首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
本文设计的喷头性能测试系统,用于喷头喷雾压力、流量、雾量分布均匀性测定及组合喷头性能参数的测定。系统采用先进喷杆精准定位技术,数据同步采集技术、自动化控制技术(PLC技术和PCI总线控制技术),可实现多参数精密同步测定及数据自动处理功能。试验结果表明,系统实现高度自动化,测试精度高、方法先进,能够准确评定喷头喷雾特性。  相似文献   

2.
第1条目的和意义 1·1 制定本标准有下列三个目的: 1·1·1 为确定各种具有均匀喷洒半径的喷头性能参数,对喷头试验资料(压力、流量和喷洒半径)的收集,规定一个共同的测试程序。 1·1·2 为确定喷头性能参数,统一试验资料的分析方法。 1·1·3 为了便于对喷头的各项性能参数进行判别。 1·2 各项喷头性能参数应能邦助灌  相似文献   

3.
液力式喷头磨损测量试验台的研制   总被引:1,自引:0,他引:1  
研制的液力式喷头磨损测量试验台采用自循环方式、混合流四斜叶涡轮搅拌桨,保证试验液体中磨粒混合均匀。系统压力调整采用变频器调压方式,控制系统以通讯方式实现对变频器的控制。通过高精度的电磁流量计与先进的计算机控制与处理技术测量喷头流量和磨损率,并可实现各参数精密同步测定及处理功能。最后,通过试验分析该设备的测试精度。  相似文献   

4.
设计了一种弹性喷嘴的变量喷头,其喷嘴直径随压力的增大而变大,从而降低喷头的雾化程度。为研究确定弹性喷嘴锥形角、喷嘴直径、末端圆柱段长度、弹性材料厚度和喷嘴伸出量等主要参数,利用ANSYS建立了变量喷头及其内流道的三维实体模型,采用k-ε模型在CFX和ANSYS单向流固耦合中模拟喷头弹性喷嘴在不同工作压力,不同喷嘴直径组合下的内流道流场和喷嘴的变形过程,建立了工作压力、喷嘴直径变形和喷头流量等参数的关系模型。采用全面喷洒的方法对喷头样品进行了试验,通过测量喷头流量和喷头工作压力等,对模拟结果进行验证。  相似文献   

5.
针对直筒型气助式喷头风力性能较弱的问题,结合单点风速测试和数值模拟,研究了一种"尾部先收缩后扩张"气助式喷头的尾部参数对风力性能的影响规律。首先,采用雷诺平均N-S(Navier-Stokes)方程及RNG(Renormalization group)k-ε湍流模型,建立了该型喷头的流场计算模型,基于风速测试验证了该模型的有效性与可靠性;其次,通过数值计算对比了两种喷头的风力性能,结果表明,在进口参数总压105 600 Pa、静压105 200 Pa时,本文所提喷头出口平均风速是直筒型喷头对应值的1.36倍。为了研究尾部参数(收敛段内缩长度、扩张段高度)对本文所提喷头风力性能的影响,以数值计算、Opt LHD(Optimal latin hypercube design)试验设计、径向基函数神经网络(Radial basis function neural network,RBFNN)为理论基础,构建了风力性能参数的代理模型,出口端流量、平均风速的代理模型R2分别为0.983 54、0.987 28,表明该模型可用于喷头风力性能预测,指导参数科学配置。基于代理模型,对喷头风力性能参数的影响因子进行了分析及单目标优化,随着扩张段高度、收敛段内缩长度的增大,出口端平均风速均呈现下降趋势,而流量均呈现先上升后下降的变化趋势;当扩张段高度、收敛段内缩长度取值为1.08、5.39 mm时,出风量达到最大值0.017 9 kg/s;而两值分别取0、0 mm时,末端平均风速达到最大值67.9 m/s。针对末端流量、平均风速相互矛盾的问题,进行了多目标优化,得到了喷射性能参数最优Pareto解集,为气助式喷头与果园间的优化匹配设计提供了参考。  相似文献   

6.
为了使水力驱动带状喷灌机喷洒均匀度高、受风影响小,能够在作物行间进行喷洒作业,本研究选取不同参数的喷头对其喷头流量、射程、条带宽度及喷灌强度进行试验对比分析,试验结果表明,喷头的喷灌效果与工作压力、喷孔大小、喷射仰角及叶轮之间均存在紧密联系。该结果能够为水力驱动带状喷灌系统的喷头选型及参数设计提供参考。  相似文献   

7.
为优化植保器械,设计了一种H型组合喷头,对组合喷头田间作业参数对施药效果的影响进行试验研究.阐述分析了H型组合喷头的构造及工作原理,根据田间试验得到该组合喷头各部件的优选参数.结果表明:在0.3~0.9MPa压力下,H型组合喷头的流量为208.3~293.3mL/min、雾滴粒径分布跨度为0.71~0.82;常规喷头流...  相似文献   

8.
摇臂式喷头内流道流场数值模拟   总被引:3,自引:0,他引:3  
用Pro/E软件建立喷头内流道的三维实体模型,选择RNGk-ε模型在CFD软件Fluent中模拟了雨鸟30PSH型摇臂式喷头在10种入口压力和4种主喷嘴直径组合下的内流道流场,分析了喷头主副喷嘴的流量、人口压力与出口平均速度等参数的关系.研究结果表明:主喷嘴直径增大时,副喷嘴流量几乎不变;主、副喷嘴的流量分配比例由主喷嘴直径决定,与入口压力无关.入口压力增大,主喷嘴出口平均速度增大,但副喷嘴出口平均速度不变.喷头主、副喷嘴的平均湍动能随人口压力增大而增大,不受主喷嘴直径变化的影响.主喷嘴出口静压力、湍动能和速度的标准差、副喷嘴出口静压力标准差与入口压力近似成正比;而副喷嘴出口湍动能和速度的标准差随主喷嘴直径或入口压力增大产生较大的无规律变化.喷头内流道流场的可视化结果显示喷头副喷嘴与弯管连接处静压力较大,接近喷头入口静压力.  相似文献   

9.
为了研究不同压力下喷头水力性能,明确工作压力对其他参数的影响,文中对一种喷嘴出口直径为5 mm型号为SD-03的地埋式喷头进行了研究.测量出喷头在200,250,300和350 kPa工作压力下的流量、转速及径向水量分布,并计算出不同压力下的射程.结果表明:流量、射程、转速以及喷灌强度都随着喷头工作压力的增大而增大.此外,在射程计算的经验公式基础上进行了修正,得到了不同压力下,射程公式的修正系数为0.5~0.6;转速随着压力增大而增大,得到了喷头压力和喷头转速的关系多项式;分析喷灌强度的分布曲线,相比于200 kPa下的最高喷灌强度,当压力增大时最高喷灌强度同比增长15.93%~18.67%,为地埋式喷头的后续研究提供了科学的理论依据以及在工程应用中提供了理论基础.  相似文献   

10.
为了解决园林绿地喷灌中喷头参数选择不当导致灌溉不均匀的问题,对比研究了Rain Bird-3500、Hunter-PGP、Toro-mini-8、K Rain-PRO四种典型园林地埋式旋转喷头的水力性能和经济性参数,确定了四种喷头的适宜运行工作参数。结果表明,四种地埋式喷头的流量、运转速度、组合平均喷灌强度和喷灌均匀系数的变化趋势基本一致;喷头的流量随着工作压力的增大而增大;随着喷头组合间距的增大,平均喷灌强度、喷灌均匀系数和喷头投资总体有下降的趋势;当喷头间距一定时,工作压力越大,喷灌均匀系数逐渐增加。综合喷灌质量、节能性和经济性三方面考虑,建议Rain Bird-3500和K Rain-PRO工作压力以0.20 MPa,组合间距为14 m×14 m为宜;Hunter-PGP的工作压力以0.25 MPa,组合间距采用14 m×14 m为宜;建议Toro-mini-8的工作压力以0.15 MPa,组合间距以12 m×12 m为宜。  相似文献   

11.
针对扇形喷嘴雾化特性问题,在Ansys Fluent中基于Taylor Analogy Breakup(TAB)破碎模型,采用Eulerian-Lagrangian连续相与离散相耦合算法,实现了扇形喷嘴的液滴破碎、雾化形成及气液两相流场的非定常数值模拟,完成了喷射压力与喷雾高度2个参数对扇形喷嘴液滴速度、液滴直径、离散相模型(DPM)质量浓度、液滴通量(N)等雾化特性参数的影响研究,通过激光粒度仪在试验台上得到了液滴索特平均直径(DSM),并与模拟结果进行了对比.研究结果表明:随着喷射压力的升高,液滴的速度越大,液滴在计算域内平均停留时间越短,在计算域停留的液滴数越少;液滴的索特平均直径(DSM)、液滴体积中值直径(DVM)、数量中值直径(DNM)随着喷射压力的升高越来越小,喷射压力为0.3 MPa后液滴DSM减小的趋势变大,这有利于改善实际作业中的雾化质量,当然在有风状态下也会加大雾滴飘逸的风险.喷雾高度对液滴DSM影响不大.不同喷射压力下DPM质量浓度以及喷雾的覆盖面积不受喷射压力的影响,由于N的变化与液滴DSM呈三次方,与覆盖面积A呈反比关系,液滴的数量通量随着喷射压力的变大而逐渐变大.DPM的质量浓度随着喷雾高度的升高而逐渐降低,喷雾的覆盖面积随着喷雾高度的升高而逐渐变大.由于液滴的DSM随喷雾高度的变化可忽略不计,因此液滴数量通量随着喷雾高度的增加而逐渐变小.不同喷射压力下和不同喷雾高度下试验和模拟计算所得到的DSM变化趋势一致,整个过程的误差不超过10%.  相似文献   

12.
变形椭圆齿轮式扎穴机构设计与工作参数试验优化   总被引:1,自引:0,他引:1       下载免费PDF全文
针对深施型液态施肥机扎穴机构多参数下动力学性能差等问题,探索多工作参数下的变形椭圆齿轮式扎穴机构动力学变化规律,通过建立变形椭圆齿轮行星轮系的节曲线方程,采用Visual Basic 6.0语言,编写了变形椭圆齿轮式扎穴机构运动学仿真与优化软件,调节变形椭圆齿轮的长半轴长度、变形椭圆齿轮偏心率与变形椭圆齿轮变形系数等相关参数,优化并得到一组机构较优参数。搭建了扎穴机构动力学特性测试试验台,进行动力学特性试验。采用旋转中心复合试验设计方案,以行星架转速和土槽车前进速度为试验影响因素,以太阳轮轴所受扭矩和喷肥针入土时受到的拉压力为试验影响指标。在试验台上利用扭矩传感器、信号采集仪和DASP-10处理软件,测得太阳轮轴扭矩和喷肥针入土时受到的拉压力,建立试验影响因素和影响指标的关系模型及响应曲面图,并运用Design-Expert 8.0.10软件对试验数据进行分析。试验结果表明,当行星架转速64.4 r/min,前进速度0.61 m/s时,太阳轮轴扭矩为5.05 N·m,喷肥针受到的拉压力为20.03 N,此时机构动力学性能最优。应用此参数组合进行测试验证,验证了其合理性。该研究结果可保证扎穴机构在多工作参数下工作时,机具具有良好的扎穴性能。  相似文献   

13.
植保无人机喷雾性能综合实验台的设计,可以模拟农业植保无人机工作状态下,对喷头的压力、流量、雾锥角、喷幅、雾滴粒径、雾滴沉积量、雾滴分布规律、雾滴分布变异系数等重要参数的测试,从而为植保无人机厂家改进喷淋系统提供重要的检测手段。  相似文献   

14.
基于机器视觉的常温烟雾机喷雾角测量系统   总被引:1,自引:0,他引:1  
针对常温烟雾机喷雾角测量方法中存在的问题,提出了利用数字图像处理技术结合最小二乘拟合方法对常温烟雾机的喷雾角进行图像检测的方法。该方法实现了喷雾角的非接触测量,避免了常用方法对喷雾现场的干涉,减少了人工测量方法带来的误差。试验结果表明,该方法简单可行,而且能够实现快速检测。  相似文献   

15.
为了探究影响负压反馈射流喷头水力性能的重要参数对水力性能的影响程度,并选出综合水力性能最优下的重要参数组合,首先设计了4因素3水平正交试验,并根据试验要求分别加工出3种长度(4.2,5.6,7.0 cm)的喷管、3种直径(3,4,5 mm)的喷嘴,以及射流进口宽×深为4 mm×8 mm、位差1.80 mm、侧壁夹角20°、劈距28.0 mm、3种喷射仰角(20°,30°,40°)的射流机构,用于水力性能测试.采用综合评分法和极差分析法对正交试验结果进行处理,并引入了射程和喷灌均匀系数对试验结果进行评价.结果表明:影响喷头综合水力性能的重要参数,影响程度由大到小依次为喷射仰角、主副喷嘴直径、工作压力、主副喷管长度.得到了在此射流机构下的最优重要参数组合为工作压力0.35 MPa、主×副喷嘴直径5 mm×4 mm、喷射仰角30°、主×副喷管长度4.2 cm×4.2 cm.试验结果可为该型国产喷头的产品化和未来工程应用提供理论数据支撑.  相似文献   

16.
探讨了喷油嘴四孔流量分布对燃油喷雾和柴油机性能的影响.结果表明,不正常的流量分布可以改变喷雾的形状及各孔油束的射程,导致燃油在燃烧室中分布情况恶化,从而使柴油机性能,特别是在低速大负荷工况下的性能下降.  相似文献   

17.
基于PWM变量喷雾的单喷头动态雾量分布均匀性实验   总被引:9,自引:0,他引:9       下载免费PDF全文
为研究PWM变量喷雾系统的动态雾量分布均匀性特点,以胭脂红溶液为喷雾试剂,在输送带上放置矩阵式集雾穴盘收集雾滴,采用浓度-吸光度法测量雾量沉积浓度,对单个喷头分别测试了不同PWM频率、PWM占空比和喷雾压力对总体区域、喷雾前进方向和喷杆方向上雾量分布均匀性的影响。研究发现,相较于喷杆方向,PWM频率对单喷头在喷雾前进方向上的雾量分布均匀性影响更大,某一速度条件下PWM频率的最小值应至少保证喷雾的连续性,且无需过大,从而保证电磁阀的使用寿命;当PWM占空比增大到一定值使喷雾流量基本稳定时,PWM占空比的继续增大可同时提高单喷头在喷雾前进方向和喷杆方向上的雾量分布均匀性,而在PWM占空比增大到该定值之前,仅对喷雾前进方向上的雾量分布有明显影响;在雾化效果较好的前提下,喷雾压力对单喷头在喷雾前进方向和喷杆方向上的雾量分布均匀性均有较大影响,且影响效果相反,主要因为随着喷雾压力的增大,雾量更多地向喷杆方向上的两侧和喷雾前进方向上的中间聚集。  相似文献   

18.
为满足喷杆喷雾机变量喷雾技术需要,设计一种喷杆喷雾机变量喷雾控制与测试试验台,实现对已有的变量喷雾装置的实时控制以及性能测试。变量喷雾控制与测试试验台由控制系统和数据采集系统组成。控制系统以西门子S7-200 系列PLC为基础,由动力系统、驱动系统、流量系统和变量控制系统组成;数据采集系统采用数据采集模块与传感器获取管路流量、压力、转矩和行驶速度等参数,通过LabVIEW软件对采集的参数进行实时显示和存储。转速工况下的流量精度测试试验显示平均流量误差为4.0%,可作为判定变量喷雾装置性能的一个技术参考;试验表明该试验台可有效实时控制喷杆喷雾机变量喷雾控制部件,满足喷杆喷雾机变量喷雾控制部件的性能测试需求,为制定变量喷雾质量评价技术规范提供技术参考。  相似文献   

19.
The effects on spray drift of nozzle size, angle and operating pressures for boom-mounted hydraulic nozzles operating over a range of meteorological and crop conditions, was investigated using computer simulation. The results showed that the measurements of droplet size, particularly the percentages of spray volume in droplets less than 100 μm in diameter, critically influenced spray drift. Measurements made with an optical imaging system gave data which showed insensitivity to some of the parameters studied, in particular, nozzle size. Results using measurements from this instrument indicated greater spray drift from 80° nozzles mounted at 0·5 m above the crop than from 110° nozzles operating over a comparable range of flowrates and positioned 0·35 m above the crop, despite the coarser spray quality produced by the nozzle with the smaller fan angle. Further simulations were carried out using data from a Phase Doppler analyser in which better resolution of size was possible at droplet diameters <100 μm. Using this data, the model indicated an increase in the mass flux of down-wind airborne spray in conditions that encouraged evaporation; this effect was probably over-estimated because of the assumed constant local air moisture content.Spray drift was shown to increase approximately linearly with wind speed; the rate of increase for a given spray sheet angle and operating pressure was a function of nozzle size. The simulation was also used to demonstrate that a measurement of wind speed made at a height of 2 m above a tall crop signifies a greater drift hazard than the same wind speed measured over a short crop at the same height above the ground.  相似文献   

20.
无人机变量施药实时监控系统设计与试验   总被引:1,自引:0,他引:1  
在航空施药过程中,为保证单位面积施药量的一致性、实现施药流量的实时控制,提出一种航空变量施药分级控制算法。该算法根据各参数的等级和阀门开度建立分级控制表,再结合分级控制公式计算作业参数变化时阀门对应的开度,从而计算出施药流量,实现施药流量的自动调节。基于该算法设计了基于单片机多信息融合的航空变量施药实时监控系统,通过软硬件设计实现了对作业航迹、作业高度、作业速度、施药流量及药液余量等信息的实时监测,进行了航迹监测试验、施药流量监测试验、液位监测试验和变量施药控制试验等。结果表明,该系统可以准确监测多种作业参数,并可根据参数变化精准调控施药流量;飞行航迹监测平均偏差为0.98 m,施药流量监测平均误差为3.57%,液位监测平均误差为1.97%,系统对流量控制的最大误差为9.26%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号