首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Multi-soil-layering (MSL) system was designed for purifying domestic wastewater and for treating polluted river water. MSL system is typically comprised of layers of soil mixture blocks alternating with permeable layers. The permeable layer has roles of preventing clogging and to increasing the efficiency of infiltration of wastewater through the soil mixture blocks. In this study, the comparative efficiency of five MSL systems as a function of five permeable layer materials (zeolite, zeolitized perlite, perlite, gravel, and charcoal) was investigated. The MSL systems were constructed in 15 × 50 × 100 cm boxes where the soil mixture blocks contained sandy clay soil, kenaf + corncob, and iron scraps at a ratio of 6 : 1 : 1 by weight, respectively, and filled up in alternation with the permeable layer. The results indicated that all the MSL systems at loading rates of 96–346 L m?2 d?1 under nonaerated conditions were able to reduce the levels of COD (342–1,231 mg L?1), BOD5 (201–802 mg L?1), and soluble reactive phosphorus (SRP) (3.5–10.1 mg P L?1) at percentages of 79.0–98.1, 80.0–99.6, and 97.1–100%, respectively. The zeolite and the charcoal-based MSL systems under a 96–346 L m?2 d?1 loading rate effectively reduced the level of TN (41.4–65.5 mg N L?1) at percentages of 79.0–92.1 and 30.7–88.9%, respectively. In terms of prevention of clogging, the charcoal-based MSL system was the most effective, followed by the gravel and zeolite-based MSL. The apparent efficiency of pollutant removal, for zeolitized perlite, perlite, and gravel-based MSL systems was low. With an on-off aeration operation, the efficiency of the MSL systems in the reduction of the levels of COD, BOD5 , and SRP (hereafter reference to as “removal”) was significantly enhanced. Overall, the zeolite-based MSL system seemed to be more effective than the other MSL systems. However, if optimum aeration could be obtained, the removal efficiency of charcoal-based MSL system might be improved. Aeration at a rate of 64,000 L m?3 d?1 for 1 week alternating with 2 weeks of nonaeration enhanced the removal of COD, BOD5 , and SRP but not that of TN.  相似文献   

2.
Eutrophication of ponds for agricultural use has begun to adversely affect rice production and the residential living environment in Japan. Cultivation of useful terrestrial and aquatic plant species in plant-bed filter ditches enables to treat domestic wastewater in addition to resource recycling and amenity functions. We evaluated the ability of several plant species, Italian ryegrass (Lolium multiflorum Lam.), hanana (Brassica campestris L. var.), African marigold (Tages erecta L.), sorghum (Sorghum vulgare Pers.), kenaf (Hibiscus cannabinus L.), papyrus (Cyperus papyrus L.), and reed (Phragmites communis Trin.), to remove nitrogen and phosphorus from polluted pond water whose N and P concentrations were much lower than those in domestic wastewater. Artificial pond water containing 2.5 mg L-1 of N and 0.5 mg L-1 of P was supplied to ditches at a loading rate of 1.1 g m-2 d-1 for N and 0.21 g m-2 d-1 for P. Italian ryegrass, papyrus, or kenaf in ditches removed N and P more effectively than other plants. The average removal rate of Italian ryegrass in ditches was 0.62 g m-2 d-1 for N and 0.10 g m-2 d-1 for P, that of papyrus 0.81 g m-2 d-1 for N and 0.15 g m-2 d-1 for P, and that of kenaf 0.73 g m-2 d-1 for N and 0.11 g m-2 d-1 for P. The influence of N and P concentrations on the removal rates of Italian ryegrass, papyrus, and kenaf was studied. Concentrations at a removal rate of zero were 0.2–0.3 mg L-1 for N and 0.01–0.03 mg L-l for P. At low concentrations, the plant removal rates increased sharply with the rise in the concentration. When N concentrations exceeded 0.3–0.6 mg L-1 and P concentrations 0.10–0.45 mg L-1, the removal rates were high and less affected by the concentration. It was considered that these plant species could be used most efficiently at the concentrations where removal rates are less restricted.  相似文献   

3.
Removal of nitrogen and phosphorus from a domestic wastewater using a sequencing batch reactor (SBR) was evaluated at solid retention times (SRTs) of 9.3, 13.8, and 18.3 days respectively. Oxygen uptake rates (OURs) and sludge settling characteristics were determined at each SRT investigated. COD removal, nitrification, denitrification, and phosphorus removal were accomplished by using the following operating cycle: 15-min unmixed fill; 2-hr mixed anaerobic period; 3-hr mixed aerobic period; 3-hr mixed anoxic period; 0.5-hr reaeration period; 1-hr settling period; 1-hr decant period; and a 1.5-hr idle period. Advanced wastewater treatment (AWT) standards of 5/5/3/1 mg L-1 for biochemical oxygen demand (BOD5), suspended solids (SS), total nitrogen (TN), and total phosphorus (TP) could not be achieved with the bench-scale SBR.  相似文献   

4.
To develop a low cost and energy-saving wastewater treatment technique in combination with resource recycling and amenity functions, we constructed a plant bed filter ditch in which useful terrestrial and aquatic plants can be utilized for nitrogen and phosphorus removal from wastewater. Screening studies were conducted to evaluate and compare the effectiveness of 20 kinds of plant species which are economically important or exhibit on aesthetic value, including 13 terrestrial species, for domestic wastewater treatment. Artificial wastewater containing 20 mg L-1 of Nand 3.3 mg L-1 of P, was supplied to the ditch at the rate of about 1.41–2.08 g m-2 d-1 for N and 0.20–0.33 g m-2 d-1 for P. The experiments were performed in a glass house with windows opened from April to November. The ditches showing high Nand P removal rates were planted with plants which exhibited high biomass production rates. In the case of the papyrus ditch, Nand P removal rates exceeded 0.8 g m-2 d-1 for N and 0.15 g m-2 d-1 for P from late spring to autumn, in the case of the kenaf ditch and sorghum ditch, from summer to autumn and in the case of the Italian ryegrass ditch and barley ditch, in early spring. These findings indicated that efficient wastewater treatment can be performed consistently except in the winter season, by cultivating these plants in an appropriate combination in the ditches.  相似文献   

5.
The applicability of granular activated carbon (GAC)filtration for the removal of the xeno-estrogenicmicropollutant nonylphenol (NP) is evaluated using batchadsorption data. From the obtained adsorption data, it wasapparent that with contact times of 4 d and 24 hr and GACdosages of 1 and 0.1 g L-1 no saturationof the GAC could be obtained with NP total contaminantloadings up to 10 000 μg L-1.Higher NP concentrations could not be applied due to its lowwater solubility (~5 mg L-1). The influence of temperature(4 or 28 °C) on NP sorption onto GAC was negligible.The results showed that the sorption capacity of GAC for NPwas at least 100 mg g-1 GAC. According to thesedata it can be concluded that a full-scale GACfilter unit will be sufficient to remove environmentallyrelevant NP concentrations of 10 μg L-1.Consequently, the existing GAC treatment technology indrinking water treatment should protect the consumer from theintake of the xeno-estrogenic micropollutant NP via drinkingwater. The sorption capacity of dissolved humic acids (DHA)for NP is considerable at liquid NP concentrations of 10 μgL-1 and the affinity of DHA for GAC is not significant.These observations suggest that interference on removal of NP onGAC, due to the presence of DHA, can be expected at microgramper liter concentrations of NP. They may warrant the removalof humic substances in treatment steps preceding GAC-filtration.  相似文献   

6.
Seven experimental pilot-scale subsurface vertical-flow constructed wetlands were designed to assess the effect of plants [Typha latifolia L. (cattail)], intermittent artificial aeration and the use of polyhedron hollow polypropylene balls (PHPB) as part of the wetland substrate on nutrient removal from eutrophic Jinhe River water in Tianjin, China. During the entire running period, observations indicated that plants played a negligible role in chemical oxygen demand (COD) removal but significantly enhanced ammonia–nitrogen (NH4–N), nitrate–nitrogen (NO3–N) total nitrogen (TN), soluble reactive phosphorus (SRP) and total phosphorus (TP) removal. The introduction of intermittent artificial aeration and the presence of PHPB could both improve COD, NH4–N, TN, SRP and TP removal. Furthermore, aerated wetlands containing PHPB performed best; the following improvements were noted: 10.38 g COD/m2 day, 1.34 g NH4–N/m2 day, 1.04 g TN/m2 day, 0.07 g SRP/m2 day and 0.07 g TP/m2 day removal, if compared to non-aerated wetlands without PHPB being presented.  相似文献   

7.
Biological processes can achieve nitrate removal from groundwater. The sulfur/limestone autotrophic denitrification by Thiobacillus denitrificans was evaluated with three laboratory-scale column reactors. The optimum sulfur/limestone ratio was determined to be 2:1 (mass/mass). Different hydraulic retention times were used during the column tests to examine nitrate removal efficiencies. Under an HRTs of 13 h, nitrate concentration of 60 mgNO3 --N L-1 was reduced to less than 5 mg NO3 --N L-1. On a higher HRT of 26 h the nitrate removal efficiency was close to 100% for all nitrate-nitrogen loading rates. Different initial nitrate-nitrogen concentrations (30, 60, and 90 mg NO3 --N L-1) were used in the study. Column tests showed that the nitrate-nitrogen loading rate in this study was between 50 to 100 g NO3 --N m-3 d-1 to obtain a removal efficiency of 80–100%. It was found that approximately 6 mg SO4 2- was produced for 1 mg NO3 --N removed. Nitrite-nitrogen in all cases was less than the maximum allowable concentration of 1 mg NO2 --N L-1. Effluent pH was stable in the range of 7 to 8; the effluent dissolved oxygen was less than 0.15 mg L-1 and the oxidation-reduction potential in all columns was in the range of –110 to –250 mV.  相似文献   

8.
农业氮磷养分流失已经成为地下水污染的重要原因之一,为了探究和比较麦稻两熟农田和杨树林地氮磷流失对地下水的影响,本文在洪泽湖河湖交汇区设置农田和杨树林监测小区和监测井,进行了为期1年的地表养分流失和地下水水质监测。结果表明:1)林地雨前雨后表层土壤含水量均小于麦田,麦田土壤含水量较雨前平均提高8.95%,林地提高4.05%。2)麦田和杨树林地表层土壤硝态氮、铵态氮及有效磷流失总量分别为63.53 mg·kg-1、5.61 mg·kg-1及57.43 mg·kg-1和16.78 mg·kg-1、2.45 mg·kg-1及0.73 mg·kg-1,稻季田面水硝态氮、铵态氮、可溶性磷和颗粒态磷流失总量为8.32 mg·L-1、27.44 mg·L-1、2.39 mg·L-1和2.99 mg·L-1,监测期内杨树林氮磷流失总量明显低于农田。3)农田表层养分流失量与降雨量存在密切关系,基本随降雨量增大呈对数增长,而杨树林几乎不受降雨影响。4)农田产生径流的理论最小降雨量(麦田:3.3 mm;稻田:4.2 mm)远小于杨树林地(22.8 mm),麦田铵态氮、正磷酸盐浓度,稻田和杨树林地总氮、硝态氮、铵态氮、总磷、可溶性磷、正磷酸盐浓度与降雨量存在显著相关性。5)农田径流中养分浓度与地下水氮磷含量存在显著相关性(P<0.05),而杨树林地地下水氮磷含量保持在相对稳定水平,与径流中养分浓度无明显相关性。与农田相比,林地能够更好地控制径流养分流失,缓解地下水污染,有利于农业面源污染的控制。  相似文献   

9.
运用~(15)N示踪及非损伤微测技术,研究了不同供磷水平(0 mmol×L~(-1)、1.0 mmol×L~(-1)、2.0 mmol×L~(-1)、3.0 mmol×L~(-1)、4.0 mmol×L~(-1)、6.0 mmol×L~(-1)、8.0 mmol×L~(-1)、12.0 mmol×L~(-1)和16.0 mmol×L~(-1) H_2PO_4~-)对平邑甜茶幼苗NO_3~--N吸收及利用特性的影响,为提高果园氮肥利用效率提供理论依据。结果表明,在低磷水平(0~1.0 mmol×L~(-1))时,平邑甜茶根系长度、根系总表面积较小,且根尖数较少。随着供磷水平的增加,在2.0~4.0 mmol×L~(-1)磷浓度处理时,平邑甜茶幼苗生物量、根系长度、根系总表面积及根尖数显著高于其他处理。而在6.0~16.0 mmol×L~(-1)时,过量供磷抑制了根系的生长,使平邑甜茶幼苗根系长度、表面积均大幅降低,根尖数量骤降。非损伤扫描离子选择电极测试表明,当生长介质磷浓度在3.0~6.0 mmol×L~(-1)时,平邑甜茶对NO_3~-有吸收作用,并在3.0 mmol×L~(-1)磷浓度时其吸收速率最高。而在0~2 mmol×L~(-1)及8.0~16.0 mmol×L~(-1)磷浓度处理下,平邑甜茶对NO_3~-有外排作用。随供磷水平的增加,各器官从肥料中吸收分配到的~(15)N量对该器官全氮量的贡献率(Ndff)及植株氮素利用率呈现先升高后降低的趋势,4.0 mmol×L~(-1)磷浓度时植株氮素利用率最大,为42.24%,超过4.0 mmol×L~(-1)植株氮素利用率显著降低。适当充足的供磷刺激了幼苗根系生长,从而促进平邑甜茶对氮素的获取,过量的NO_3~-抑制了平邑甜茶根系的生长,同时叶片硝酸还原酶的活性受到抑制,因此其氮素吸收和利用效率较低。因此,磷浓度在3.0~4.0 mmol×L~(-1)时最有利于平邑甜茶幼苗的生长及氮素的吸收利用。  相似文献   

10.
Phosphorus control measures at two major (>10000 people equivalent, p.e.) sewage treatment works (STWs) were installed in the lowland calcareous basin of the River Wensum (England). In-stream phosphorus concentrations were monitored seasonally from subcatchments with different levels of phosphorus impacts, as well as before and after phosphorus control, above and below the two major STWs. Point source effluents raised in-stream soluble reactive phosphorus (SRP) concentrations from 9–15 μg L?1 (agricultural sub-catchments) to 580–3270 μg L?1. This was accompanied by an increase of the SRP relative to total phosphorus from 27% to 80–90%. The phosphorus content of the suspended sediment was high (0.2 to 7.7%). Molybdate unreactive phosphorus (1–29 μg L?1) was surprisingly not affected by point source effluents. The river bed sediment bioavailable phosphorus concentrations were higher (4–18 μg g?1 wet weight) downstream from the main effluents, compared to upstream (2–6 μg g?1 wet weight). Phosphorus control at the STWs in 1999 has allowed to reduce in-stream soluble reactive concentrations to 140–280 μg L?1 but has had no significant impact on bioavailable phosphorus in the sediment by 2001, suggesting that either net sediment desorption did not occur or that it is a much slower, longer term response. The relative contribution of the diffuse sources increased from 10% to 27% of the total phosphorus loads at Fakenham. The management of these rivers is therefore problematic.  相似文献   

11.
酸性土壤磷分级新方法建立与生物学评价   总被引:10,自引:0,他引:10  
雷宏军  刘鑫  朱端卫 《土壤学报》2007,44(5):860-866
土壤磷分级方法可用于估算土壤有效磷数量、不同土壤磷组分库数量及其对土壤有效磷的补充能力。以云南赤红壤、黄红壤及湖北棕红壤为供试材料,运用张守敬方法、蒋柏藩方法及本文提出的新方法,对三种酸性土壤和其石灰改良后的土壤磷进行分级研究,探讨石灰改良对酸性土壤磷组分数量及其生物有效性的影响。结果表明:Ca2-P、Al-P和Fe-P是酸性土壤主要的有效磷源,O-P(闭蓄态磷)也是潜在有效磷源,土壤中活性有机磷库相对比较稳定,可转化为高活性有效磷源供植物吸收利用。与两种经典磷分级方法相比,新方法将O-P划分为O-Al-P和O-Fe-P,O-Fe-P较好地反映了石灰处理与对照之间的土壤磷植物有效性差异。  相似文献   

12.
塿土磷素淋移的形态研究   总被引:8,自引:1,他引:8  
利用设在  相似文献   

13.
Soil and water samples were analysed for trace metals and As in two watercourses and 14 sampling plots in a salt marsh polluted by mine wastes in SE Spain. Groundwater levels, soil pH and Eh were measured ‘in situ’ for a 12-month period in each sampling plot, and total calcium carbonate was also determined. Low concentrations of soluble metals (maximum Mn 1.089 mg L?1 and maximum Zn 0.553 mg L?1) were found in the watercourses. However, total metal contents were extremely high in the soils of a zone of the salt marsh (maximum 1,933 mg kg?1 of Mn, 62,280 mg kg?1 of Zn, 16,845 mg kg?1 of Pb, 77 mg kg?1 of Cd, 418 mg kg?1 of Cu and 725 mg kg?1 of As), and soluble metals in the pore water reached 38.7 mg L?1 for Zn, 3.15 mg L?1 for Pb, 48.0 mg L?1 for Mn, 0.61 mg L?1 for Cd and 0.29 mg L?1 for As. Variable concentrations with depth indicate a possible re-mobilisation of the metals, which could be related to spatial and temporal variations of water table level, pH and Eh and to the presence of calcium carbonate. A tendency for the Eh to decrease in the warmest months and to increase in the coldest ones was found, especially, in plots that received water with a high content of dissolved organic carbon. Hence, the existence of nutrient effluent-enriched water may modify the physical–chemical conditions of the soil–water system and influence metal mobility.  相似文献   

14.
0.01molL-1CaCl2作为土壤不同N素形态浸提剂的研究   总被引:5,自引:0,他引:5       下载免费PDF全文
本文用荷兰8种表土测试不同温度下0.01molL-1CaCl2提取液和淋滤液中N素各形态。试验结果表明温度对NO3--N提取量和淋滤量无影响,但对NH4+-N、可溶性总N和还原态N影响显著;可溶性有机态N的释放服从一级动力学方程:Nt=N0(1-e-kt),非线性最小二乘法能满意地拟合动力学实验结果。测定0.01molL-1CaCl2提取液中的可溶性有机态N对预测土壤N素矿化、合理推荐施肥及防止N素污染可能是一个很有前途的指标。  相似文献   

15.
Sericite is mica-based natural clay that is annealed at 800 ℃ for 4 h, followed by acid activation using 3.0 mol L-1HCl at 100℃. The interaction of cesium(I), Cs(I), with sericite could provide useful data for the study of soil erosion or mass water movement utilizing the natural radioactive Cs. In this study sericite and activated sericite were used to assess their suitability in the attenuation of Cs from the aquatic environment under both batch and column experiments. The surface morphological studies indicated that a disordered and heterogeneous surface structure was exhibited by the activated sericite, whereas the native sericite exhibited a compact and layered structure. The Brunauer-Emmett-Teller(BET) specific surface area results indicated a significant increase in the surface area due to the activation of sericite. The batch reactor data collected for various parametric studies revealed that an increase in p H(from 2.0 to 8.0) and sorbate concentration(from 10.0 to 100.0 mg L-1) apparently favored the attenuation of Cs(I). The timedependent sorption data revealed that Cs(I) uptake was very rapid, and it achieved its saturation value within just 50 min of contact.The kinetic modeling studies indicated that the uptake of Cs(I) followed a pseudo-second-order rate equation; hence, the attenuation capacity of these solids for Cs(I) was estimated to be 0.858 and 4.353 mg g-1for sericite and activated sericite solids, respectively.The adsorption isotherm modeling data showed a reasonably good applicability of the Freundlich model than the Langmuir model.The effect of background electrolyte concentrations(0.001 to 0.1 mol L-1) of Mg(NO3)2indicated that the presence of this electrolyte could not significantly affect the percent removal of Cs(I) by activated sericite. Furthermore, the fixed-bed column reactor operations were performed to obtain the breakthrough data, which were fitted well to the Thomas non-linear equation. Therefore, the loading capacity of Cs(I) was estimated to be 1.585 mg g-1at the initial influent Cs(I) concentration of 30.0 mg L-1at p H 5.0.  相似文献   

16.
ABSTRACT

This study investigated the effect of liquid fertilizer treatments on growth, flowering, leaf mineral content, and rhizome production during forcing of Curcuma alismatifolia ‘Chiang Mai Pink’ and C. thorelii ‘Chiang Mai Snow’. Plants were irrigated with 200 mL of 1.3 g L?1 of 15 nitrogen (N) -7 phosphorus (P) -14 potassium (K) water soluble fertilizer at 0, 1.3, 2.7, 4.0, 5.3, or 6.6 g L?1 weekly. Days to flower, flower stem length, and leaf length were recorded, the mineral contents in leaves were analyzed, and the number of rhizomes with tuberous roots were recorded at harvest. Flowering of the first inflorescence in both C. alismatifolia ‘Chiang Mai Pink’ and C. thorelii ‘Chiang Mai Snow’ was significantly delayed when plants received 6.6 g L?1 fertilizer as compared to the control plants. The number of rhizomes with more than 4 tuberous roots was highest when plants received 2.7 g L?1 fertilizer. No medium-sized rhizomes with more than seven tuberous roots were produced when ‘Chiang Mai Pink’ plants received 0, 4.0, 5.3, and 6.6 g L?1 fertilizer. Based on the production of rhizomes with four to six tuberous roots, optimum concentration of 15N -7P -14K water soluble fertilizer is 2.7 g L?1 for C. alismatifolia ‘Chiang Mai Pink’ and 1.3 to 4.0 g L?1 for C. thorelii ‘Chiang Mai Snow’. Although high boron content occurred only in the outer part of the second leaf when fertilizer concentrations were increased, leaf-margin burn (LMB) symptoms were not observed in both species and this could not be related to the production of rhizomes.  相似文献   

17.
Adsorption studies of Cr(III) on biogas residual slurry (BRS) were caried out under varying conditions of shaking time (5–180 min), metal ion concentration (10–40 mg L-1), adsorbent concentration (1.0 to 8.0 g L-1) and initial pH (1.5–5.0). Adsorption follows Langmuir isotherm, being endothermic in nature. For a Cr(III) concentration of 10 mg L-1, a maximum removal of 85% by 4 g L-1 of adsorbent was obtained at an initial pH ≥ 3.0. Desorption of Cr(III) from the spent adsorbent has also been investigated. Removal of Cr(III) from tannery wastewater by BRS was testified.  相似文献   

18.
Agro-industrial wastewater and municipal sewage wereused to restore Frank Lake, a 1246 ha northernprairie marsh in southern Alberta, Canada, to providewaterfowl habitat and improve water quality. Meanannual inflow wastewater nutrient concentrations were17 mg L-1 NH3-N, 30 mg L-1 NO3-Nand 11 mg L-1 SRP. Mean flows greater than 5000 m3 day-1 loaded the marsh with 23 000 kg of P annually. Summer NH3-N, NO3-N andtotal phosphorus (TP) surface water concentrationswere decreased by 76, 87 and 64%, respectively, aswaters flowed through the first basin of the marsh.Winter treatment was less successful, with surfacewater NH3-N, NO3-N and TP reductions of46, –26 (export) and 26%, respectively.Short-circuiting of water flow through the marsh andcold seasonal conditions with ice cover caused spatialand temporal variation in marsh treatment. Continuedhigh loadings to the marsh may lead to sediment saturation, eutrophication or phosphorus export from the marsh.  相似文献   

19.
《Journal of plant nutrition》2013,36(10):2315-2331
ABSTRACT

Split root solution culture experiments were conducted to study the effects of the rare earth element lanthanum (La) on rice (Oryza sativa) growth, nutrient uptake and distribution. Results showed that low concentrations of La could promote rice growth including yield (0.05 mg L?1 to 1.5 mg L?1), dry root weight (0.05 mg L?1 to 0.75 mg L?1) and grain numbers (0.05 mg L?1 to 6 mg L?1). High concentrations depressed grain formation (9 mg L?1 to 30 mg L?1) and root elongation (1.5 mg L?1 to 30 mg L?1). No significant influence on straw dry weight was found over the whole concentration range except for the 0.05 mg L?1 treatment. In the pot and field experiments, the addition of La had no significant influence on rice growth.Lanthanum had variable influence on nutrient uptake in different parts of rice. Low concentrations (0.05 mg L?1 to 0.75 mg L?1) increased the root copper (Cu), iron (Fe), and magnesium (Mg), and grain Cu, calcium (Ca), phosphorus (P), manganese (Mn), and Mg uptake. High concentrations (9 to 30 mg L?1) decreased the grain Ca, zinc (Zn), P, Mn, Fe and Mg, and straw Ca, Mn, and Mg uptake. With increasing La concentration, root Zn, P, Mn, Cu, and Ca concentrations increased, and grain Ca and Fe, and straw Mn, Mg, and Ca concentrations decreased. Possible reasons are discussed for the differences between the effects of La in nutrient solutions and in pot and field experiments.  相似文献   

20.
利用自行设计的生物反应器进行多环芳烃菲污染土壤的生物修复研究。在控制土壤水分、养分的情况下 ,设 6个通气处理 ,分析测定各处理的土壤菲降解率、微生物量、多酚氧化酶以及土壤酸度的动态变化。为期 6 0天的试验结果表明 ,通气量为 0 .0 8m3 h-1时 ,菲的降解率最高 ,达 72 .6 % ;与对照相比 ,微生物量最多 ,其中细菌、真菌都显著高于对照 ;多酚氧化酶活性也最高。通气量为 0 .0 8m3 h-1处理还可以控制土壤中酸度的变化 ,保持土壤中pH的稳定 ,从而更快地降解污染土壤中的菲。较高的菲降解率与通气改变土壤条件有关。在本实验的条件下 ,反应器中土壤细菌、真菌数量增加 ,多酚氧化酶活性提高 ,土壤保持稳定的pH值是土壤中菲降解率提高的主要原因。因而 ,改进的反应器具有较高的降解效果。本研究还表明 ,利用生物反应器能够快速、高效地消除土壤中的有机污染物 ,实现有机污染土壤的离位生物修复。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号