L/h·kg, respectively. Following s.c. and i.m. administration orbifloxacin achieved maximum plasma concentrations of 2.95 ± 0.82 and 3.24 ± 1.33 mg/L at 0.67 ± 0.20 and 0.65 ± 0.12 h, respectively. The absolute bio-availabilities after s.c. and i.m. routes were 110.67 ± 11.02% and 109.87 ± 8.36%, respectively. Orbifloxacin showed a favourable pharmacokinetic profile in rabbits. However, on account of the low AUC / MIC and C max/ MIC indices obtained, its use by i.m. and s.c. routes against the S. aureus strains assayed in this study cannot be recommended given the risk of selection of resistant populations.  相似文献   

7.
The bioavailability of amprolium (APL) was measured after intravenous (i.v.) and oral (p.o.) administration to chickens. Twelve healthy chickens weighing 1.28–1.41 kg received a dose of 13 mg APL/kg intravenously, and 13 or 26 mg APL/kg orally in both a fasted and a nonfasted condition in a Latin square design. Plasma samples were taken from the subwing vein for determination of APL concentration by HPLC method. The data following intravenous and oral administration were best fitted by 2-compartment and 1-compartment models, respectively, using weighted nonlinear least squares regression. The half-life beta t ½β, volume of distribution ( V d) and total body clearance ( Cl ) after intravenous administration were 0.21 h, 0.12 L/kg and 1.32 L/h.kg, respectively. The elimination half-life ( t ½ Kel) after oral administration was 0.292–0.654 h which is 1.5–3.2 times longer than after intravenous administration, suggesting the presence of a 'flip-flop' phenomenon in chickens. The maximum plasma concentration ( C max) of 13 mg/kg APL administered orally to chickens during fasting was significantly (about four times) higher than that during nonfasting ( P < 0.05). Bioavailability during nonfasting was from 2.3 to 2.6%, and 6.4% during fasting.  相似文献   

8.
The pharmacokinetics of sulphadiazine (SDZ) (100 mg/kg, body weight) were investigated in six camels ( Camelus dromedarius ) after intravenous (i.v.) and oral (p.o.) administration. Following i.v. administration, the overall elimination rate constant (β) was 0.029±0.001/h and the half-life ( t ½β) was 23.14±1.06 h. The apparent volume of distribution ( V d(area)) was 0.790±0.075 L/kg and the total body clearance ( Cl B) was 23.29±2.50 mL/h/kg. After p.o. administration, SDZ reached a peak plasma concentration ( C max(cal.)) of 62.93±2.79 μg/mL at a post injection time of ( T max(cal.)) 22.98±0.83 h. The elimination half-life was 19.79±1.22 h, not significantly different from that obtained by the i.v. route. The mean absorption rate constant (Ka) was 0.056±0.002 h−1 and the mean absorption half-life ( t ½Ka) was 12.33±0.37 h. The mean availability ( F ) of sulphadiazine was 88.2±6.2%.
  To achieve and maintain therapeutically satisfactory plasma SDZ levels of 50 μg/mL, the priming and maintenance doses would be 80 mg/kg and 40 mg/kg intravenously and 90 mg/kg and 45 mg/kg orally, respectively, to be repeated at 24 h intervals.  相似文献   

9.
The pharmacokinetic properties of norfloxacin were determined in healthy pigs after single intramuscular (i.m.) and intravenous (i.v.) dosage of 8 mg/kg body weight After i.m. and i.v. administration, the plasma concentration-time graph was characteristic of a two-compartment open model. After single i.m. administration, norfloxacin was absorbed rapidly, with a t max of 1.46 ± 0.06 h. The elimination half-life ( t 1/2β) and the mean residence time of norfloxacin in plasma were 4.99 ± 0.28 and 6.05 ± 0.22 h, respectively, after i.m. administration and 3.65 ± 0.16 and 3.34 ± 0.16 h, respectively, after i.v. administration. Intramuscular bioavailability was found to be 53.7 ± 4.4%. Plasma concentrations greater than 0.2 μg/mL were achieved at 20 min and persisted up to 8 h post-administration. Maximal plasma concentration was 1.11 ± 0.03 μg/mL. Statistically significant differences between the two routes of administration were found for the half-lives of both distribution and elimination phases ( t 1/2α, t 1/2β) and apparent volume of distribution (Vd(area)). In pigs, norfloxacin was mainly converted to desethylenenorfloxacln and oxonorfloxacin. Considerable tissue concentrations of norfloxacin, desethylenenorfloxacin, and oxonorfloxacin were found when norfloxacin was administered intramuscularly (8 mg/kg on 4 consecutive days). The concentration of the parent fluoroquinolone in liver and kidney ranged between 0.015 and 0.017 μg/g on day 12 after the end of dosing.  相似文献   

10.
The present study was undertaken to measure the weight of muscle destroyed by an intramuscular injection of phenylbutazone (PBZ) in horses. In six horses, CK disposition parameters were evaluated after intravenous (i.v.) and intramuscular (i.m.) administration of a CK horse preparation. The same horses received PBZ, a potentially irritating agent, by l.v. and i.m. (neck and hindquarter) routes. Data were analysed using compartmental approaches and instantaneous CK flux was calculated using a discrete deconvolution method. For a 150 U/kg CK dose, the steady-state volume of distribution was 0.050 ± 0.0115 L/kg and the plasma half-life was 112 ± 18 min. After CK i.m. administration, the half-life of the terminal phase was 11.8 ± 5.3 h indicating a flip-flop process and the mean bioavailability of CK was close to 100%. After PBZ i.m. administration, the CK activity was significantly increased with peak values of 508 ± 109 U/L after the neck administration and 873 ± 365 U/L after the gluteal administration. By measuring the total amount of CK released from injured muscle, it was calculated that an equivalent of 0.044 ± 0.029 g/kg of muscle was destroyed after PBZ administration in the neck. The corresponding figure was 0.118 ± 0.048 g/kg after intragluteal PBZ administration. By deconvoluting plasma CK activity, it was shown that the CK entry rate was maximum for the first 30–60 min following PBZ administration, which then decreased slowly to return to the control value after a delay of 24–48 h after PBZ administration. It was concluded that the CK release pattern following a controlled muscular damage was a non-invasive approach useful for quantifying the amount of damaged muscle, and that the calculation of CK input rate by deconvolution was of potential interest in describing events at the muscle cell level.  相似文献   

11.
The pharmacokinetics of furosemide were investigated in anaesthetized horses with bilateral ureteral ligation (BUL) with ( n  = 5) or without ( n  = 5) premedication with phenylbutazone. Horses were administered an intravenous (i.v.) bolus dose of furosemide (1 mg/kg) 6090 min after BUL. Plasma samples collected up to 3 h after drug administration were analysed by a validated high performance liquid chromatography method. Median plasma clearance ( CL p) of furosemide in anaesthetized horses with BUL was 1.4 mL/min/kg. Apparent steady state volume of distribution ( V dss) ranged from 169 to 880 mL/kg and the elimination half life ( t ½) ranged from 83 min to 209 h.   No differences in plasma concentration or kinetic parameter estimates were observed when phenylbutazone was administered before furosemide administration. BUL markedly reduces the elimination of furosemide in horses and models the potential effects that severe changes in kidney function may have on drug kinetics in horses.  相似文献   

12.
Pedersoli, W.M., Ravis, W.R., Jackson, J., Shaikh, B. Disposition and bioavailability of neomycin in Holstein calves. J. vet. Pharmacol. Therap. 17 , 5–11.
The disposition and absorption kinetics of neomycin were studied in healthy ruminating dairy calves ( n -6), approximately 3-months-old. The calves were treated with single intravenous (i.v.) (12 mg/kg), intramuscular (i.m.) (24mg/kg), oral (p.o.) (96 mg/kg) and repeated p.o. (96 mg/kg, b.i.d., 15½ days) doses of neomycin. A 3-week rest period was allowed between treatments A and B and B and C Baseline and serial venous blood samples were collected from each calf plasma concentrations of neomycin were determined by a high performance liquid chromatography procedure. The resulting data were evaluated by using compartmental pharmacokinetic models and nonlinear least squares regression analysis. The mean of some selected parameters were t ½λ3 7.48 ± 2.02 h, Clt= 0.25 ± 0.04 L/h/kg, V d(ss)= 1.17 ± 0.23 L/kg, and MRT = 4.63 ± 0.87 h for the i.v. data and t ½= 11.5 ± 3.8 h, MRT abs= 0.960 ± 1.001 h, F = 127 ± 35.2%, and Clt/F = 0.199 ± 0.047 L/h/kg for the i.m. data, respectively. Only one calf absorbed neomycin to any significant degree (F = 0.0042) after a single p.o. dose. Selected mean parameters determined after repeated oral dosing were: F = 0.45 ± 0.45%, Cmax= 0.26 ± 0.37 g/ml, and tmax= 2.6 ± 2.9 h. Terminal half-lives determined for the i.v. and i.m. treatments were considerably longer than those reported previously in the literature.  相似文献   

13.
Six clinically normal lactating does were administered ketoprofen (2.2 mg/kg intravenously (i. v.)). Blood and milk samples were collected prior to and for 24 h after drug administration. Drug concentrations in serum and milk were determined by high performance liquid chromatography. Pharmacokinetic parameters from each goat were combined to obtain mean estimates (mean ± SD) of half-life of elimination ( t ½β) of 0.32 ± 0.14 h, systemic clearance ( Cl ) of 0.74 ± 0.12 L/kg· h, and volume of distribution at steady state ( V ss) of 0.23 ± 0.051 L/kg. In milk, ketoprofen was unmeasurable by the method employed (level of detection 25 ng/mL) for all samples.  相似文献   

14.
The transplacental exchange of moxidectin after maternal or fetal intravenous (i.v.) administration was studied using the chronically catheterized fetal sheep model. Nine pregnant Suffolk Down sheep of 65.7 ± 5.9 kg body weight (bw) were surgically prepared to insert polyvinyl catheters in the fetal femoral artery and vein and amniotic sac. The ewes were randomly assigned to two experimental groups. In group 1 (maternal injection) five ewes were treated with an i.v. bolus of 0.2 mg of moxidectin/kg bw. In group 2, (fetal injection) an i.v. bolus of 1 mg of moxidectin was administered to the four fetuses by femoral vein catheters. Maternal and fetal blood and amniotic fluid samples were taken before and after moxidectin administration for a 144 h post-treatment period. Samples were analyzed by liquid chromatography. A noncompartmental pharmacokinetic analysis was performed and statistical differences were determined by mean of parametric and nonparametric statistical tests. Pharmacokinetic differences observed in maternal variables were shorter elimination half-life and mean residence time compared with values previously reported for ivermectin. Drug diffusion from maternal to fetal circulation ( AUC 0– t  = 232.6 ± 72.5 ng·h/mL) was statistically not different ( P =  0.09) compared with fetal to maternal diffusion ( AUC 0– t = 158.0 ± 21.6 ng·h/mL). Fetuses showed significantly ( P  =   0.008) lower drug body clearance values compared with those observed in the maternal side. Considering the observed transplacental passages between materno-fetal or feto-maternal circulations, we conclude that the placental barrier is not effective in preventing the moxidectin diffusion between mother and fetus.  相似文献   

15.
Laber, G. Investigation of pharmacokinetic parameters of tiamulin after intramuscular and subcutaneous administration in normal dogs. J. vet. Pharmacol. Therap. 11 , 45–49.
Kinetic variables for tiamulin in the normal dog have been determined. Serum concentrations of tiamulin were compared after intramuscular (i.m.) and subcutaneous (s.c.) administration of a single dose of tiamulin. Following a single i.m. dose of 10 mg/kg body weight, the compound was calculated to have a Cmax= 0.61 ± 0.15 μg/ml, a T max= 6 h and a t ½= 4.7 ± 1.4 h. Tiamulin showed dose-dependent pharmacokinetics when given as a single s.c. dose of either 10 mg or 25 mg/kg body weight. For the lower dose, the values Cmax= 1.55 ± 0.11 μg/ml, T max= 8 h and 1 max= 4.28 ± 0.18 h were obtained. For the higher dose C max= 3.14 ± 0.04 μg/ml, T max= 8 h and t ½= 12.4 ± 3.4 h were calculated. When tiamulin was administered subcutaneously at a dose rate of 10 mg/kg body weight, higher and better maintained serum levels were achieved than those following i.m. administration. After repeated s.c. doses no significant accumulation of tiamulin occurred. Assuming that a continuous effective serum concentration is necessary throughout the course of therapy, these data would indicate that tiamulin should be given every 24 h.  相似文献   

16.
The objectives of this study were to determine pharmacokinetics of intravenous (i.v.) ceftiofur in foals, to compare ultra-high performance liquid chromatography tandem mass spectometry (UPLC-MS/MS) and microbiologic assay for the measurement of ceftiofur concentrations, and to determine the minimum inhibitory concentration ( MIC ) of ceftiofur against common equine bacterial pathogens. In a cross-over design, ceftiofur sodium was administered i.v. to six foals (1–2 days-of-age and 4–5 weeks-of-age) at dosages of 5 and 10 mg/kg. Subsequently, five doses of ceftiofur were administered i.v. to six additional foals between 1 and 5 days of age at a dose of 5 mg/kg q 12 h. Concentrations of desfuroylceftiofur acetamide (DCA), the acetamide derivative of ceftiofur and desfuroylceftiofur-related metabolites were measured in plasma, synovial fluid, urine, and CSF by use of UPLC-MS/MS. A microbiologic assay was used to measure ceftiofur activity for a subset of plasma samples. Following i.v. administration of ceftiofur at a dose of 5 mg/kg to 1–2 day-old foals, DCA had a t ½ of 7.8 ± 0.1 h, a body clearance of 74.4 ± 8.4 mL/h/kg, and an apparent volume of distribution of 0.83 ± 0.09 L/kg. After multiple i.v. doses at 5 mg/kg, DCA concentrations in CSF were significantly lower than concurrent plasma concentrations. Ceftiofur activity using a microbiologic assay significantly underestimated plasma concentrations of DCA. The MIC of ceftiofur required to inhibit growth of 90% of isolates of Escherichia coli , Pasteurella spp, Klebsiella spp, and β-hemolytic streptococci was <0.5 μg/mL. Intravenous administration of ceftiofur sodium at the rate of 5 mg/kg every 12 h would provide sufficient coverage for the treatment of susceptible bacterial isolates.  相似文献   

17.
Abo-El-Sooud, K., Goudah, A. Influence of Pasteurella multocida infection on the pharmacokinetic behavior of marbofloxacin after intravenous and intramuscular administrations in rabbits. J. vet. Pharmacol. Therap. 33 , 63–68.
The pharmacokinetic behavior of marbofloxacin was studied in healthy ( n  = 12) and Pasteurella multocida infected rabbits ( n  = 12) after single intravenous (i.v.) and intramuscular (i.m.) administrations. Six rabbits in each group (control and diseased) were given a single dose of 2 mg/kg body weight (bw) of marbofloxacin intravenously. The other six rabbits in each group were given the same dose of the drug intramuscularly. The concentration of marbofloxacin in plasma was determined using high-performance liquid chromatography. The plasma concentrations were higher in diseased rabbits than in healthy rabbits following both routes of injections. Following i.v. administration, the values of the elimination half-life ( t 1/2β), and area under the curve were significantly higher, whereas total body clearance was significantly lower in diseased rabbits. After i.m. administration, the elimination half-life ( t 1/2el), mean residence time, and maximum plasma concentration ( C max) were higher in diseased rabbits (5.33 h, 7.35 h and 2.24 μg/mL) than in healthy rabbits (4.33 h, 6.81 h and 1.81 μg/mL, respectively). Marbofloxacin was bound to the extent of 26 ± 1.3% and 23 ± 1.6% to plasma protein of healthy and diseased rabbits, respectively. The C max /MIC (minimum inhibitory concentration) and AUC/MIC ratios were significantly higher in diseased rabbits (28 and 189 h) than in healthy rabbits (23 and 157 h), indicating the favorable pharmacodynamic characteristics of the drug in diseased rabbits.  相似文献   

18.
Plasma pharmacokinetics of ranitidine HCl were investigated after intravenous (i.v.) and oral (p.o.) administration of drug to six healthy foals. Twelve- to sixteen-week-old foals received 2.2 mg ranitidine/kg i.v. and 4.4 mg ranitidine/kg p.o. Concentrations of ranitidine were determined using normal phase high performance liquid chromatography. Plasma concentrations of ranitidine HCl declined from a mean of 3266 ng/mL at 5 min to 11 ng/mL at 720 min after administration. The profile of the plot of concentrations of ranitidine HCl vs. time was best described by a two-exponent equation for two foals; data for the remaining four foals were best described by a three-exponent equation. Mean values for model-independent values were: apparent volume of distribution ( V dss) = 1.46 L/kg; area under the curve ( AUC ) = 16 7442 ng·min/mL; area under the moment curve ( AUMC ) = 18 068 221 ng·min2/mL; mean residence time ( MRT ) = 108.9 min; and clearance ( Cl ) = 13.3 mL/min.kg. Following p.o. administration, a two-exponent equation best described data for five foals; data for the remaining foal were best described by a three-exponent equation. Mean values of the pharmacokinetic values from the p.o. study include: AUC  = 12 6413 ng·min/mL; AUMC  = 18 039 825 ng·min2/mL; mean absorption time ( MAT ) = 32.0 min; observed time to maximum plasma concentration ( T max) = 57.2 min; maximum observed plasma concentration ( C max) = 635.7 ng/mL; and bioavailability ( F ) = 38%.  相似文献   

19.
Plasma pharmacokinetics and urine concentrations of meropenem in ewes   总被引:1,自引:0,他引:1  
The pharmacokinetics of meropenem was studied in five ewes after single i.v. and i.m. dose of 20 mg/kg bw. Meropenem concentrations in plasma and urine were determined using microbiological assay method. A two-compartment open model was best described the decrease of meropenem concentration in plasma after an i.v. injection. The drug was rapidly eliminated with a half-life of elimination ( t 1/2 β ) of 0.39 ± 0.30 h. Meropenem showed a small steady-state volume of distribution [ V d(ss)] 0.055 ± 0.09 L/kg. Following i.m. injection, meropenem was rapidly absorbed with a t 1/2ab of 0.25 ± 0.04 h. The peak plasma concentration ( C max) was 48.79 ± 8.83  μ g/mL was attained after 0.57 ± 0.13 h ( t max). The elimination half-life ( t 1/2el) of meropenem was 0.71 ± 0.12 h and the mean residence time ( MRT ) was 1.38 ± 0.26 h. The systemic bioavailability (F) after i.m. injection was 112.67 ± 10.13%. In vitro protein-binding percentage of meropenem in ewe's plasma was 42.80%. The mean urinary recoveries of meropenem over 24 h were 83% and 91% of the administered dose after i.v. and i.m. injections respectively. Thus, meropenem is likely to be efficacious in the eradication of many urinary tract pathogens in sheep.  相似文献   

20.
Six horses were administered either 15 or 20 mg/kg body weight (b.w.) procainamide (PA) as an intravenous (i.v.) dose over 10 min. The plasma concentrations of PA and N-acetylprocainamide (NAPA) as well as the pharmacodynamic effect (prolongation of the QT interval) were monitored. The PA plasma concentrations could be described by a one-compartment model with a t ½ of 3.49 ± 0.61 h. The total body clearance of PA was 0.395 ± 0.090 1/hr/kg and the volume of distribution was 1.93 ± 0.27 l/kg. As observed after PA administration, NAPA (an active metabolite) had a t ½ longer than PA of 6.31 ± 1.49 h. Peak NAPA concentrations (1.91 ± 0.51 μg/ml) occurred at 5.2 h after the PA i.v. dose. The ratio of area under the curves for NAPA to PA was 0.46 ± 0.15 which is similar to that expected in humans classified as slow acetylators. Percentage change in the QT interval was examined with respect to PA and PA + NAPA plasma concentrations. For PA, %ΔQT = 41.2 log (PA) - 13.26 and correlations ( r ) ranged from 0.77 to 0.91 among the horses. In the case of PA + NAPA,%ΔQT= 57.3 log(PA+NAPA)-31.83 andrangedfrom0.77to0.90. No evidence of toxicity was noted with respect to changes in the PR interval.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号