首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
表施尿素的冬小麦土壤氨挥发损失   总被引:22,自引:0,他引:22  
Ammonia volatilization was measured with a continuous air flow enclosure method from a winter wheat field in the Experimental Farm of Jurong Agricultural School to investigate its main influencing factors. The experiment with five treatments in triplicate, no N (control), 100, 200 and 300 kg N ha-1 with rice straw cover at a rate of 1 500 kg ha-1 and 200 kg N ha-1 without rice straw, started when the winter wheat was sown in 1994. Sixty percent of the total amount of N applied was basal and 40% was top-dressed. The measurement of ammonia volatilization was immediately conducted after urea was top-dressed on soil surface at wheat elongation stage in spring of 1996 and 1997. The results showed that there was a diurnal variation of ammonia volatilization rate from the winter wheat field, which synchronized with air temperature. N losses through ammonia volatilization increased with increasing N application rate, but the ratio of N lost through ammonia volatilization to applied N was not significantly affected by N application rate. The coverage of rice straw had no significant effect on ammonia volatilization. Soil moisture and rain events after urea was top-dressed affected ammonia volatilization significantly.  相似文献   

2.
Total nitrogen(N) loss and ammonia volatilization from urea applied to flooded rice grown on a paddy soil in Zhejiang Province were measured by ^15N balance and micro-meteorological methods,respectively.Floodwater properties and ammonia loss from the circular plot were compared with those from the microplots.And the effectiveness of urease inhibitor,NBPT [N-(n-butyl) thiophosphoric triamide],was also tested Results showed that the total losses from urea broadcast and incorporated at transplanting (basal dressing) were similar with those from urea broadcast 12 days after transplanting (top-dressing)(51.5% and 48%,respectively,of applied N),and ammonia losses were low,the corresponding figures were 10.8% and 7.0% of applied N,respectively.Thus,denitrification was a much more important pathway of nitrogen loss than ammonia volatilization under the particular conditions.Addition of NBPT retarded urea hydrolysis,reduced pHs and ammoniacal nitrogen concentrations of floodwater for either the application of urea as basal or as top-dressing,but these effects were not translated into the reduction of total nitrogen loss.Floodwater pHs and ammonia loss in the microplots were apparently lower than those in the circular plot from urea applied as basal dressing;however,such differences were not found when urea was top-dressed.The frequently raining days occurred after top-dressing may be responsible for the insignificant effect of plot size on floodwater pHs and ammonia volatilization.It seems that the effects of phot size on ploodwater properties and ammonia loss mainly depend on weather conditions,in addition to the height and leaf area index of the crop.  相似文献   

3.
华北平原水浇玉米-小麦轮作农田氨挥发与反硝化损失   总被引:9,自引:6,他引:9  
Ammonia (NH3) volatilization, denitriflcation loss, and nitrous oxide (N2O) emission were investigated from an irrigated wheat-maize rotation field on the North China Plain, and the magnitude of gaseous N loss from denitrification and NH3 volatilization was assessed. The micrometeorological gradient diffusion method in conjunction with a Bowen Ratio system was utilized to measure actual NH3 fluxes over a large area, while the acetylene inhibition technique (intact soil cores) was employed for measurement of denitrification losses and N2O emissions. Ammonia volatilization loss was 26.62% of the applied fertilizer nitrogen (N) under maize, while 0.90% and 15.55% were lost from the wheat field at sowing and topdressing, respectively. The differences in NH3 volatilization between different measurement events may be due to differences between the fertilization methods, and to differences in climatic conditions such as soil temperature. Denitrification losses in the fertilized plots were 0.67%-2.87% and 0.31%-0.49% of the applied fertilizer N under maize and wheat after subtracting those of the controls, respectively. Nitrous oxide emissions in the fertilized plots were approximately 0.08%-0.41% and 0.26%-0.34% of the applied fertilizer N over the maize and wheat seasons after subtracting those of the controls, correspondingly. The fertilizer N losses due to NH3 volatilization were markedly higher than those through denitriflcation and nitrous oxide emissions. These results indicated that NH3 volatilization was an important N transformation in the crop-soil system and was likely to be the major cause of low efficiencies with N fertilizer in the study area. Denitriflcation was not a very important pathway of N fertilizer loss, but did result in important evolution of the greenhouse gas N2O and the effect of N2O emitted from agricultural fields on environment should not be overlooked.  相似文献   

4.
氮肥用量对太湖水稻田间氨挥发和氮素利用率的影响   总被引:28,自引:0,他引:28  
Ammonia volatilization losses, nitrogen utilization efficiency, and rice yields in response to urea application to a rice field were investigated in Wangzhuang Town, Changshu City, Jiangsu Province, China. The N fertilizer treatments, applied in triplicate, were 0 (control), 100, 200, 300, or 350 kg N ha^-1. After urea was applied to the surface water, a continuous airflow enclosure method was used to measure ammonia volatilization in the paddy field. Total N losses through ammonia volatilization generally increased with the N application rate, and the two higher N application rates (300 and 350 kg N ha^-1) showed a higher ratio of N lost through ammonia volatilization to applied N. Total ammonia loss by ammonia volatilization during the entire rice growth stage ranged from 9.0% to 16.7% of the applied N. Increasing the application rate generally decreased the ratio of N in the seed to N in the plant. For all N treatments, the nitrogen fertilizer utilization efficiency ranged from 30.9% to 45.9%. Surplus N with the highest N rate resulted in lodging of rice plants, a decreased rate of nitrogen fertilizer utilization, and reduced rice yields. Calculated from this experiment, the most economical N fertilizer application rate was 227 kg ha^-1 for the type of paddy soil in the Taihu Lake region. However, recommending an appropriate N fertilizer application rate such that the plant growth is enhanced and ammonia loss is reduced could improve the N utilization efficiency of rice.  相似文献   

5.
Results showed that ammonia loss from urea broadcast into floodwater and incorporated into soil at transplanting was as high as 40% of applied N,and the corresponding total nitrogen (N) loss was 56%.Ammonia loss was measured with simplified micrometeorological method (ammonia sampler),and total N loss was concurrently measured using ^15N balance technique.The experiment was conducted under strong sunshine conditions on acid paddy soil derived from Quaternary red clay.The ammonia loss in this particular condition was much greater than those obtained from previous studies when urea was also applied to acid paddy soil but under cloudy conditions.It is concluded that the strong sunshine conditions with high temperature and shallow floodwater during the period of present experiment favoured ammonia volatilization.Application of stearyl alcohol on the surface of the floodwater reduced ammonia loss to 23% of applied N.However,the effect of stearyl alcohol was short-lived,probably due to the microbiological decomposition.  相似文献   

6.
基施磷肥对石灰性土壤上番茄产量的影响   总被引:4,自引:0,他引:4  
A lysimeter experiment with undisturbed soil profiles was carried out to study nitrogen cycling and losses in a paddy soll with applications of coated urea and urea under a rice-wheat rotation system in the Taihu Lake region from 2001 to 2003. Treatments for rice and wheat included urea at conventional, 300 (rice) and 250 (wheat) kg N ha^-1, and reduced levels, 150 (rice) and 125 (wheat) kg N ha^-1, coated urea at two levels, 100 (rice) and 75 (wheat) kg N ha^-1, and 150 (rice) and 125 (wheat) kg N ha^-1, and a control with no nitrogen arranged in a completely randomized design. The results under two rice-wheat rotations showed that N losses through both NH3 volatilization and runoff in the coated urea treatments were much lower than those in the urea treatments. In the urea treatments N runoff losses were significantly (P 〈 0.001) positively correlated (r = 0.851) with applied N. N concentration in surface water increased rapidly to maximum two days after urea application and then decreased quickly. However, if there was no heavy rain within five days of fertilizer application, the likelihood of N loss by runoff was not high. As the treatments showed little difference in N loss via percolation, nitrate N in the groundwater of the paddy fields was not directly related to N leaching. The total yield of the two rice-wheat rotations in the treatment of coated urea at 50% conventional level was higher than that in the treatment of urea at the conventional level. Thus, coated urea was more favorable to rice production and environmental protection than urea.  相似文献   

7.
A soil column method was used to compare the effect of drip fertigation (the application of fertilizer through drip irrigation systems, DFI) on the leaching loss and transformation of urea-N in soil with that of surface fertilization combined with flood irrigation (SFI), and to study the leaching loss and transformation of three kinds of nitrogen fertilizers (nitrate fertilizer, ammonium fertilizer, and urea fertilizer) in two contrasting soils after the fertigation. In comparison to SFI, DFI decreased leaching loss of urea-N from the soil and increased the mineral N (NH4^+-N + NO3^--N) in the soil. The N leached from a clay loam soil ranged from 5.7% to 9.6% of the total N added as fertilizer, whereas for a sandy loam soil they ranged between 16.2% and 30.4%. Leaching losses of mineral N were higher when nitrate fertilizer was used compared to urea or ammonium fertilizer. Compared to the control (without urea addition), on the first day when soils were fertigated with urea, there were increases in NH4^+-N in the soils. This confirmed the rapid hydrolysis of urea in soil during fertigation. NH4^+-N in soils reached a peak about 5 days after fertigation, and due to nitrification it began to decrease at day 10. After applying NH4^+-N fertilizer and urea and during the incubation period, the mineral nitrogen in the soil decreased. This may be related to the occurrence of NH4^+-N fixation or volatilization in the soil during the fertigation process.  相似文献   

8.
镉、铅、锌对红壤微生物生物量的影响   总被引:16,自引:2,他引:14  
Nitrogen(N)losses from ammonium bicarbonate or urea applied to wheat and then followed immediately by irrigation were investigated.Ammonia volatilization was determined by a micrometeorological method (ammonia sampler),total N loss was estimated by the ^15N mass balance method ,and denitrification loss was measured by the diference method(calculated from the difference between the total N loss and ammonia loss) and a direct method (measuring the emission of (N2 N2O)-^15N).Total ammonia losses from ammonium bicarbonate and urea in 33 days were 8.7% and 0.9% of the applied nitrogen ,respectively.The corresponding total N losses were 21.6% and 29.5%,Apparent denitrification losses(by the difference method) were rather high,being 12.9% from ammonium bicarbonate and 28.6% from urea .However,no emission of (N2 N2O)-^15N was detected using the direct method.  相似文献   

9.
The fate of urea-and ammonium bicarbonate(ABC)-nitrogen (N) applied by prevailing traditional techniques to winter wheat (Triticum aestivum L.)or maize (Zea mays L.)grown in the fields of Fluvo-aquic soil was investigated using ^15N tracer-micro-plot technique.Results show that:(1) at maturity of wheat,N recovery in plants and N losses of urea and ABC applied at seeding in autumn were 31-39%,and 34-46%,respextively,while the corresponding figures for side-banding at 10 cm depth in early spring were 51-57%,and 5-12%;surface-broadcast of urea followed by irrigation at early spring was as efficient as the side-banding in improving N recovery in plants and reducing N loss,however,such techuique was found less satisfactory with ABC.(2)At the maturity of maize,N recovery in the plants and N loss of urea and ABC sidebanded at seedling stage or prior to tasseling ranged from 23% to 57%,and 9% to 26%,respectively.(3) Either in Wheat or in maize experiment,the majority of residual fertilizer N in soil profile (0-60cm) was in the form of biologically immobilized organic N,however,the contribution of ammonium fixation by clay minerals increased markedly nwith depth in soil profile.(4) Though the proportion of residual fertilizer N was generally highest in the top 20 cm soil layer,considerable reaidual N (nostly 6-11% of the N applied)was found in 60-100 cm soil layers.  相似文献   

10.
Ammonia(NH3) volatilization is one of the important pathways of nitrogen loss in alkaline soil, and the NH3 concentration in soil headspace is directly linked with the NH3 volatilization. Ammonia was characterized by Fourier transform mid-infrared photoacoustic spectroscopy(FTIR-PAS) and two typical absorption bands in the region of 850–1 200 cm-1were observed, which could be used for the prediction of NH3 concentration in the soil headspace. An alkaline soil from North China was involved in the soil incubation, pot and field experiments under three fertilization treatments(control without N input(CK), urea and coated urea). Ammonia concentrations in the soil headspace were determined in each experiment. In the soil incubation experiment, the NH3 emissions were initiated by the N input, reached the highest concentration on day 2, and decreased to the level as measured in CK after 8 d, with significantly higher NH3 emissions in the urea treatment compared to coated urea treatment, especially during the first 4 d. The NH3 concentration in soil headspace of the pot experiment showed the similar dynamics as that in the incubation experiment; however, the NH3 concentration in the soil headspace in the field experiment demonstrated a significantly different emission pattern with those of the incubation and pot experiments, and there was a 4-d delay for the NH3 concentration. Therefore, the NH3 concentration in the incubation and pot experiments could not be directly used to model the real NH3 emission in the field due to the differences in fertilization method and application rate as well as soil temperature and soil disturbance. It was recommended that light irrigation in the second week after fertilization and involvement of controlled release coated urea could be used to significantly decrease N loss from the perspective of NH3 volatilization.  相似文献   

11.
氨挥发是肥料氮素损失的重要途径之一,损失率因土壤类型、气候条件、肥料用量、施肥时间和方式等不同而存在很大差异。为了筛选提高氮肥利用率的肥料运筹方式,本文利用长期定位试验平台,采用间歇密闭通气法,研究了有机无机肥长期施用条件下小麦季土壤氨挥发损失及其影响因素。结果表明,不同肥料种类和配施强烈地影响着土壤氨挥发,在150kgN·hm^-2用量下小麦季氨挥发损失量以NK和有机肥处理为最高,分别达到17.89和15.70kgN·hm^-2,占氮肥用量的10.47%-11.93%,显著高于NPK、NP和有机无机肥配施(1/20M)处理。土壤氨挥发速率与气温呈显著正相关,基肥施用后灌水可以有效地降低氨挥发损失。NPK肥料平衡施用或者有机无机肥配施可以减少氨挥发损失。  相似文献   

12.
太湖地区铁渗水耕人为土稻季上氮肥的氨挥发   总被引:7,自引:0,他引:7  
系统地研究了太湖地区铁渗水耕人为土(黄泥土)稻田上施入的尿素通过氨挥发损失的过程和数量,以及土壤等条件对其影响,可为减少该地区稻季氮肥氨挥发损失,提高氮素利用率提供理论依据。试验应用连续气流密闭室法测定了太湖地区典型稻麦轮作制度中稻季不同施氮量下的水稻基肥、分蘖和孕穗期施用尿素的氨挥发损失,并对其影响因素(田面水中NH4^+-N浓度、pH值等)的作用进行了分析研究。结果表明,水稻施用尿素后的氨挥发损失量占施肥量的3.7%~11.7%,其中以分蘖肥时期损失最大,其次为穗肥,基肥氨挥发损失最小,氨挥发损失主要时期是在施肥后7d内,田面水中的NH4^+-N浓度和pH值与氨挥发量有极显著的相关关系(相关系数分别为0.791^**、0.443^**)。  相似文献   

13.
在特制密闭盆钵甲,研究了15N标记氮肥作水稻基肥混施时,氨的挥发及其在氮素损失中的重要性,随着通气速率的增高,氨的挥发及其在氮素损失中的重要性也增大,至换气频率达15-20次/分时即接近或达到最大值.在酸性水稻土上,硫铵的氮素损失的主要途径是反硝化作用,特别是气温较低的月份;尿素的氮素损失途径,在气温较低的月份中以反硝化作用为主,在温度较高的月份中,则氨的挥发与反硝化作用都是重要的;对碳铵来说,氨的挥发和反硝化作用都是氮素损失的重要途径.在石灰性土壤上,碳铵的氮素损失的主要途径是氨的挥发,而在硫铵和尿素的氮素损失中,氨的挥发和反硝化作用则都是重要的.  相似文献   

14.
冀北高原草甸栗钙土春小麦中化肥氮去向的研究   总被引:7,自引:2,他引:7       下载免费PDF全文
在冀北高原张北县的草甸栗钙土上,采用^15N质量平衡法和微气象学技术,对春小麦中氮肥的去向,以及氨挥发进行了田间原位观测。试验中的氮肥用量为N4.83kg/亩,1/3作基肥、2/3作追肥。基肥随播种施入,追肥于拔节期撤施,随即灌水。结果表明,小麦回收、土壤残留和损失的肥料氮各占施入氮量的37.8%-48.3%、33.8%-40.4%和14.3%-25.4%。其中,尿素作基肥与作追肥的处理之间,其氮  相似文献   

15.
太湖地区冬小麦季土壤氨挥发与一氧化氮排放研究   总被引:1,自引:0,他引:1  
采用密闭室连续抽气法和静态箱法同步研究了太湖地区冬小麦季田间小区试验中不同施氮处理的氨挥发与一氧化氮(NO)排放的规律。结果表明,麦季氨挥发主要发生在施肥后 7~10d,以基肥期挥发量最大,为NH3-N 0.49~9.36 kg/hm2,占整个麦季观测期间挥发量的60.4%~74.7 %;NO的排放则主要发生在施用基肥后的30d 内,量虽小但持续时间较长,排放速率为NO-N 0.009~0.304 mg/(m2.h),该时期总损失量为NO-N 0.68~1.23 kg/hm2,约占整个麦季观测期排放量的 93%。氨挥发和 NO 排放均随施氮量的增加而增加。各施氮处理麦季观测期的氨挥发总损失量为NH3-N 7.6~12.6 kg/hm2,损失率4.62%~5.26%;NO排放总量为NO-N 0.73~1.3 kg/hm2,损失率0.27%~0.41%。研究结果对综合评价太湖地区麦季氮肥的气态损失及其环境效应、指导合理施肥都具有重要意义。  相似文献   

16.
控释氮肥在淹水稻田土壤上的去向及利用率   总被引:57,自引:11,他引:57  
通过土壤渗漏装置、微区和田间小区试验,研究了15N标记控释氮肥在淹水稻田土壤上氮素的去向和利用率。结果表明,施用控释氮肥能明显地降低氨挥发、淋失和硝化—反硝化的损失。控释氮肥处理的氨挥发量比尿素降低54.0%,氮淋失量降低32.5%。尿素的硝化—反硝化损失量占施入氮量的34.5%,而控释氮肥的只占2.0%;控释肥料与尿素氮在0—80cm土层中的残留率相近。控释氮肥一次性全量作基肥施入土壤,水稻的氮肥利用率平均为65.6%,比尿素(基肥+追肥)高出32.2个百分点。控释氮肥的农学效率显著地高于尿素。  相似文献   

17.
追氮方式对夏玉米土壤N2O和NH3排放的影响   总被引:7,自引:2,他引:5  
【目的】研究氮肥与硝化抑制剂撒施及条施覆土三种追施氮肥方式下土壤N2O和NH3排放规律、 O2浓度及土壤NH4+-N、 NO2--N和NO3--N的时空动态,揭示追氮方式对两种重要环境气体排放的影响及机制。【方法】试验设置3个处理: 1)农民习惯追氮方式撒施(BC); 2)撒施添加10%的硝化抑制剂(BC+DCD); 3) 条施后覆土(Band)。 3个处理均在施肥后均匀灌水20 mm。在夏玉米十叶期追施氮肥后的15天(2014年7月23日至8月8日)进行田间原位连续动态观测,并在玉米成熟期测定产量及吸氮量。采用静态箱-气相色谱法测定土壤N2O排放量,土壤气体平衡管-气相色谱法测定土壤N2O浓度,PVC管-通气法测定土壤NH3挥发,土壤气体平衡管-泵吸式O2浓度测定仪测定土壤O2浓度。【结果】农民习惯追氮方式N2O排放量为N 395 g/hm2,NH3挥发损失为N 22.9 kg/hm2,同时还导致土壤在一定程度上积累了NO2--N。与习惯追氮方式相比,添加硝化抑制剂显著减少N2O排放89.4%,使NH3挥发略有增加,未造成土壤NO2--N的累积。条施覆土使土壤N2O排放量显著增加将近1倍,但使NH3挥发显著减少69.4%,同时造成施肥后土壤局部高NO2--N累积。条施覆土的施肥条带上土壤NO2--N含量与N2O排放通量呈显著正相关。土壤气体的O2和N2O浓度受土壤含水量控制,当土壤WFPS大于60%时,020 cm土层中的O2浓度明显降低,而N2O浓度增加,土壤N2O浓度和土壤O2浓度间呈极显著负相关。各处理地上部产量及总吸氮量差异不显著。【结论】土壤NO2--N的累积与铵态氮肥施肥方式密切相关,NO2--N的累积能够促进土壤N2O的排放,且在条施覆土时达到显著水平(P0.05)。追氮方式对N2O和NH3两种气体的排放存在某种程度的此消彼长,添加硝化抑制剂在减少N2O排放的同时会增加NH3挥发,条施覆土在显著减少NH3挥发的同时会显著增加土壤N2O排放。在条施覆土基础上添加硝化抑制剂,有可能同时降低N2O排放和NH3挥发损失,此推论值得进一步研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号